簡易檢索 / 詳目顯示

研究生: 李思韻
Li, Szu-yun
論文名稱: 無線感測網路之分散式跨層俘虜檢測模型
DCCD:Distributed Cross-Layer Compromise Detection Model for Wireless Sensor Networks
指導教授: 鄭憲宗
Cheng, Sheng-tzong
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 45
中文關鍵詞: 被俘虜的感測點分散式無線感測網路安全機制跨層
外文關鍵詞: distributed, compromised sensor, security mechanism, Wireless sensor network
相關次數: 點閱:97下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 無線感測網路經常應用於軍事系統、監視系統,這些大都是散佈於無線、開放性的環境中,因此感測網路的安全機制相對的就非常重要。然而,目前已經有相當多在無線感測網路上做入侵偵測以及容錯系統的安全相關研究。但還很少研究是可偵測出在一個無線感測網路中,哪些是被俘虜的感測點,這部份在感測網路的安全性上,也將會是相當有貢獻的。此篇論文就提出了一個分散式跨層俘虜檢測模型,利用分散式的機制,也根據通訊協定中各個層的不同特性及其相關資訊來偵測哪些感測點已被俘虜。由於無線感測網路的某些特性,例如:低能量、低計算能力、低儲存能力等。因此,此篇論文的設計目標就朝著簡單、高效率且正確性高來進行。當我們能偵測得出被俘虜的感測點,也就能讓無線感測網路更加安全、更加實用。

    Wireless sensor networks (WSNs) usually are applied in military systems, surveillance systems, etc. Since WSNs always are deployed in open environments, the security mechanisms in WSNs are very important. Although there are many security mechanisms in WSNs, such as intrusion detection and fault tolerant system, few of them are proposed to detect compromised sensors. In this paper, we propose an application-independent compromise detection model, distributed cross-layer compromise detection model (DCCD), making use of a distributed mechanism and the information of each layer in the communication protocol to detect which sensors were already compromised. Due to the characteristics of low power, low computation ability, low storage space, simplicity and high-efficiency is our design goal. Only when compromised sensors can be detected, the WSNs could be safer in practice.

    CONTENTS CHAPTER1 Introduction 1 1.1 Motivation 1 1.2 Objective 1 1.3 Summary of Contribution 2 1.4 Organization 2 CHAPTER2 Background and Related Work 3 2.1 Wireless Sensor Network 3 2.2 IEEE 802.15.4 zigbee Technology 4 2.2.1 802.15.4 Architecture 5 2.2.2 Zigbee Architecture 8 2.3 Compromise detection Technology for IEEE 802.15.4 Wireless sensor network 9 2.3.1 Compromise Detection Techniques Overview 9 2.4 Attacks in wireless sensor networks 10 2.4.1 Overview of Attacks 10 2.5 Security Management in wireless sensor network 12 2.6 Fault management 13 2.6.1 Fault detection and Fault tolerant 13 2.7 Intrusion detection 13 CHAPTER3 System Model 14 3.1 Definition of compromise detection 14 3.2 Assumptions 15 3.3 The Environment 17 3.4 Anomaly Detection classifications 17 3.5 Data structure 18 3.6 System architecture 18 CHAPTER4 Detection Mechanism 20 4.1 Notation Definition 21 4.2 Anomaly Detection classifications 22 4.3 Data structure 23 4.4 Algorithm 25 4.4.1 Local detection engine 25 4.4.2 Cooperative detection engine 27 CHAPTER5 Performance Evaluation 31 5.1 Simulation Environment 32 5.2 Simulation Pre-production 33 5.3 Simulation Results 34 CHAPTER6 Conclusions and Future Work 40 6.1 Conclusions 40 6.2 Future Work 40 REFERENCES 41 APPENDIX 43

    REFERENCES
    [1] A. P. da Silva, M. Martins, B. Rocha, A. Loureiro, L. Ruiz, and H. C. Wong, “Decentralized intrusion detection in wireless sensor networks”, in Proceedings of the 1st ACM international workshop on Quality of service & security in wireless and mobile networks, pp. 16-23, October 2005.
    [2] D. Liu and P. Ning, “Efficient distribution of key chain com-mitments for broadcast authentication in distributed sensor networks”, in Proceedings of the 10th Annual Network and Distributed System Security Symposium (NDSS’03) , pp. 263-276, February 2003.
    [3] F. Stajano, and R. Anderson, “The resurrecting duckling: Security issues for adhoc wireless networks”, Proceedings of the 7th International Workshop on Security Protocols, Lecture Notes in Computer Science volume 1796, April 1999.
    [4] G. Gupta and M. Younis, “Fault-Tolerant Clustering of Wireless Sensor Networks”, in Proceedings of the IEEE Wireless Communication and Networks Conference (WCNC 2003), 2003.
    [5] I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, E. Cayirci, “A Survey on Sensor Networks”, IEEE Communication Magazine, vol. 40, no. 8, pp. 102-14, Aug. 2002.
    [6] I. Onat and A. Miri, “An intrusion detection system for wireless sensor networks”, in Proceeding of the IEEE International Conference on Wireless and Mobile Computing, Networking and Communications, vol. 3, pp. 253-259, August 2005.
    [7] J. Chen, S. Kher, A. K. Somani, “Distributed Fault Detection of Wireless Sensor Networks”, in Proc.of DIWANS 06, Sept. 2006.
    [8] Michael Manzo and Tanya Roosta, “Time Synchronization Attacks in Sensor Networks”, ACM Workshop on Security of Ad Hoc and Sensor Networks (SASN 2005), August 2005.
    [9] Market Intelligence Center of Institute for Information Industry, “zigbee在無線感測網路之發展”, March 2007.
    [10] Perrig A, Szewczyk R, Tygar J, Wen V, Culler D, “SPINS: Security protocols for sensor networks”, ACM Wireless Network, Vol. 8, no. 5, 521-534, 2002.
    [11] P. Levis, N. Lee, M. Welsh, and D. Culler, “TOSSIM: Accurate and Scalable Simulation of Entire TinyOS Applications”, Proceedings of the1st International Conference on Embedded Networked Sensor Systems, 126-137, 2003.
    [12] P. Pillai, V. Chook, Y.F. Hu, P. Baronti, S. Chessa, A. Gotta, “Wireless Sensor Networks: A Survey on the State of the Art and the 802.15.4 and ZigBee Standards”, Computer Communications, 2007.
    [13] Q. Zhang, T. Yu, P. Ning, “A Framework for Identifying Compromised Nodes in Sensor Networks”, 2nd IEEE Communications Society/CreateNet International Conference on Security and Privacy in Communication Networks (SecureComm 2006), August 2006.
    [14] Rajani Muraleedharan, Lisa Ann Osadciw, “Cross Layer Attacks using Swarm Intelligence”, IEEE INFOCOMM 2006, 2006.
    [15] V. Bhuse, A. Gupta, “Anomaly intrusion detection in wireless sensor networks”, Journal of High Speed Networks, Volume 15, Issue 1, January 2006.
    [16] W. Ye, J. Heidemann, and D. Estrin, “An energy-efficient MAC protocol for wireless sensor networks”, in Proceedings of IEEE INFOCOM, pp. 1567-1576, June 2002.
    [17] W. Du , L. Fang , P. Ning, “LAD: Localization Anomaly Detection for Wireless Sensor Networks”, Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS'05), p.41.1, April, 2005.
    [18] Wenjun Gu, Xun Wang, Sriram Chellappan, and Dong Xuan, “Defending against Physical Attacks in Sensor Networks”, OSU-CISRC-8/05-TR56, 14 pp, 04-Apr-07.
    [19] “MTS/MDA Sensor and Data Acquisition Boards User Manual”, May 2003.
    [20] IEEE Std 802.15.4-2003,“IEEE Std 802.15.4, Part 15.4: Wireless Medium Access. Control (MAC) and Physical Layer (PHY) specification for Low Rate Wireless Personal Area Networks (LR-WPANs)”, IEEE, Dec. 2003.

    下載圖示 校內:2009-07-24公開
    校外:2010-07-24公開
    QR CODE