簡易檢索 / 詳目顯示

研究生: 許智雄
Hsu, Chih-Hsiung
論文名稱: 氧化鋅奈米粉體之製備與特性分析
Preparation and Characterization of Zinc Oxide Nanopowders
指導教授: 陳東煌
Chen, Dong-Hwang
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 82
中文關鍵詞: 核殼氧化鋅奈米
外文關鍵詞: Zinc Oxide, Core-Shell, Nano
相關次數: 點閱:87下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要
    本論文係有關以溶熱法和溶膠凝膠法分別製備無晶型二氧化鈦被覆氧化鋅之複合奈米粒子與氧化鋅一維柱狀材料之研究。
    無晶型二氧化鈦被覆氧化鋅奈米粒子之研究,先以溶熱法製備氧化鋅奈米粒子,隨後以溶膠凝膠法被覆二氧化鈦。最終產物的尺寸、型態、組成和結構經由穿隧式電子顯微鏡和X光繞射儀確認。產物的表面電荷、表面官能基和表面狀態藉由介面電位儀、傅立葉轉換紅外線光譜儀與拉曼光譜儀等研究分析,已確認無晶型二氧化鈦被覆於氧化鋅表面。此外經由紫外線/可見光光譜儀與光致發光光譜儀的分析,顯現隨著Ti/Zn原子比與被覆時間的增加,無晶型二氧化鈦被覆氧化鋅奈米粒子在375nm的吸收值逐漸下降;同樣地,氧化鋅核層的發光強度也受到無晶型二氧化鈦被覆的殼層而有所增強。同時,無晶型二氧化鈦降低氧化鋅奈米粒子在紫外光的吸收。從染料(AG-25)的光催化降解研究中,發現無晶型二氧化鈦殼層有抑制氧化鋅奈米粒子的光催化能力。
    利用溶熱法來製備氧化鋅一維柱狀材料。藉由改變前趨物濃度、反應溫度與時間來研究其生長機制。產物的結構、尺寸和型態用X光繞射儀、穿隧式電子顯微鏡和掃描式電子顯微鏡來鑑定。所製備的氧化鋅一維柱狀材料之光致發光光譜儀有別於氧化鋅奈米粒子,發光波長有紅位移現象。由傅立葉轉換紅外線光譜儀和紫外光/可見光/近紅外光吸收光譜證實存在有機分子吸附於表面上。合成之氧化鋅一維柱狀材料在紡織業與化妝品上有應用的潛力。

    英文摘要
    This thesis concerns with the preparation of amphorous titania-coated zinc oxide composite nanoparticles and 1-dimensional zinc oxide microrods by solvothermal and/or sol-gel methods.
    Amophorous titania-coated zinc oxide nanoparticles were fabricated by the solvothermal thesis of zinc oxide nanoparticles and the followed sol-gel coating of titania. The size, morphology, composition, and structure of final products were characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD). Their surface charges, surface function groups, and surface state were investigated to confirm the coating of amphorous titania on the surface of zinc oxide by the analyses of zeta potentials and Fourier transform infrared (FTIR) and Raman spectra. In addition, the analyses of ultraviolet-visible (UV-VIS) and photoluminescence (PL) spectra revealed that the absorbance of amorphous titania-coated zinc oxide nanoparticles at 375 nm gradually decreased with increasing the Ti/Zn molar ratio and the time for titania coating. Also, the emission intensity of zinc oxide cores could be significantly enhanced by the amorphous titania shell. In addition, the coating of amphorous titania decreased the UV/VIS absorbance of zinc oxide nanoparticles. From the photocatalytic decomposition of dye (AG-25), it was found that the amphorous titania shells inhibited the photocatalytic capability of zinc oxide nanoparticles.
    Zinc oxide microrods were prepared by solvothermal method. By varying the precursor concentration, reaction temperature and time, the growth mechanism was studied. The structure, size and morphology were recognized by the analyses of XRD, TEM, and SEM. Their PL spectra were different from those for zinc oxide nanoparticles. The emission wavelength was red-shifted. FTIR and UV/VIS/NIR analyses revealed the presence of organic molecules adsorbed on the surface. The products have the potential use in textiles and cosmetics.

    總目錄 頁次 中文摘要..........................................................................................................Ⅰ 英文摘要.........................................................................................................Ⅱ 誌謝.................................................................................................................Ⅲ 總目錄.............................................................................................................Ⅳ 表目錄.............................................................................................................Ⅶ 圖目錄........................................................................................................... Ⅷ 第一章 緒論..................................................................................................1 1.1 奈米材料與其製備方式............................................................................1 1.1.1 奈米材料的基本定義.........................................................................1 1.1.2 奈米粒子的製備方式.........................................................................2 1.2 奈米材料物理化學特性............................................................................4 1.2.1 奈米量子效應.....................................................................................4 1.2.2 奈米粒子表面效應.............................................................................7 1.2.3 光催化特性.........................................................................................8 1.2.4 奈米微粒分散與聚集.......................................................................11 1.3 研究動機與內容......................................................................................12 第二章 理論基礎.......................................................................................14 2.1 溶熱法......................................................................................................14 2.1.1 溶熱法反應機構...............................................................................15 2.1.2 影響溶熱法製備粒子大小與形狀反應的變因...............................17 2.2 核殼型奈米複合材料..............................................................................24 2.2.1 核殼型奈米複合材料的分類...........................................................25 2.2.2核殼型奈米複合材料的合成方法....................................................26 2.2.2.1 溶膠凝膠法製備核殼型奈米粒子............................................26 2.2.2.2 逐層自主裝合成核殼型奈米粒子............................................28 2.3 溶膠凝膠法..............................................................................................29 2.3.1 金屬烷氧化物的反應性...................................................................30 2.3.2 反應媒介的pH值.............................................................................31 2.3.3 水和金屬烷氧化物用量的比値.......................................................33 2.3.4 溶劑添加的種類...............................................................................34 2.4 氧化鋅性質..............................................................................................36 2.4.1 氧化鋅結構與極性表面...................................................................36 2.4.2 氧化鋅奈米粒子光學性質...............................................................37 2.4.3 氧化鋅奈米粒子抗紫外光介紹.......................................................39 第三章 實驗部份.......................................................................................41 3.1 實驗藥品、儀器與分析材料試片..........................................................41 3.1.1 藥品...................................................................................................41 3.1.2 儀器...................................................................................................42 3.1.3 分析材料試片...................................................................................43 3.2 材料合成..................................................................................................43 3.2.1溶熱法製備氧化鋅奈米粒子............................................................43 3.2.2 溶膠凝膠法製備氧化鋅核層-二氧化鈦殼層奈米複合粒子..........44 3.2.3 溶熱法製備一維氧化鋅微米柱狀材料...........................................44 3.3 特性分析..................................................................................................44 3.3.1 氧化鋅核殼型奈米複合材料鑑定...................................................44 3.3.2 氧化鋅一維微米柱狀材料鑑定.......................................................46 第四章 結果與討論..................................................................................47 4.1 核殼型奈米複合材料鑑定....................................................................47 4.1.1 X-ray繞射.......................................................................................47 4.1.2 穿透式電子顯微鏡.........................................................................49 4.1.3 介面電位.........................................................................................55 4.1.4 紅外光光譜儀.................................................................................57 4.1.5 拉曼光譜儀.....................................................................................58 4.1.6 紫外光-可見光光譜儀....................................................................59 4.1.7 光致激發光譜儀.............................................................................60 4.1.8 熱重分析儀.....................................................................................62 4.1.9 核殼型奈米複合粒子光催化特性測試.........................................63 4.2 氧化鋅一維微米柱材料鑑定..................................................................64 4.2.1 TEM & SEM....................................................................................64 4.2.2 XRD.................................................................................................70 4.2.3 光致激發光譜儀.............................................................................71 4.2.4 紅外光光譜儀.................................................................................72 4.2.5 紫外光/可見光/近紅外光吸收光譜儀...........................................73 第五章 結論................................................................................................74 參 考 文 獻................................................................................................75 自述................................................................................................................82 表目錄 表2.1 實驗條件參數...................................................................................20 表2.2 溶劑的物理特性...............................................................................35 表2.3 氧化鋅基本物理參數.......................................................................40 圖目錄 圖1.1 奈米材料幾何結構的分類.................................................................2 圖1.2 量子干涉效應.....................................................................................5 圖1.3 化學分子從單分子雙分子至奈米粒子與半導體連續性價帶與導帶電子躍遷能帶與能障變化比較示意圖.........................................6 圖1.4 (a)不同奈米粒徑的CdSe 、InP 及InAs奈米晶粒的光譜(b)是包裹ZnS或CdS的CdSe晶粒在紫外光激發下所發出的螢光..................7 圖1.5 奈米粒子大小與原子分佈粒子表面比例之關係.............................8 圖1.6 光觸媒反應示意圖...........................................................................10 圖2.1 水的溫度與壓力函數圖...................................................................14 圖2.2 壓力釜構造圖...................................................................................15 圖2.3 反應活化能與動力學和熱力學關係圖...........................................17 圖2.4 濃度與晶體成長速率關係圖...........................................................18 圖2.5 實驗機制反應圖...............................................................................21 圖2.6 保護劑吸附硫化鎘特定晶面示意圖...............................................22 圖2.7 配位體吸附在硫化硒特定晶面示意圖...........................................22 圖2.8 不同氧化鋅前驅物反應機制示意圖...............................................23 圖2.9 金核二氧化矽殼表面修飾示意圖...................................................26 圖2.10 逐層自組裝形成核殼型奈米複合材料示意圖...............................28 圖2.11 pH和溶凝膠穩定時間關係圖..........................................................32 圖2.12 水和矽用量相圖...............................................................................33 圖2.13 氧化鋅結構圖...................................................................................36 圖2.14 氧化鋅發光能階圖...........................................................................38 圖4.1 XRD圖..............................................................................................48 圖4.2 (a)溶熱法下所合成氧化鋅之TEM.................................................50 圖4.2 (b)溶熱法下所合成氧化鋅之粒徑分析圖.......................................50 圖4.3 (a)溶熱法下所合成氧化鋅之TEM圖.............................................51 圖4.3 (b)ZnO@TiO2之TEM圖.................................................................51 圖4.3 (c)ZnO@TiO2之TEM圖..................................................................52 圖4.3 (d)ZnO@TiO2之TEM圖..................................................................52 圖4.3 (e)ZnO@TiO2之TEM圖..................................................................53 圖4.4 ZnO@TiO2之原子重比.....................................................................53 圖4.5 ZnO@TiO2之EDS圖.......................................................................54圖4.6 介面電位...........................................................................................56 圖4.7 紅外光光譜圖...................................................................................57 圖4.8 拉曼光譜圖.......................................................................................58 圖4.9 紫外光-可見光光譜圖......................................................................59 圖4.10 光致激發光譜圖...............................................................................61 圖4.11 熱重分析圖.......................................................................................62 圖4.12 光催化濃度圖...................................................................................63 圖4.13 晶面成長示意圖...............................................................................65 圖4.14 ZnO之SEM圖................................................................................65 圖4.15 ZnO之SEM圖................................................................................66 圖4.16 ZnO之SEM圖................................................................................66 圖4.17 ZnO之SEM圖................................................................................67 圖4.18 ZnO之TEM圖................................................................................67 圖4.19 ZnO之TEM圖................................................................................68 圖4.20 (a)氧化鋅一維柱狀之TEM............................................................69 圖4.20 (b)氧化鋅一維柱狀之TEM............................................................69 圖4.20 (c)電子繞射圖.................................................................................69 圖4.20 (d)高解析TEM................................................................................69 圖4.21 溶熱法製備一維柱狀氧化鋅之XRD圖........................................70 圖4.22 溶熱法製備一維柱狀氧化鋅之光致激發光譜圖.........................71圖4.23 氧化鋅一維微米柱狀之紅外光振動光譜圖..................................72 圖4.24 一維柱狀氧化鋅之紫外光/可見光/近紅外光吸收光譜儀...........73

    參 考 文 獻
    1. 王崇人,科學發展,6,354,(2002).
    2. WTEC Panel Report on Nanostructure Science and Technology R&D Status and Trends in Nanoparticles, Nanostructured Materials, and Nanodevices”, A U.S. National Report, (1999).
    3. 魏碧玉,賴明雄,奈米材料在光學上的應用及其製造法,工業材料,153,113,(1999).
    4. 李傳宏、黃佩珍、盧成基、彭國光、徐文泰,奈米材料- 介觀化學世界,工研院工業材料研究所,尖端材料實驗室,60-68.
    5. M. F. Crommie, C. P. Lutz, and D. M. Eigler, Science, 258, 218 (1993).
    6. M. A. Andeson, S. Yamazaki-Nishida, and S. Cervera-Marrch, in Photocatalytic Purfication and Treatment of Water and Air, ed. D. Ollis and D.F. Al-Ekabi, Elsevier Science Pub., New York (1993).
    7. E. Pelizzetti, C. Minero, E. Borgarello, L. Tinucci., and N. Serpone, Langmuir, 9, 2995, (1993).
    8. P. Ball and L. Garwin, Nature, 355, 761 (1992).
    9. 呂宗昕,吳偉宏,科學發展,376期,(2004).
    10. 連昭晴,鐵/金核殼型磁性複合奈米粒子之製備與應用,國立成功大學化工研究所碩士論文 (2003).
    11. 馬振基,奈米材料科技原理與應用,全華科技圖書股份有限公司,(2003).
    12. R. I. Walton, Chem. Soc. Rev., 31, 230 (2002).
    13. K. B. Tang, Y. T. Qian, J. H. Zeng, and X. G. Yang, Adv. Mater., 15, 448 (2003).

    14. 林孟萱,Ag-SrTiO3奈米核-殼結構粒子之研究與製備,中原大學化學系碩士學位論文 (2003).
    15. D. J. Watson and C. A. Randall, Am. Ceram. Soc. Inc., 1, 154 (1988).
    16. S. H. Yu, J. Yang, Z. H. Han, Y. Zhou, R. Y. Yang, Y. T. Qian, and Y. H. Zhang, J. Mater. Chem., 9, 1283 (1999).
    17. Y. W. Jun, J. H. Lee, J. S. Choi, and J. J. Cheon, J. Phys. Chem. B., 109, 14795 (2005).
    18. J. Zhang, L. D. Sun, J. L. Yin, H. L. Su, C. S. Liao, and C. H. Yan, Chem. Mater., 14, 4172 (2002).
    19. C. Pacholski, A. Kornowski, and H. Weller, Angew. Chem. Int. Ed., 41, 1188 (2002).
    20. J. F. Banfield, S. A. Welch, H. Zhang, T. T. Ebert, and R. L. Penn, Science., 289, 751 (2000).
    21. R. L. Penn and J. F. Banfield, Science, 281, 969 (1998).
    22. R. L. Penn and J. F. Banfield, Geochim. Cosmochim. Acta, 63, 1549 (1999).
    23. K. Govender, D. S. Boyle, P. B. Kenway, and P. O'Brien, J. Mater. Chem., 14, 2575 (2004).
    24. C. H. Gu, V. Y. Jr, and J.W. Grant, J. Pharm. Sci., 90, 1878 (2001).
    25. J. H. ter Horst, R. M. Geertman, and G. M. van Rosmalen, J. Cryst. Growth., 230, 277 (2001).
    26. X. Peng, J. Wickham, and A. P. Alivisatos, J. Am. Chem. Soc., 120, 5343 (1998).
    27. B. M. Wen, C. Y. Liu, and Y. Liu, New J. Chem., 29, 969 (2005).
    28. B. Cheng and E. T. Samulski, Chem. Commun., 986 (2004).

    29. H. Chu, X. Li, G. Chen, W. Zhou, Y. Zhang, Z. Jin, J. Xu, and Y. Li, Cryst. Growth. Des., 5, 1801 (2005).
    30. H. Zhang, D. Yang, X. Ma, Y. Ji, J. Xu, and D. Que, Nanotechnology, 15, 622 (2004).
    31. L. Guo, S Yang, C. Yang, P. Yu, J. Wang, W. Ge, and G. K. Wong, Chem. Mater., 12, 2268 (2000).
    32. J. Joo, S. G. Kwon, J. H. Yu, and T. Hyeon, Adv. Mater., 17, 1873 (2005).
    33. Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, Adv. Mater., 15, 353 (2003).
    34. X. Peng, Adv. Mater., 15, 459 (2003).
    35. H. Zhang, D. Yang, Y. Ji, X. Ma, J. Xu, and D. Que, J. Phys. Chem. B., 108, 3955 (2004).
    36. U. Pal, and P. Santiago, J. Phys. Chem. B., 109, 15317 (2005).
    37. M. Yang, G. Pang, L. Jiang, and S. Feng, Nanotechnology, 17, 206 (2006).
    38. 柯揚船,皮特斯壯,聚合物-無機奈米複合材料,五南出版社 (2004).
    39. G. Kickelbick and L. L. Marzan, Core-shell nanoparticles, Encyclopedia of Nanoscience and Nanotechnology, California, American Scientific Publishers, Vol.4, 199 (2004).
    40. L. M. Marzan, M. Giersig, and P. Mulvaney, Langmuir, 12, 4329 (1996).
    41. M. Ohmori and E. Matijevic, J. Colloid Interface Sci., 160, 288 (1993)

    42. A. Hanprasopwattana, S. Srinivasan, A. G. Sault, and A. K. Datye, Langmuir, 12, 3173 (1996).
    43. F. Caruso, Adv. Mater., 13, 11 (2001).
    44. T. Ung, L. M. Marzan, and P. Mulvaney, Langmuir, 14, 3740 (1998).
    45. X. C. Guo and P. Dong, Langmuir, 15, 5535 (1999).
    46. A. Hanprasopwattana, S. Srinivasan, A. G. Sault, and A. K. Datye, Langmuir, 12, 3173 (1996).
    47. J. H. Fendler, Nanoparticles and Nanostructured Films: Preparation,
    Characterization and Application, Wiley-VCH, Weinheim (1998).
    48. A. Ulman, An Introduction to Ultrathin Organic Films: From Langmuir-Blodgett to Self-Assembly, Academic, Boston, MA (1991).
    49. F. Caruso, Chem. Eur. J., 6, 413 (2000).
    50. F. Caruso, E. Donath, and H. Möhwald, J. Phys. Chem. B., 102, 2011 (1998).
    51. G. Decher, Science, 277, 1232 (1997).
    52. G. B. Sukhorukov, E. Donath, H. Lichtenfeld, E. Knippel, M. Knippel, and H. Möhwald, Colloids Surf. A: Physicochem. Eng. Aspects., 137, 253 (1998).
    53. P. J. Flory, Principles of Polymer Chemistry, Cornel1 University
    Press: Ithaca, NY, Chapter IX (1953).
    54. R. A. Caruso and M. Antonietti, Chem. Mater., 13, 3272 (2001).
    55. 劉海冰、周根樹、鄭茂盛,高分子材料科學工程, 15, 108 (1999).
    56. R. K. Iler, The Chemistry of Silica, Wiley, New York (1979).
    57. H.D. Cogan and C.A. Setterstrom, Chem. And Eng. News, 24, 2499 (1946).

    58. D. Avnir and V. R. Kaufman, J. Non-Crystalline Solids, 192, 180 (1987).
    59. C. J. Brinker and G. W. Scherer, Sol-gel Science: the physics and chemistry of sol-gel processing, Academic Press, Inc (1990).
    60. R. T. Morrison and R.N. Boyd, Organic Chemistry, Allyn & Bacon, Boston (1966).
    61. Z. L. Wang, X. Y. Kong, Y. Ding, P. Gao, W. L. Hughes, R. Yang, and Y. Zhang, Adv. Funct. Mater., 14, 935 (2004).
    62. D. C. Look, Mater. Sci. Eng. B., 80, 383 (2001).
    63. A. V. Dijken, E. A. Meulenkamp, D. Vanmaekelbergh, and A. Meijerink, J. Phys. Chem. B., 104, 1715 (2000).
    64. A. V. Dijken, J. Makkinje, and A. Meijerink, Journal of Luminescence, 92, 323 (2001).
    65. Y. Li, G. W. Meng, and L. D. Zhang, Appl. Phys. Lett., 76, 2011 (2000).
    66. K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, and J. A. Voigt, J. Appl. Phys., 79, 7983 (1996).
    67. M. Liu, A. H. Kitai, and P. Mascher, Journal of Luminescence, 54, 35
    (1992).
    68. B. Lin, Z. Fu, and Y. Jia, Appl. Phys. Lett., 79, 943 (2001).
    69. S. A. Studenikin and M. Cocivera, J. Appl. Phys., 91, 5060 (2002).
    70. D. C. Reynolds, D. C. Look, and B. Jogai, J. Appl. Phys., 89, 6189 (2001).
    71. D. W. Bahnemann, C. Kormann, and M. R. Hoffmann, J. Phys. Chem., 91, 3789 (1987).

    72. P. Yu. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, Appl. Phys. Lett., 72, 3270 (1998).
    73. D. M. Bagnall, Y. F. Chen, M. Y. Shen, Z. Zhu, T. Goto, and T. Yao, J. Cryst. Growth., 185, 605 (1998).
    74. B. Lin, Z. Fu, and Y. Jia, Appl. Phys. Lett., 79, 943 (2001).
    75. D. Fairhurst, Cosm. Toil., 112, 81 (1997).
    76. J. Lepir, Global Cosmetic Industry, Sept, 72 (2002).
    78. F. P. Gasparro, M. Mitchnick, and J. F. Nash, Photochem. Photobiol., 68, 243 (1998).
    79. M. A. Mitchnick, D. Fairhurst, and S. R. Pinnell, J. Am. Acad. Dermatol., 40, 85 (1999).
    80. M. Petrazzuoli, Curr. Probl. Dermatol, Nov. / Dec, 287 (2000).
    81. R. Wolf, D. Wolf, P. Morganti, and V. Ruocco, Clin. Dermatol., 19, 452 (2001).
    82. M. Kobayashi and W. Kalriess, Cosm. Toil., 112, 83 (1997).
    83. J. P. Hewitt, Global Cosmetic Industry., Dec, 38 (2001).
    84. D. P. Norton, Y. W. Heo, M. P. Ivill, K. Ip, S. J. Pearton, M. F. Chisholm, and T. Steiner, Materials today, 7, 34 (2004).
    85. F. H. Dulin and D. E. Rase, J. Am. Ceram. Soc., 43, 125 (1960)
    86. S. F. Bartram, R. A. Slepetys, J. Am. Ceram. Soc., 44, 493 (1961)
    87. H. Zhang, X. Luo, J. Xu, B. Xiang and D. Yu, J. Phys. Chem. B., 108, 14866 (2004)
    88. Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doan, V. Avrutin, S.-J. Cho, and H. Morkoç, J. Appl. Phys., 98, 041301 (2005)

    89. B. Cheng, W. S. Shi, J. M. Russell-Tanner, L. Zhang, and E. T. Samulski, Inorg. Chem., 45, 1208 (2006)
    90. W. J. Li, E. W. Shi, W. Z. Zhong, and Z. W. Yin, J. Cryst. Growth., 203, 186 (1999)

    下載圖示 校內:2008-06-20公開
    校外:2008-06-20公開
    QR CODE