| 研究生: |
謝孟庭 Hsieh, Meng-Ting |
|---|---|
| 論文名稱: |
以微振及地震資料分析嘉義與台南地區的場址效應與災害潛勢—以大埔地震為例 Investigation of Site Effects and Hazard Potential in Chiayi and Tainan Areas Using Microtremor and Post-Earthquake Data: An Application Based on the 2025 Dapu Earthquake |
| 指導教授: |
吳建宏
Wu, Jian-Hong 李德河 Lee, Der-Her |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 252 |
| 中文關鍵詞: | 微振動 、H/V 頻譜 、剪力波速推估 、pseudo-EHVR 、場址效應 、卓越頻率 、地震災損 、液化潛勢 、空間內插 、震後評估 |
| 外文關鍵詞: | Microtremor, H/V Spectrum, Shear wave velocity estimation, pseudo-EHVR, Site effect, Predominant frequency, Earthquake damage, Liquefaction potential, Spatial interpolation, Post-earthquake assessment |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以臺南與嘉義地區為主要研究範圍,針對不同地質環境與地層結構,透過大規模微振動量測資料進行場址特性分析,並以H/V頻譜圖為主要工具進行卓越頻率與放大係數評估。由於傳統剪力波速推估方法多仰賴地工試驗或地球物理探測,操作成本高、時程長且難以廣泛佈點,為提升資料取得效率與場址分析可行性,本研究發展一套簡化推估方法,使用微振儀資料假設H/V值與剪力波速間具有線性關係,並引入加權平均概念,建立可應用於單站微振資料之剪力波速預測模式。透過此方法可有效推估各場址之地層剛性,並結合空間內插技術,製作研究區域之卓越頻率與週期分布圖,進一步評估地層變化趨勢與地質構造過渡帶位置。
此外,為探討微振資料於震後應變之應用潛力,本研究以2025年大埔地震為案例,針對建物災損區與液化潛勢區進行震後微振量測與場址分析。為克服震後資料無法反映震時真實場址放大行為之限制,研究中導入pseudo-EHVR模型進行頻譜補償,模擬震時場址反應頻譜,並嘗試對建物損壞原因與共振機制進行探討。在液化潛勢區部分,則比較震後放大係數與相關指標與實際液化現象間之關係,分析地震對地層性質可能造成之改變,並評估震後微振資料應用於液化研判之可行性與限制。
綜合而言,本研究整合大量微振資料進行空間化處理與震後應變分析,建立一套具可行性之剪力波速簡易推估流程與場址反應評估方法,不僅可應用於都會區初步場址調查與地盤特性分析,亦可作為震後快速判釋、災損分級與防災規劃之重要依據,對提升地震災害風險管理與應變效率具有實務與學術價值。
This study focuses on the Tainan and Chiayi regions of Taiwan, analyzing site characteristics under various geological conditions using extensive microtremor measurements. The H/V spectral ratio is employed as the primary tool to estimate predominant frequencies and amplification factors. To address the limitations of traditional Vs estimation methods—which often require costly and time-consuming geotechnical or geophysical testing—this research proposes a simplified approach based on the assumed linear relationship between H/V values and shear wave velocity. A weighted average method is introduced to develop a practical Vs prediction model for single-station microtremor data. Spatial interpolation is then applied to visualize the regional distribution of predominant frequency and identify geological transitions.
Additionally, this study examines the post-earthquake application of microtremor data using the 2025 Dapu earthquake as a case study, particularly in liquefaction-prone and damaged urban areas. To overcome the limitations of post-earthquake data in capturing true seismic amplification, the pseudo-EHVR model is used to reconstruct site response spectra and assess building damage mechanisms. The feasibility of using post-event microtremor data for liquefaction assessment is also evaluated. Overall, this research develops a practical and scalable method for site response analysis and Vs estimation, offering valuable insights for post-earthquake assessment, risk zoning, and urban seismic hazard mitigation.
[1] 工程地質探勘資料庫整合查詢平台,經濟部中央地質調查所。檢自: https://geotech.moeacgs.gov.tw/imoeagis/Home/Map (2025)
[2] 中央地調所土壤液化潛勢查詢系統-緣起。檢自: https://www.liquid.net.tw/cgs/public/story01.html (2025)
[3] 中央氣象局地震測報中心。檢自https://scweb.cwb.gov.tw/zh-tw/station/?fbclid=IwAR3urITFH5u93wwgSlqPMaq1kfR7hGQDh6gIW6FUim3qXyudnKwS3DDSwPo (2025)
[4] 內政部營建署 (2019)。建築物耐震設計規範與解說。第十一章: 其他耐震相關規定。
[5] 水文地質資料庫整合查詢平台,內政部國土測繪中心。檢自: https://hydrogis.moeacgs.gov.tw/map/zh-tw (2025)
[6] 台灣地震動分布評估系統,國家實驗研究院國家地震工程研究中心。檢自:https://seaport.ncree.org/smap/ (2025)
[7] 全國強震測站場址工程地質資料庫。檢自: http://egdt.ncree.org.tw/news.htm (2025)
[8] 全球災害事件簿。檢自: https://den1.ncdr.nat.gov.tw/1178/1655/ (2025)
[9] 地質雲加值應用平台-土壤液化潛勢。檢自:https://www.geologycloud.tw/map/liquefaction/zh-tw (2025)
[10] 李振毓 (2020),以微震儀 H/V 頻譜圖波形進行地層力學特性判釋之研究。國立成功大學土木工程研究所,碩士論文,台南,台灣。
[11] 何信昌、林朝宗、黃世建(2005)。《台灣地區主要活動斷層地質特性調查成果報告(第一期)》。
[12] 何春蓀(1986)。《台灣地理圖說》。
[13] 何春蓀(1987)。〈台灣西部麓山帶的地質〉,《地工技術雜誌》,第20期,p80–98。
[14] 林呈、孫洪福 (2000),〈地震造成土壤液化之災害類型與損害分析〉,《地震工程與工程振動》,20(4),31–38。
[15] 林宇軒 (2023),以微震儀 H/V 頻譜圖波形進行地層力學特性判釋之研究。國立成功大學土木工程研究所。
[16] 莊東霖 (2021),以地表微振動評估台南、北高雄地區場址效應與土壤液化潛勢之研究。國立成功大學土木工程研究所。
[17] 黃文紀(1986)。《羅東強震儀陣列區微地動之來源與特性》碩士論文,國立中央大學地球物理所。
[18] 黃雋彥 (2009),利用微地動量測探討台灣地區之場址效應,國立中央大學地球物理所。
[19] 黃有志(2003),蘭陽平原場址效應及淺層S波速度構造,國立中央大學地球物理所。
[20] 黃俊男、陳隆誠、林子倫、郭憲文、詹智翔、吳俊傑(2017)。《蘭陽平原三維淺層地下構造之探討》。中央研究院地球科學研究所。
[21] 經濟部中央地質調查所(2019)。《山崩與地滑地質敏感區變更計畫書:臺南市南化區地質敏感區範圍檢討(成果報告)》,經濟部中央地質調查所。
[22] 經濟部地質調查及礦業管理中心(2024)。《2025年1月21日嘉義大埔地震地質調查報告》,經濟部地質調查及礦業管理中心。
[23] 經濟部中央地質調查所、國家地震工程研究中心(2025)。《2025年1月21日嘉義大埔地震初步震害調查報告(第2版)》,中央地質調查所。
[24] 臺南市政府災害防救辦公室 (2025)。檢自:https://web.tainan.gov.tw/publicdisaster/cp.aspx?n=21174
[25] 歐昱辰、吳俊霖、柴駿甫、姚昭智(2025)。《2025年1月21日嘉義大埔地震勘災報告(第二版 v2.0)》,國家地震工程研究中心。
[26] 郭子源 (2022),應用地表微振動判釋地層特性與地震場址效應之研究:以台南、高雄地區為例。國立成功大學土木工程研究所。
[27] 陳文山(2016)。臺灣地質概論 : 比例尺四十萬分一臺灣地質圖說明書。臺北市 :中華民國地質學會。
[28] 陳文山、黃志峰、陳宏宇(2008):《蘭陽平原三維淺層地下構造之探討》,中央研究院地球科學研究所專刊,p75–101。
[29] 陳文尚、陳美鈴 (編) (2009). 《嘉義縣志·卷一·地理志》。嘉義縣政府。
[30] 陳冠宇 (2019),地表微振動與土壤液化潛勢關係之研究:以台南都會區為例。國立成功大學土木工程研究所。
[31] 謝宏瀚(2001)。〈微地動頻譜比法於台北盆地場址效應分析之研究〉碩士論文,國立台灣大學土木工程學研究所。
[32] 謝凱旋、張慶宗、林朝宗(2003)。〈台灣地區活動斷層地質特性之彙整與研究〉,《地工技術》,p35–42。
[33] 戴玉琳 (2020),應用CPT模型評估土壤液化引致沉陷及側向擴展。國立成功大學土木工程研究所。
[34] Asten, M.W. & Henstridge, J.D. (1984). Arrays estimators and the use of microseisms for reconnaissance of sedimentary basins. Geophysics, 49(11), pp. 1828–1837.
[35] Arango-Serna, M. M., Rodríguez-Marek, A., & Zaldívar, D. (2021). A method for estimating earthquake-induced shear strain using microtremor data. Soil Dynamics and Earthquake Engineering, 141, 106510.
[36] Andrus, R. D., & Stokoe, K. H. (2000). Liquefaction resistance of soils from shear-wave velocity. Journal of Geotechnical and Geoenvironmental Engineering, 126(11), 1015–1025.
[37] Borcherdt, R.D. (1970). Effects of local geology on ground motion near San Francisco Bay. Bulletin of the Seismological Society of America, 60(1), pp. 29-61.
[38] Bray, J.D. and Macedo, J. (2017). 6th Ishihara Lecture: Simplified Procedure for Estimating Liquefaction-Induced Building Settlement, Soil Dynamics and Earthquake Engineering J., V 102, pp. 215-231.
[39] Daag, A. S., Dimalanta, C. B., & Ong, J. M. (2023). Evaluating soil liquefaction potential using H/V spectral ratio in Metro Manila, Philippines. Geosciences Journal, 27(3), 401–416.
[40] Farazi, N., Hassani, H. F., & Motamed, R. (2023). HVSR-based shear wave velocity profile inversion using machine learning. Engineering Geology, 313, 106975.
[41] Fukuwa, N. & Tobita, J. (2000). Examination of estimated surface layer profiles based on soil data and microtremor records using observed seismic ground motions. 12th World Conference on Earthquake Engineering, Paper No.1343
[42] Green, R. A., Cubrinovski, M., Cox, B., Wood, C., Wotherspoon, L., Bradley, B. A., & Maurer, B (2019). Select liquefaction case histories from the 2010–2011 Canterbury earthquake sequence. Earthquake Spectra, 35(2), 447–475.
[43] Housner, G. W. (1952). Spectrum intensities of strong-motion earthquakes. Proceedings of the Symposium on Earthquake and Blast Effects on Structures, 21–34.
[44] Huang, Y. H., & Teng, T. L. (1999). An empirical site amplification function inferred from strong motion data. Earthquake Engineering & Structural Dynamics, 28(9), 877–891.
[45] Hirotoshi Uebayashi(2003). Extrapolation of Irregular Subsurface Structures Using the Horizontal-to-Vertical Spectral Ratio of Long-Period Microtremors. Bulletin of the Seismological Society of America, Vol. 93, No. 2, pp. 570–582.
[46] Ishihara, K. and Koga, Y. (1981). Case studies of liquefaction in the 1964 Niigata earthquake. Soils and Foundations, Vol: 21, Issue: 3, pp. 35-52.
[47] Iwasaki, T., Tatsuoka, F., Tokida, K., & Yasuda, S. (1984). A practical method for assessing soil liquefaction potential based on case studies at various sites in Japan. Proceedings of the 8th World Conference on Earthquake Engineering, 3, 131–136.
[48] Ishihara, K. (1985). Stability of natural deposits during earthquakes. Proc. of 11th ICSMFE, 1985, 1, pp. 321-376.
[49] Ishihara, K., Yoshimine, M. (1992). Evaluation of Settlements in Sand Deposits Following Liquefaction During Earthquakes. Soils and Foundations, Volume 32, Issue 1, March 1992, pp. 173-188.
[50] Johansson, J. (2000). Flow liquefaction: Causes and consequences. Swedish Geotechnical Institute Report, 7, 45–55.
[51] Kanai, K., Tanaka, T., & Osada, K. (1954). Measurement of the Microtremor. 1. Bull. Earthq. Res. Inst, 32, pp. 199-209.
[52] Kavazanjian, E., Matasovic, N., & Bray, J. D. (2016). CPT-based liquefaction evaluation procedure. Journal of Geotechnical and Geoenvironmental Engineering, 142(4), 04015082.
[53] Steven L. Kramer, & Robert A. Mitchell (2006). Ground motion intensity measures and damage potential. Earthquake Spectra, 22(4), 897–907.
[54] Kawase, H., Mori, Y., and Nagashima, F. (2018). Difference of horizontal-to-vertical spectral ratios of observed earthquakes and microtremors and its application to S-wave velocity inversion based on the diffuse field concept, Earth, Planets and Space, 70:1. https://doi.org/10.1186/s40623-017-0766-4
[55] Lermo, J., & Chávez-García, F. J. (1994). Are microtremors useful in site response evaluation?. Bulletin of the seismological society of America, 84(5), pp. 1350-1364.
[56] Lermo, J., & Chávez-García, F.J. (1993). Site effect evaluation using spectral ratios with only one station. Bulletin of the seismological society of America, 83(5), pp. 1574-1594.
[57] Mokhberi, M., Ghafory-Ashtiany, M., & Ansari, A. (2013). Evaluation of microtremor measurements for site effect and liquefaction assessment. Soil Dynamics and Earthquake Engineering, 45, 13–23.
[58] Mucciarelli, M., Gallipoli, M. R., Di Giacomo, D., Di Nota, F., & Nino, E. (2005). The influence of wind on measurements of seismic noise. Geophysical Journal International, 161(2), 303–308
[59] Nakamura, Y. (1996).Real-time information systems for seismic hazards mitigation UrEDAS, HERAS and PIC. QUARTERLY REPORT-RTRI, 37(3), pp. 112-127.
[60] Nakamura,Y. (1989). A Method for Dynamic Characteristics Estimation of Surface Layers using Microtremor on the Surface, Quarterly Report of RTRI Vol. 30 No.1, pp. 18–27
[61] Nakamura, Y. (2014). Technique for dynamic characteristics estimation of subsurface using microtremor on the ground surface. Railway Technical Research Institute, Technical Note 14-01.
[62] Nagashima, F., Kawase, H., Nakano, K., and Ito, E. (2023). Subsurface structure identification at the blind prediction site of ESG6 based on the earthquake-to-microtremor ratio method and diffuse field concept for earthquakes, Earth, Planets and Space, 75:35.
[63] Ohta, Y., Kagami, H., Goto, N. & Kudo, K. (1978). Observation Of 1- To 5-Second Microtremors And Their Application To Earthquake Engineering. Part I: Comparison With Long-Period Accelerations At The Tokachi-Oki Earthquake Of 1968". Bulletin of the Seismological Society of America, Vol. 68, No. 3, pp. 767-779.
[64] Omori, F. (1908). The great earthquake of 1906 in San Francisco. Publications of the Earthquake Investigation Committee in Foreign Languages, 1, 1–30.
[65] Okada, H. (2003). The microtremor survey method (K. Suto, Trans.). Geophysical Monograph Series, 12. Society of Exploration Geophysicists.
[66] Seed, H.B. and Idriss I.M. (1971). Simplified Procedure for Evaluating Soil Liquefaction Potential, Am. Soc. Civil Engineers Proc. Jour. Soil Mechanics and Found. Div. Vol. 92, No. SM6, pp. 105-134.
[67] Seed, H.B., Tokimatsu, K., Harder, L. F., & Chung, R.M. (1985). Influence of SPT procedures in soil liquefaction resistance evaluations. Journal of Geotechnical Engineering, 111(12), pp. 1425-1445.
[68] SESAME European Research Project. (2004). Guidelines for the implementation of the H/V spectral ratio technique on ambient vibrations: measurements, processing and interpretation. SESAME Deliverable D23.12, 62 pp.
[69] Socco, L. V., & Strobbia, C. (2004). Surface-wave method for near-surface characterization: A tutorial. Near Surface Geophysics, 2(4), 165–185.
[70] Takizawa, H. (1990). A study on surface strain estimation model during earthquake motion using microtremor observations. Proceedings of the 4th International Conference on Soil Dynamics and Earthquake Engineering, Mexico City, pp. 231–238.
[71] Wibowo, N. B., Fathani, T. F., Pramumijoyo, S., & Marliyani, G. I. (2023). Microzonation of seismic parameters in geological formation units along the Opak River using microtremor measurements. International Journal of GEOMATE, 25(110), 208–219. https://doi.org/10.21660/2023.110.4017
[72] Youd, T.L., & Idriss, I. M. (2001). Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils. Journal of geotechnical and geoenvironmental engineering, 127(4), pp. 297-313.
[73] Zhang, G., et al. (2002). Estimating liquefaction-induced ground settlement using the standard penetration test. Canadian Geotechnical Journal, 39(3), 629–647.
校內:2030-07-14公開