簡易檢索 / 詳目顯示

研究生: 高志遠
Gao, Jhih-Yoan
論文名稱: 直立矩形容器內添加氧化鋁微粒之相變化材料熔解現象之實驗研究
An Experimental Study on Melting Heat Transfer Behavior of a Phase-Change-Material Containing Al2O3 Nanoparticles in a Vertical Rectangular Enclosure
指導教授: 何清政
Ho, Ching-Jenq
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 71
中文關鍵詞: 相變化奈米材料熱能儲存熔解矩形容器
外文關鍵詞: Phase-change-material, Square enclosure, Thermal energy storage, melting
相關次數: 點閱:172下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文針對一熱儲存之相變化材料18烷(C18H38)加入氧化鋁(Al2O3)奈米顆粒調製而成之相變化奈米材料,並針對其相關熱物性質包括:黏度係數、熱傳導係數、密度、比熱及潛熱隨溫度及重量濃度之變化情形進行實驗測定;並以實驗方式探討相變化奈米材料於直立矩形容器內等溫熔解時熱傳特性,本文探討直立矩形容器其物理模型為左/右垂直壁分別為等溫熱/冷壁面,其餘壁面均為絕熱壁面。在實驗上,分別改變冷熱壁溫度(40℃/24℃、40℃/26℃、40℃/27.5℃、36℃/26℃、32℃/26℃)及重量濃度(0%、5%、10%),主要參數及範圍分別為:萊利數Ra=1710000~5670000;史蒂芬數Ste=0.037~0.108;次冷參數Sb=0.042~0.537。本文實驗結果顯示在矩形容器內相變化奈米材料在等溫熔解過程,其自然對流熱傳係數及熱儲存能力均呈現隨奈米顆粒重量濃度增加而降低,且亦低於純18烷之結果。

    The present study considers a mixture of n-Octadecane and Al2O3 nanoparticles as a phase change nano material for the latent-heat thermal energy storage application Thermophysical properties of the PCM containing varies mass fractions of alumina particles were determined experimentally as a function of temperature. Moreover, melting heat transfer characteristics of the PCM dispersed with alumina particles were examined experimentally in a differentially heated vertical square enclosure with the relevant parameters in the ranges : Ra=1710000~5670000 ; Ste=0.037~0.108 and Sb=0.042~0.537. The heat transfer results indicate natural convection heat transfer in the melted region and thus the thermal energy storage efficiency tend to decrease markedly with increasing mass fraction of alumina particles in n-Octadecane.

    第一章 序論 1 1-1 前言 1 1-2 文獻回顧 1 1-3 研究目的 6 1-4 本文架構 6 第二章 相變化奈米材料之製備與熱物性質量測 7 2-1相變化奈米材料 7 2-1-1介面活性劑 7 2-1-2相變化奈米材料之製備 8 2-2 熱物性質量測 8 2-2-1 DSC(Differential Scanning Calorimetry)之量測 8 2-2-2 比熱計算 9 2-2-3 黏度量測 10 2-2-4 熱傳導係數量測 11 2-2-5 密度之量測 11 2-3 量測誤差 12 第三章 矩形容器內相變化熱傳實驗模型與量測方法 15 3-1 熔解實驗模型與設備 15 3-1-1 實驗模型 15 3-1-2 實驗量測周邊系統 16 3-2 實驗方法與步驟 17 3-3 實驗數據換算 18 3-4 不準度分析 22 第四章 結果與討論 29 4-1 熱物性質量測結果 29 4-1-1 密度 29 4-1-2 動力黏度 30 4-1-3 潛熱及熔點溫度量測 30 4-1-4 熱傳導係數 31 4-1-5 比熱 32 4-2 方形容器內相變化奈米材料熔解熱傳過程結果 33 第五章 結論與未來方向 60 參考文獻 62 附錄A 不準度分析 65 附錄B 熔解實驗溫度變化 68 附錄C 熔解實驗熱壁輸入電功率變化 70 自述 71

    Abhay, P. S. C., Parida, S., Dash, V. V. “Heat capacities of RCoO3 (R=La,Nd,Sm,Eu,Gd,Tb,Dy and Ho ) by differential scanning calorimetry,” Thermochimica Acta, Vol. 465, pp. 25-29, 2007.
    Debabrata P., Yogendra k. J. “Melting in a side heated tall enclosure by a uniformly dissipating heat source,” International Journal of Heat and Mass Transfer Vol. 44 pp.375-387, 2001.
    Du Y., Yuan Y., Jia D., Cheng B. and Mao J. “Experimental investigation on melting characteristics of ethanolamine-water binary used as PCM,” International Communications in Heat and Mass Transfer, Vol. 34, pp. 1056-1063, 2007.
    Elgafy, A. and Lafdi, K. “Effect of carbon nanofiber additives on thermal behavior of phase change materials,” Carbon, Vol. 43, pp. 3067-3074, 2005.
    Humphries W.R. and Griggs E. I. “A Design Handbook for Phase Change Thermal Control and Energy Storage Devices,” NASA T Technical Paper 1074, 1977.
    Khodadadi, J. M. and Hosseinizadeh, S. F. “Nanoparticel-enhanced phase change materials (NEPCM) with great potential for improved thermal energy storage,” International Communications in Heat and Mass Transfer, Vol.34, pp 534-543, 2007
    Liu, C. H. and Fan, S. S. “Effects of chemical modifications on the thermal conductivity of carbon nanotube composites,” Applied Physics Letters, Vol. 86, pp. 123106 - 123106-3, 2005.
    Liu, M. S. M., Lin, C. C., Tsai, C. Y. and Wang, C. C. “Enhancement of thermal conductivity with Cu for nanofluids using chemical reduction method,” International Journal of Heat and Mass Transfer, Vol. 49, pp. 3028–3033, 2006.
    Liu, Z. and Chung, D.D.L. “Calorimetric evaluation of phase change materials for use as thermal interface materials,” Thermochimica Acta, Vol. 366, pp. 135-147, 2001.
    Mills, A., Farid, M., Selman, J. R. and Hallaj, S. A. “Thermal conductivity enhancement of phase change materials using a graphite matrix,” Applied Thermal Engineering, Vol. 26, pp. 1652-1661, 2006.
    Ozdemir, N. and Yakuphanoglu, F. “The effects of particle size and volume fraction of Al2O3 on electronic thermal conductivity of α-Al2O3 particulate reinforced aluminum composites (Al/Al2O3-MMC),” International Journal of Advanced Manufacturing Technology, Vol. 29, pp. 226-229, 2006.
    Sarkar, A. and Saatri, V. M. K. “Heat transfer during melting in rectangular enclosures-a finite element analysis,” International Journal for Numerical Methods in Fluids, Vol. 14, pp.83-93,1992.
    Xie, H., Fujii, M. and Zhang, X. “Thermal conductivity measurement of nanopowder-fluid mixtures,” Thermal Science & Engineering, Vol. 12, No. 4, pp. 75-76, 2004.
    Zalba, B., Marin, J., Cabeza, L., Mehling, H. “Review on thermal energy storage with phase change. materials, heat transfer analysis and applications,” Applied Thermal Engineering, Vol. 23, No. 3, pp. 251-283, 2003.
    何泰安, “矩形容器內含懸浮相變化微粒之自然對流熱傳之特性實驗研究”, 國立成功大學機械工程研究所碩士論文, 1999.
    何銘杰, “矩形容器內冰熔解過程中振盪對流現象之觀測與預測”, 國立成功大學機械工程研究所碩士論文, 1999.
    夏志豪, “矩形容器內含懸浮相變化微粒之自然對流熱傳之數值模擬”, 國立成功大學機械工程研究所碩士論文, 2000.
    劉文恭, “方形容器內氧化鋁-水奈米流體之自然對流熱傳現象之實驗研究”, 國立成功大學機械工程研究所碩士論文, 2007.
    賴啟銘, “矩形容器內冰熔解現象之實驗研究”, 國立成功大學機械工程研究所碩士論文, 1996.

    下載圖示 校內:立即公開
    校外:2008-08-25公開
    QR CODE