| 研究生: |
許智雄 Hsu, Chih-Hsiung |
|---|---|
| 論文名稱: |
氧化鋅奈米粉體之製備與特性分析 Preparation and Characterization of Zinc Oxide Nanopowders |
| 指導教授: |
陳東煌
Chen, Dong-Hwang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 82 |
| 中文關鍵詞: | 核殼 、氧化鋅 、奈米 |
| 外文關鍵詞: | Zinc Oxide, Core-Shell, Nano |
| 相關次數: | 點閱:87 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中文摘要
本論文係有關以溶熱法和溶膠凝膠法分別製備無晶型二氧化鈦被覆氧化鋅之複合奈米粒子與氧化鋅一維柱狀材料之研究。
無晶型二氧化鈦被覆氧化鋅奈米粒子之研究,先以溶熱法製備氧化鋅奈米粒子,隨後以溶膠凝膠法被覆二氧化鈦。最終產物的尺寸、型態、組成和結構經由穿隧式電子顯微鏡和X光繞射儀確認。產物的表面電荷、表面官能基和表面狀態藉由介面電位儀、傅立葉轉換紅外線光譜儀與拉曼光譜儀等研究分析,已確認無晶型二氧化鈦被覆於氧化鋅表面。此外經由紫外線/可見光光譜儀與光致發光光譜儀的分析,顯現隨著Ti/Zn原子比與被覆時間的增加,無晶型二氧化鈦被覆氧化鋅奈米粒子在375nm的吸收值逐漸下降;同樣地,氧化鋅核層的發光強度也受到無晶型二氧化鈦被覆的殼層而有所增強。同時,無晶型二氧化鈦降低氧化鋅奈米粒子在紫外光的吸收。從染料(AG-25)的光催化降解研究中,發現無晶型二氧化鈦殼層有抑制氧化鋅奈米粒子的光催化能力。
利用溶熱法來製備氧化鋅一維柱狀材料。藉由改變前趨物濃度、反應溫度與時間來研究其生長機制。產物的結構、尺寸和型態用X光繞射儀、穿隧式電子顯微鏡和掃描式電子顯微鏡來鑑定。所製備的氧化鋅一維柱狀材料之光致發光光譜儀有別於氧化鋅奈米粒子,發光波長有紅位移現象。由傅立葉轉換紅外線光譜儀和紫外光/可見光/近紅外光吸收光譜證實存在有機分子吸附於表面上。合成之氧化鋅一維柱狀材料在紡織業與化妝品上有應用的潛力。
英文摘要
This thesis concerns with the preparation of amphorous titania-coated zinc oxide composite nanoparticles and 1-dimensional zinc oxide microrods by solvothermal and/or sol-gel methods.
Amophorous titania-coated zinc oxide nanoparticles were fabricated by the solvothermal thesis of zinc oxide nanoparticles and the followed sol-gel coating of titania. The size, morphology, composition, and structure of final products were characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD). Their surface charges, surface function groups, and surface state were investigated to confirm the coating of amphorous titania on the surface of zinc oxide by the analyses of zeta potentials and Fourier transform infrared (FTIR) and Raman spectra. In addition, the analyses of ultraviolet-visible (UV-VIS) and photoluminescence (PL) spectra revealed that the absorbance of amorphous titania-coated zinc oxide nanoparticles at 375 nm gradually decreased with increasing the Ti/Zn molar ratio and the time for titania coating. Also, the emission intensity of zinc oxide cores could be significantly enhanced by the amorphous titania shell. In addition, the coating of amphorous titania decreased the UV/VIS absorbance of zinc oxide nanoparticles. From the photocatalytic decomposition of dye (AG-25), it was found that the amphorous titania shells inhibited the photocatalytic capability of zinc oxide nanoparticles.
Zinc oxide microrods were prepared by solvothermal method. By varying the precursor concentration, reaction temperature and time, the growth mechanism was studied. The structure, size and morphology were recognized by the analyses of XRD, TEM, and SEM. Their PL spectra were different from those for zinc oxide nanoparticles. The emission wavelength was red-shifted. FTIR and UV/VIS/NIR analyses revealed the presence of organic molecules adsorbed on the surface. The products have the potential use in textiles and cosmetics.
參 考 文 獻
1. 王崇人,科學發展,6,354,(2002).
2. WTEC Panel Report on Nanostructure Science and Technology R&D Status and Trends in Nanoparticles, Nanostructured Materials, and Nanodevices”, A U.S. National Report, (1999).
3. 魏碧玉,賴明雄,奈米材料在光學上的應用及其製造法,工業材料,153,113,(1999).
4. 李傳宏、黃佩珍、盧成基、彭國光、徐文泰,奈米材料- 介觀化學世界,工研院工業材料研究所,尖端材料實驗室,60-68.
5. M. F. Crommie, C. P. Lutz, and D. M. Eigler, Science, 258, 218 (1993).
6. M. A. Andeson, S. Yamazaki-Nishida, and S. Cervera-Marrch, in Photocatalytic Purfication and Treatment of Water and Air, ed. D. Ollis and D.F. Al-Ekabi, Elsevier Science Pub., New York (1993).
7. E. Pelizzetti, C. Minero, E. Borgarello, L. Tinucci., and N. Serpone, Langmuir, 9, 2995, (1993).
8. P. Ball and L. Garwin, Nature, 355, 761 (1992).
9. 呂宗昕,吳偉宏,科學發展,376期,(2004).
10. 連昭晴,鐵/金核殼型磁性複合奈米粒子之製備與應用,國立成功大學化工研究所碩士論文 (2003).
11. 馬振基,奈米材料科技原理與應用,全華科技圖書股份有限公司,(2003).
12. R. I. Walton, Chem. Soc. Rev., 31, 230 (2002).
13. K. B. Tang, Y. T. Qian, J. H. Zeng, and X. G. Yang, Adv. Mater., 15, 448 (2003).
14. 林孟萱,Ag-SrTiO3奈米核-殼結構粒子之研究與製備,中原大學化學系碩士學位論文 (2003).
15. D. J. Watson and C. A. Randall, Am. Ceram. Soc. Inc., 1, 154 (1988).
16. S. H. Yu, J. Yang, Z. H. Han, Y. Zhou, R. Y. Yang, Y. T. Qian, and Y. H. Zhang, J. Mater. Chem., 9, 1283 (1999).
17. Y. W. Jun, J. H. Lee, J. S. Choi, and J. J. Cheon, J. Phys. Chem. B., 109, 14795 (2005).
18. J. Zhang, L. D. Sun, J. L. Yin, H. L. Su, C. S. Liao, and C. H. Yan, Chem. Mater., 14, 4172 (2002).
19. C. Pacholski, A. Kornowski, and H. Weller, Angew. Chem. Int. Ed., 41, 1188 (2002).
20. J. F. Banfield, S. A. Welch, H. Zhang, T. T. Ebert, and R. L. Penn, Science., 289, 751 (2000).
21. R. L. Penn and J. F. Banfield, Science, 281, 969 (1998).
22. R. L. Penn and J. F. Banfield, Geochim. Cosmochim. Acta, 63, 1549 (1999).
23. K. Govender, D. S. Boyle, P. B. Kenway, and P. O'Brien, J. Mater. Chem., 14, 2575 (2004).
24. C. H. Gu, V. Y. Jr, and J.W. Grant, J. Pharm. Sci., 90, 1878 (2001).
25. J. H. ter Horst, R. M. Geertman, and G. M. van Rosmalen, J. Cryst. Growth., 230, 277 (2001).
26. X. Peng, J. Wickham, and A. P. Alivisatos, J. Am. Chem. Soc., 120, 5343 (1998).
27. B. M. Wen, C. Y. Liu, and Y. Liu, New J. Chem., 29, 969 (2005).
28. B. Cheng and E. T. Samulski, Chem. Commun., 986 (2004).
29. H. Chu, X. Li, G. Chen, W. Zhou, Y. Zhang, Z. Jin, J. Xu, and Y. Li, Cryst. Growth. Des., 5, 1801 (2005).
30. H. Zhang, D. Yang, X. Ma, Y. Ji, J. Xu, and D. Que, Nanotechnology, 15, 622 (2004).
31. L. Guo, S Yang, C. Yang, P. Yu, J. Wang, W. Ge, and G. K. Wong, Chem. Mater., 12, 2268 (2000).
32. J. Joo, S. G. Kwon, J. H. Yu, and T. Hyeon, Adv. Mater., 17, 1873 (2005).
33. Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, Adv. Mater., 15, 353 (2003).
34. X. Peng, Adv. Mater., 15, 459 (2003).
35. H. Zhang, D. Yang, Y. Ji, X. Ma, J. Xu, and D. Que, J. Phys. Chem. B., 108, 3955 (2004).
36. U. Pal, and P. Santiago, J. Phys. Chem. B., 109, 15317 (2005).
37. M. Yang, G. Pang, L. Jiang, and S. Feng, Nanotechnology, 17, 206 (2006).
38. 柯揚船,皮特斯壯,聚合物-無機奈米複合材料,五南出版社 (2004).
39. G. Kickelbick and L. L. Marzan, Core-shell nanoparticles, Encyclopedia of Nanoscience and Nanotechnology, California, American Scientific Publishers, Vol.4, 199 (2004).
40. L. M. Marzan, M. Giersig, and P. Mulvaney, Langmuir, 12, 4329 (1996).
41. M. Ohmori and E. Matijevic, J. Colloid Interface Sci., 160, 288 (1993)
42. A. Hanprasopwattana, S. Srinivasan, A. G. Sault, and A. K. Datye, Langmuir, 12, 3173 (1996).
43. F. Caruso, Adv. Mater., 13, 11 (2001).
44. T. Ung, L. M. Marzan, and P. Mulvaney, Langmuir, 14, 3740 (1998).
45. X. C. Guo and P. Dong, Langmuir, 15, 5535 (1999).
46. A. Hanprasopwattana, S. Srinivasan, A. G. Sault, and A. K. Datye, Langmuir, 12, 3173 (1996).
47. J. H. Fendler, Nanoparticles and Nanostructured Films: Preparation,
Characterization and Application, Wiley-VCH, Weinheim (1998).
48. A. Ulman, An Introduction to Ultrathin Organic Films: From Langmuir-Blodgett to Self-Assembly, Academic, Boston, MA (1991).
49. F. Caruso, Chem. Eur. J., 6, 413 (2000).
50. F. Caruso, E. Donath, and H. Möhwald, J. Phys. Chem. B., 102, 2011 (1998).
51. G. Decher, Science, 277, 1232 (1997).
52. G. B. Sukhorukov, E. Donath, H. Lichtenfeld, E. Knippel, M. Knippel, and H. Möhwald, Colloids Surf. A: Physicochem. Eng. Aspects., 137, 253 (1998).
53. P. J. Flory, Principles of Polymer Chemistry, Cornel1 University
Press: Ithaca, NY, Chapter IX (1953).
54. R. A. Caruso and M. Antonietti, Chem. Mater., 13, 3272 (2001).
55. 劉海冰、周根樹、鄭茂盛,高分子材料科學工程, 15, 108 (1999).
56. R. K. Iler, The Chemistry of Silica, Wiley, New York (1979).
57. H.D. Cogan and C.A. Setterstrom, Chem. And Eng. News, 24, 2499 (1946).
58. D. Avnir and V. R. Kaufman, J. Non-Crystalline Solids, 192, 180 (1987).
59. C. J. Brinker and G. W. Scherer, Sol-gel Science: the physics and chemistry of sol-gel processing, Academic Press, Inc (1990).
60. R. T. Morrison and R.N. Boyd, Organic Chemistry, Allyn & Bacon, Boston (1966).
61. Z. L. Wang, X. Y. Kong, Y. Ding, P. Gao, W. L. Hughes, R. Yang, and Y. Zhang, Adv. Funct. Mater., 14, 935 (2004).
62. D. C. Look, Mater. Sci. Eng. B., 80, 383 (2001).
63. A. V. Dijken, E. A. Meulenkamp, D. Vanmaekelbergh, and A. Meijerink, J. Phys. Chem. B., 104, 1715 (2000).
64. A. V. Dijken, J. Makkinje, and A. Meijerink, Journal of Luminescence, 92, 323 (2001).
65. Y. Li, G. W. Meng, and L. D. Zhang, Appl. Phys. Lett., 76, 2011 (2000).
66. K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, and J. A. Voigt, J. Appl. Phys., 79, 7983 (1996).
67. M. Liu, A. H. Kitai, and P. Mascher, Journal of Luminescence, 54, 35
(1992).
68. B. Lin, Z. Fu, and Y. Jia, Appl. Phys. Lett., 79, 943 (2001).
69. S. A. Studenikin and M. Cocivera, J. Appl. Phys., 91, 5060 (2002).
70. D. C. Reynolds, D. C. Look, and B. Jogai, J. Appl. Phys., 89, 6189 (2001).
71. D. W. Bahnemann, C. Kormann, and M. R. Hoffmann, J. Phys. Chem., 91, 3789 (1987).
72. P. Yu. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, Appl. Phys. Lett., 72, 3270 (1998).
73. D. M. Bagnall, Y. F. Chen, M. Y. Shen, Z. Zhu, T. Goto, and T. Yao, J. Cryst. Growth., 185, 605 (1998).
74. B. Lin, Z. Fu, and Y. Jia, Appl. Phys. Lett., 79, 943 (2001).
75. D. Fairhurst, Cosm. Toil., 112, 81 (1997).
76. J. Lepir, Global Cosmetic Industry, Sept, 72 (2002).
78. F. P. Gasparro, M. Mitchnick, and J. F. Nash, Photochem. Photobiol., 68, 243 (1998).
79. M. A. Mitchnick, D. Fairhurst, and S. R. Pinnell, J. Am. Acad. Dermatol., 40, 85 (1999).
80. M. Petrazzuoli, Curr. Probl. Dermatol, Nov. / Dec, 287 (2000).
81. R. Wolf, D. Wolf, P. Morganti, and V. Ruocco, Clin. Dermatol., 19, 452 (2001).
82. M. Kobayashi and W. Kalriess, Cosm. Toil., 112, 83 (1997).
83. J. P. Hewitt, Global Cosmetic Industry., Dec, 38 (2001).
84. D. P. Norton, Y. W. Heo, M. P. Ivill, K. Ip, S. J. Pearton, M. F. Chisholm, and T. Steiner, Materials today, 7, 34 (2004).
85. F. H. Dulin and D. E. Rase, J. Am. Ceram. Soc., 43, 125 (1960)
86. S. F. Bartram, R. A. Slepetys, J. Am. Ceram. Soc., 44, 493 (1961)
87. H. Zhang, X. Luo, J. Xu, B. Xiang and D. Yu, J. Phys. Chem. B., 108, 14866 (2004)
88. Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doan, V. Avrutin, S.-J. Cho, and H. Morkoç, J. Appl. Phys., 98, 041301 (2005)
89. B. Cheng, W. S. Shi, J. M. Russell-Tanner, L. Zhang, and E. T. Samulski, Inorg. Chem., 45, 1208 (2006)
90. W. J. Li, E. W. Shi, W. Z. Zhong, and Z. W. Yin, J. Cryst. Growth., 203, 186 (1999)