簡易檢索 / 詳目顯示

研究生: 陳亞倫
Chen, Ya-Lun
論文名稱: 銥(III)環金屬錯合物(1)化學感測器研究與應用(2) X-ray分析
The study and application of Ir(III) complex (1) in chemosensors (2) X-ray analysis
指導教授: 黃福永
Huang, Fu-Yung
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 117
中文關鍵詞: 銥金屬感測器
外文關鍵詞: iridium, chemosensor
相關次數: 點閱:55下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本研究中,我們合成了兩種具有偵測重金屬功能的銥金屬(III)錯合物 : [Ir(pba)2pbi]與[Ir(ppm)2pbi]。 配位基pbi上之氮原子所具有的孤電子的存在,是使之能夠偵測到Hg2+、Ce3+、Cr3+以及Fe3+等金屬離子的原因。氮原子與這些金屬離子之間的作用力,可從吸收光譜與放光光譜的變化得知。從吸收光譜中我們可以看到等吸收點的存在,而從放光光譜中我們也發現與金屬離子錯合前後,錯合物的放光強度也會有不同程度的改變。
    為了確認錯合物的醛基以及氫氧基的部位確實沒有與金屬陽離子結合的能力,我們合成[Ir(pba)2bpy](PF6)與[Ir(ppm)2bpy](PF6)以作為對照。即使[Ir(pba)2bpy](PF6)的放光強度比起[Ir(pba)2pbi]還要強很多,但是Ir(pba)2bpy](PF6)卻沒有表現出任何能夠偵測金屬的能力。
    其次我們利用X-RAY數據分析晶體的鍵長與鍵角,發現到與理論計算方法(DFT)分析結果不ㄧ樣,因此有必要再做進一步的探討。

    In this studies, we had successfully synthesized two Ir(III)-complexes, [Ir(pba)2pbi] and [(ppm)2pbi], in which the moiety of pba is 4-(pyridin-2-yl)benzaldehyde, the pbi moiety is 2-(pyridine-2-yl)-H-benzo[d]imidazole, and the ppm mpiety is (4-( pyridine-2-yl)phenyl)methanol. Both complexes are capable of chelating with heavy metal ion and concomitantly appear different color. The lone-paired electrons on the nitrogen atom of the pbi ligand was responsible for chelating with the following metal ions: Hg2+ , Ce3+, Cr3+ and Fe3+ . The interactions between Nitrogen of (pbi) and various metal ions interaction was found based on the data of UV-VIS and luminescence spectra .

    In order to examine why the carbonyl group of pba or the hydroxyl oxygen atoms is unable to semi-coordinating with metal ion, [Ir(pba)2bpy](PF6) and [Ir(ppm)2bpy](PF6) had been synthesized and been used as a comparison . The carbonyl oxygen of [Ir(pba)2bpy](PF6) failed to chelating the metal ions, even the luminescence intensities were found much higher than that of [Ir(pba)2pbi] .

    We further employed X –RAY crystallographic data to analysis the bond length and bond angle of the complexes, and found that the data obtained from the crystallography is different from that obtained from theory calculations. It is thus interesting to study further.

    Table of Contents Abstract………………………………………………………………………………... I Acknowledgement……………………………………………………………………III List of Charts…………………………………………………………………………VII List of Tables…………………………………………………………………………VII List of Figures...........................VII Chapter 1. Introduction………………………………………………………….1 Chapter 2. Research background………………………………………………3 I) Review on Crown ether chemical sensor……………………………………… 3 A. General crown ethers in use…………………………………………........3 B. Remarkable Developments………………………………………………..4 B-1 Complexing agents for divalent cations……………………4 B-2 Crown-based ionsensors……………………………………4 B-3 Fluorescence signaling……………………………………..5 B-4 sense ion pairs……………………………………………...6 B-5 Sensing by emission technique…………………………….6 (II) Review on Anion Sensing……………………………………………………..7 A. Binding Site−Signaling Subunit Approach……………………………8 B. Displacement Approach…………………………………………………8 C. Chemodosimeter Approach……………………………………………...9 (III) Review on Fluorescent Sensors Based on Ruthenium and Iridium, Complexes……………………………………………………………………9 A. Containing Ru(bipy)32+ and other Units………………………………10 B. Ir(tpy)23+ and other ligands Units…………………………………………..12 (Ⅳ) Research and Motivation………………………………………………….13 Chapter 3. Experimental Section…………………………………………..18 3-1 Instrumentation……………………………………………………………18 3-2 Materials…………………………………………………………………...20 3-3 Synthesize………………………………………………………………….21 3-3-1 Synthesis of 2-(2-pyridyl)benzimidazole………………………….21 3-5-2 Synthesis of [Ir2 (pba) 4Cl2]…………………………………………22 3-5-3 Sythesis of [Ir(pba)2(bpy)](PF6)…………………………………….24 3-5-4 Synthesis of [Ir(pba)2(pbi)]………………………………………...27 3-5-5 synthesis of [Ir(ppm)2(bpy)](PF6)…………………………………29 3-5-6 synthesis of [Ir(ppm)2(pbi)]……………………………………….32 Chapter 4 . Results and Discussion………………………………………….35 4-A Crystallographic characterization and analysis…………………………36 4-A-1 Ir2pba4Cl2...........................................................................................36 4-A-2 Complex [Irpba2bpy]PF6,[Irppm2bpy]PF6,Irpba2pbi..........................41 4-A-3 Ir(ppm)2bpy…………………………………………………………42 4-B Chemosensor and Photophysics………………………………………...48 4-B-1 Complex 3: invalidity of site A for chelation……………………….50 4-B-2 Complex 2: Site B supplied by Ir(pba)2 (pbi)……………………...51 4-B-3 Complex 5: confirmation of site B in binding metal ions………….52 4-B-4 Complex 4: chemical sensor suitable for detection in aqueous systems………………………………………………...53 Chapter 5 Conclusion and extension work……………………………54 Reference…………………………………………………………………………..62 Appendix…………………………………………………………………………..66 List of charts Chart 1. The iridium (III) diimine complex [Ir(N-C)2(N-N)](PF6).....13 Chart 2. iridium complex sensor cation and anion……………………16 List of Table Table 4A-1. Selective bond-lengths of complex Ir2pba4Cl2…36 Table 4A-2. Bite angles of complex Ir Ir2pba4Cl2…………………….37 Table 4A-3. Crystallographic acquisition parameters for Ir2pba4Cl2…38 Table 4A-4. Crystallographic acquisition parameters for Complexes (2), (3), (5)...39 Table 4A-5. Selective bond-lengths and angles of complexes (2), (3) and (5)................41 List of figures Figure 1-1. Two possible sites, A and B, provided by Ir(pba)2bpi cationic complex...….2 Figure 2-1. Cyclo-oligomers of ethylene oxide, from dioxane 18-crown-6………4 Figure 2-2 Crown-based ionsensors………………………………………………...…4 Figure 2-3 De Silva’s anthracenylmethyl lariat ether for fluorescence signaling……..5 Figure 2-4 Luminescent sensor for ion pairs.………………..5 Figure 2-5 Luminescent sensor for divalent cations…………….6 Figure 2-6 Anion chemosensors based on the binding site-signaling subunit approach ………..7 Figure 2-7 Anion chemosensors based on the displacement approach……………………..….…8 Figure 3-1 NMR spectrum of ligand pbi……………………………………………..22 Figure 3-2 NMR spectrum of [Ir2(pba)4Cl2] …………………………………………23 Figure 3-3 IR spectrum of [Ir2(pba)4Cl2]................24 Figure 3-4 NMR spectrum of [Ir(pba)2bpy](PF6)……………….25 Figure 3-5 IR spectrum of [Ir(pba)2bpy](PF6) ………………….26 Figure 3-6 MASS spectrum of [Ir(pba)2bpy](PF6)……………...26 Figure 3-7 NMR spectrum of [Ir(pba)2pbi]…………………………………………..28 Figure 3-8 IR spectrum of [Ir(pba)2pbi]………………………………………...28 Figure 3-9 MASS spectrum of [Ir(pba)2pbi]…………………………………....29 Figure 3-10 NMR spectrum of [Ir(ppm)2(bpy)](PF6)………………...30 Figure 3-11 IR spectrum of [Ir(ppm)2(bpy)](PF6) …………………...31 Figure 3-12 MASS spectrum of [Ir(ppm)2(bpy)](PF6)………………….31 Figure 3-13 NMR spectrum of [Ir(ppm)2(pbi)] …………………………...33 Figure 3-14 IR spectrum of [Ir(ppm)2(pbi)]……………………………….…33 Figure 3-15 MASS spectrum of [Ir(ppm)2(pbi)]………………………….….34 Figure 4A-1 Structural representation of Ir(III) complexes under this study……......35 Figure 4A-2 H-Bonding network……………………………………………..……...42 Figure 4A-3 PF6-centered framework……………………………………………….44 Figure 4A-4 Numbering of atoms in Ir(ppm)2bpy……………………………44 Figure 4A-5 bpy-centered framework………………………………………………..45 Figure 4A-6 bpy-centered framework bond lengt…………………………….46 Figure 4A-7 Enlargement of two N(bpy)-Ir-C(ppm) angles……….46 Figure 4B-1 Structural representation of Ir(III) complexes under this study…….….48 Figure 4B-2 Possible sites provided by (A)Ir(pba)2pbi and (B)Ir(pba)2bpy for chelating metal ions………………………………………. 49 Figure 4B-3 Response of luminescence data of [Ir(pba)2(bpy)](PF6) in the presence of metal ions at different concentration…………….50 Figure 4B-4 Response of luminescence data of [Ir(pba)2(pbi)] in the presence of metal ions at different concentration……………………………….51 Figure 4B-5 Response of luminescence data of [Ir(ppm)2(bpy)](PF6) in the presence of metal ions at different concentration………………………………....52 Figure 4B-6 Response of luminescence data of [Ir(ppm)2(pbi)] in the presence of metal ions at different concentration…………………………………....53 Figure 5-1 (A) absorption spectrum of [Rh(ppy)2(bpym)][PF6] (B) emission polarization spectrum of [Rh(ppy)2(bpym)][PF6]……………..……....57 Figure 5-2 (A) emission spectrum and (B) emission polarization spectrum of [Rh(ppy)2(bpym)][PF6]……………………..58 Figure 5-3 Emission spectra of [Rh(ppy)2(bpym)][PF6] ……….59 Figure 5-4 Cyclic voltammogram of 1.0 mM [Rh(ppy)2(bpym)][PF6]…………….60 Figure 5-5 Cyclic voltammogram of 1.0 mM [Rh(ppy)2(bpym)][PF6]…………….61 Figure.A-1 Photoluminescence(A) and Absorption spectra (B) changes of [Ir(pba)2(bpy)](PF6) upon addition of different Ag+ concentration……66 Figure.A-2 Photoluminescence(A) and Absorption spectra (B) changes of [Ir(pba)2(bpy)](PF6) i upon addition of different K+ concentration …...67 Figure.A-3 Photoluminescence(A) and Absorption spectra (B) changes of [Ir(pba)2(bpy)](PF6) upon addition of different Na+ concentration …...68 Figure.A-4 Photoluminescence(A) and Absorption spectra (B) changes of [Ir(pba)2(bpy)](PF6) upon addition of different Ba2+ concentration …..69 Figure.A-5 Photoluminescence(A) and Absorption spectra (B) changes of [Ir(pba)2(bpy)](PF6) upon addition of different Ca2+ concentration…...70 Figure.A-6 Photoluminescence(A) and Absorption spectra (B) changes of [Ir(pba)2(bpy)](PF6) upon addition of different Cd2+ concentration…...71 Figure.A-7 Photoluminescence(A) and Absorption spectra (B) changes of [Ir(pba)2(bpy)](PF6) upon addition of different Co2+ concentration…...72 Figure.A-8 Photoluminescence(A) and Absorption spectra (B) changes of [Ir(pba)2(bpy)](PF6) upon addition of different Hg2+ concentration…..73 Figure.A-9 Photoluminescence(A) and Absorption spectra (B) changes of [Ir(pba)2(bpy)](PF6) upon addition of different Ni2+ concentration…...74 Figure.A-10 Photoluminescence(A) and Absorption spectra (B) changes of [Ir(pba)2(bpy)](PF6) upon addition of different Zn2+ concentration…...75 Figure.A-11 Photoluminescence(A) and Absorption spectra (B) changes of [Ir(pba)2(bpy)](PF6) upon addition of different Ce3+ concentration…...76 Figure.A-12 Photoluminescence(A) and Absorption spectra (B) changes of [Ir(pba)2(bpy)](PF6) upon addition of different Cr3+ concentration…...77 Figure.A-13 Photoluminescence(A) and Absorption spectra (B) changes of [Ir(pba)2(bpy)](PF6) upon addition of different Fe3+ concentration…...78 Figure.A-14 Photoluminescence(A) and Absorption spectra (B) changes of [Ir(pba)2(pbi)] upon addition of different Ag+ concentration………….79 Figure.A-15 Photoluminescence(A) and Absorption spectra (B) changes of [Ir(pba)2(pbi)] upon addition of different K+ concentration…………...80 Figure.A-16 Photoluminescence(A) and Absorption spectra (B) changes of [Ir(pba)2(pbi)] upon addition of different Na+ concentration………….81 Figure.A-17 Photoluminescence(A) and Absorption spectra (B) changes of [Ir(pba)2(pbi)] upon addition of different Ba2+ concentration…………82 Figure.A-18 Photoluminescence(A) and Absorption spectra (B) changes of [Ir(pba)2(pbi)] upon addition of different Ca2+ concentration…………83 Figure.A-19 Photoluminescence(A) and Absorption spectra (B) changes of [Ir(pba)2(pbi)] upon addition of different Cd2+ concentration…………84 Figure.A-20 Photoluminescence(A) and Absorption spectra (B) changes of [Ir(pba)2(pbi)] upon addition of different Co2+ concentration…………85 Figure.A-21 Photoluminescence(A) and Absorption spectra (B) changes of [Ir(pba)2(pbi)] upon addition of different Hg2+ concentration…………86 Figure.A-22 Photoluminescence(A) and Absorption spectra (B) changes of [Ir(pba)2(pbi)] upon addition of different Ni2+ concentration………….87 Figure.A-23 Photoluminescence(A) and Absorption spectra (B) changes of [Ir(pba)2(pbi)] upon addition of different Zn2+ concentration…………88 Figure.A-24Photoluminescence(A) and Absorption spectra (B) changes of [Ir(pba)2(pbi)] upon addition of different Ce3+ concentration…………89 Figure.A-25 Photoluminescence(A) and Absorption spectra (B) changes of [Ir(pba)2(pbi)] upon addition of different Cr3+ concentration………….90 Figure.A-26 Photoluminescence(A) and Absorption spectra (B) changes of [Ir(pba)2(pbi)] upon addition of different Fe3+ concentration………….91 Figure.A-27 Photoluminescence(A) and Absorption spectra (B) changes of [Ir(ppm)2(bpy)](PF6) upon addition of different Ag+ concentration…...92 Figure.A-28 Photoluminescence(A) and Absorption spectra (B) changes of [Ir(ppm)2(bpy)](PF6) upon addition of different K+ concentration……93 Figure.A-29 Photoluminescence(A) and Absorption spectra (B) changes of [Ir(ppm)2(bpy)](PF6) upon addition of different Na+ concentration…...94 Figure.A-30 Photoluminescence(A) and Absorption spectra (B) changes of [Ir(ppm)2(bpy)](PF6) upon addition of different Ba2+ concentration…..95 Figure.A-31 Photoluminescence(A) and Absorption spectra (B) changes of [Ir(ppm)2(bpy)](PF6) upon addition of different Ca2+ concentration…..96 Figure.A-32 Photoluminescence(A) and Absorption spectra (B) changes of [Ir(ppm)2(bpy)](PF6) upon addition of different Cd2+ concentration….97 Figure.A-33 Photoluminescence(A) and Absorption spectra (B) changes of [Ir(ppm)2(bpy)](PF6) upon addition of different Co2+ concentration….98 Figure.A-34 Photoluminescence(A) and Absorption spectra (B) changes of [Ir(ppm)2(bpy)](PF6) upon addition of different Hg2+ concentration….99 Figure.A-35 Photoluminescence(A) and Absorption spectra (B) changes of [Ir(ppm)2(bpy)](PF6) upon addition of different Ni2+ concentration…100 Figure.A-36 Photoluminescence(A) and Absorption spectra (B) changes of [Ir(ppm)2(bpy)](PF6) upon addition of different Zn2+ concentration…101 Figure.A-37 Photoluminescence(A) and Absorption spectra (B) changes of [Ir(ppm)2(bpy)](PF6) upon addition of different Ce3+ concentration…102 Figure.A-38 Photoluminescence(A) and Absorption spectra (B) changes of [Ir(ppm)2(bpy)](PF6) upon addition of different Cr3+ concentration…103 Figure.A-39 Photoluminescence(A) and Absorption spectra (B) changes of [Ir(ppm)2(bpy)](PF6) upon addition of different Fe3+ concentration…104 Figure.A-40 Photoluminescence(A) and Absorption spectra (B) changes of [Ir(ppm)2(pbi)] upon addition of different Ag+ concentration………..105 Figure.A-41 Photoluminescence(A) and Absorption spectra (B) changes of [Ir(ppm)2(pbi)] upon addition of different K+ concentration…………106 Figure.A-42 Photoluminescence(A) and Absorption spectra (B) changes of [Ir(ppm)2(pbi)] upon addition of different Na+ concentration………..107 Figure.A-43 Photoluminescence(A) and Absorption spectra (B) changes of [Ir(ppm)2(pbi)] upon addition of different Ba2+ concentration……….108 Figure.A-44 Photoluminescence(A) and Absorption spectra (B) changes of [Ir(ppm)2(pbi)] upon addition of different Ca2+ concentration……….109 Figure.A-45 Photoluminescence(A) and Absorption spectra (B) changes of [Ir(ppm)2(pbi)] upon addition of different Cd2+ concentration……….110 Figure.A-46 Photoluminescence(A) and Absorption spectra (B) changes of [Ir(ppm)2(pbi)] upon addition of different Co2+ concentration……….111 Figure.A-47 Photoluminescence(A) and Absorption spectra (B) changes of [Ir(ppm)2(pbi)] upon addition of different Hg2+ concentration…….....112 Figure.A-48 Photoluminescence(A) and Absorption spectra (B) changes of [Ir(ppm)2(pbi)] upon addition of different Ni2+ concentration…….....113 Figure.A-49 Photoluminescence(A) and Absorption spectra (B) changes of [Ir(ppm)2(pbi)] upon addition of different Zn2+ concentration……….114 Figure.A-50 Photoluminescence(A) and Absorption spectra (B) changes of [Ir(ppm)2(pbi)] upon addition of different Ce3+ concentration……….115 Figure.A-51 Photoluminescence(A) and Absorption spectra (B) changes of [Ir(ppm)2(pbi)] upon addition of different Cr3+ concentration……….116 Figure.A-52 Photoluminescence(A) and Absorption spectra (B) changes of [Ir(ppm)2(pbi)] upon addition of different Fe3+ concentration……….117

    1. Hassan A. Arida , Joachim P . Kloock and Micchael J .Schöning ; Sensors 2006, 6 , 435.
    2. Huarui He , Kenneth Jenkins and Chao Lin ; Analytica Chimica Acta , 611 , 2 2008 , 197 .
    3. Fage F , Desvergne J-P , Bouas –Laurent H , Marsau P , Lehn J-P ,Kotzyba-Hibert F, Albrecht-Gary AM , A1 Joubbeh M (1989)Anthraceno-cryptands : a new class of cation-complexing macrobicyclicfluorophores . J Am Chem Soc 111:8672 .
    4. Hong B , Kai J , Ren Y , Han J , Zou Z , Ahn CH , Kang KA ; Adv Exp Med Biol . 2008 ; 614 : 265 .
    5. (a) Cation Binding by Macrocycles; Inoue, Y., Gokel, G. W., Eds.; Marcel Dekker: New York, 1990. (b) Gokel, G. W. Crown Ethers and Cryptands; The Royal Society of Chemistry: London, England, 1991.
    6. Dietrich, B.; Viout, P.; Lehn, J.-M. Macrocyclic
    7. (a) Nakamura, M.; Takagi, M.; Ueno, K. Talanta 1979, 26, 921.(b) Takagi, M.; Nakamura, M.; Ueno, K. Anal. Lett. 1977, 10,1115
    8. de Silva, A. P.; de Silva, S. A. J. Chem. Soc., Chem. Commun. 1986, 1709
    9. de Silva, A. P.; Gunaratne, H. Q.; McVeigh, C.; Maguire, G. E. M.; Maxwell, P. R. S.; O’Hanlon, E. Chem. Commun. 1996, 2191.
    10. (a) Gawley, R. E.; Zhang, Q.; Higgs, P. I.; Wang, S.; Leblanc, R.M. Tetrahedron Lett. 1999, 40, 5461. (b) Gawley, R. E.; Pinet,S.; Cardona, C. M.; Datta, P. K.; Ren, T.; Guida, W. C.; Nydick,J.; Leblanc, R. M. J. Am. Chem. Soc. 2002, 124, 13448. (c) Kele,P.; Orbulescu, J.; Calhoun, T. L.; Gawley, R. E.; Leblanc, R. M. Tetrahedron Lett. 2002, 43, 4413.
    11. Beer, P. D.; Dent, S. W. Chem. Commun. 1998, 825.
    12. Kyba, E. P.; Helgeson, R. C.; Madan, K.; Gokel, G. W.; Tarnowski, T. L.; Moore, S. S.; Cram, D. J. J. Am. Chem.Soc. 1977, 99, 2564.
    13. Beer, P. D.; Dent, S. W. Chem. Commun. 1998, 825.
    14. McFarland, S. A.; Finney, N. S. Chem. Commun. 2003, 388.
    15. Charbonniere, L. J.; Ziessel, R. F.; Sams, C. A.; Harriman, A. Inorg. Chem. 2003, 42, 3466.
    16. Wiskur, S. L.; Aı¨t-Haddou, H.; Lavigne, J. J.; Anslyn, E. V. Acc. Chem. Res. 2001, 34, 963.
    17. Charbonnie`re, L.; Ziessel, R.; Montalti, M.; Prodi, L.; Zaccheroni,N.; Boehme, C.; Wipff, G. J. Am. Chem. Soc. 2002, 124, 7779.
    18. Montalti, M.; Prodi, L. Chem. Commun. 1998, 1461.Chow, C.-F.; Chiu, B. K. W.; Lam, M. H. W.; Wong, W.-Y. J.Am. Chem. Soc. 2003, 125, 7802.
    19. Yamaguchi, S.; Akiyama, S.; Tamao, K. J. Am. Chem. Soc. 2000,122, 6793.
    20. Chae, M.-Y.; Czarnik, A. W. J. Am. Chem. Soc. 1992, 114, 9704.
    21. Bissell, R. A.; de Silva, P.; Gunaratne, H. Q. N.; Lynch, P. L.M.; Maguire, G. E. M.; Sandanayake, K. R. A. S. Chem. Soc. Rev. 1992, 187.
    22. Dujols, V.; Ford, F.; Czarnik, A. W. J. Am. Chem. Soc. 1997, 119, 7386.
    23. Beer, P. D. Chem. Commun. 1996, 689.
    24. Beer, P. D. Coord. Chem. Rev. 2000, 205, 131.
    25. Beer, P. D.; Szemes, F.; Balzani, V.; Sala` , C. M.; Drew, M. G. B.; Dent, S. W.; Maestri, M. J. Am. Chem. Soc. 1997, 119, 11864.
    26. Beer, P. D.; Dent, S. W.; Fletcher, N. C.; Wear, T. J. Polyhedron1996, 15, 2983Watanabe, S.; Onogawa, O.; Komatsu, Y.; Yoshida, K. J. Am.Chem. Soc. 1998, 120, 229.
    27. Palomares, E., Vilar, R., and Durrant, J. R. Chem. Commun. 2004 362
    28. Coronado, E., Galán-Mascarós, J. R., Martí-Gastaldo, C., Palomares, E., Durrant, J. R., Vilar, R., Gratzel, M., and Nazeeruddin, M. K. J. Am. Chem. Soc. 2005 127 12351
    29. N. J. Am. Chem. Soc. 2002, 124, 6232.(157) Padilla-Tosta, M. E.; Lloris, J. M.; Martı´nez-Ma´nez, R.; Pardo,T.; Soto, J.; Benito, A.; Marcos, M. D. Inorg. Chem. Commun.2000, 3, 45.
    30. Padilla-Tosta, M. E.; Lloris, J. M.; Martı´nez-Ma´n˜ ez, R.; Pardo,T.; Sanceno´n, F.; Soto, J.; Marcos, M. D. Eur. J. Inorg. Chem.2001, 1221.
    31. Gao, R.; Ho, D. G.; Hernandez, B.; Selke, M.; Murphy, D.; Djurovich, P. I.; Thompson, M. E. J. Am. Chem. Soc.2002, 124, 14828.
    32. Beeby, A.; Bettington, S.; Samuel, I. D. W.; Wang, Z. J. Mater. Chem.2003, 13, 80.
    33. M. S. Lowry, W. R. Hudson, R. A. Pascal, Jr., S. Bernhard, J. Am. Chem. Soc. 2004, 126, 14129.
    34. Chem.Eur.J.2006,2006,12,1500-1512
    35. Sungho Yoon, Aaron E. Albers, Audrey P. Wong, Christopher J. Chang. J. Am. Chem. Soc., 2005, 127 (46), 16030–16031
    36. Schmittel, M., and Lin, H. W. Inorg. Chem. 2007 46 9139 9145
    37. B. Chen, Z.-X. Wu, L.-P. Zhang and C.-H. Tung, Inorg. Chem. 43 (2004), 5195–5197
    38. (a) Fillaut, J.-L., Andries, J., Perruchon, J., Desvergne, J.-P., Toupet, L., Fadel, L., Zouchoune, B., and Saillard, J.-Y. Inorg. Chem. 2007 46 5922 5932 (b) Jose, D. A., Kar, P., Koley, D., Ganguly, B., Thiel, W., Ghosh, H. N., and Das, A. Inorg. Chem. 2007 46 5576 5584
    39. (a) Han, B.-H., and Winnik, M. A. Chem. Mater. 2005 17 4001 4009 (b) McGee, K. A., Veltkamp, D. J., Marquardt, B. J., and Mann, K. R. J. Am. Chem. Soc. 2007 129 15092 15093 (c) Lei, B., Li, B., Zhang, H., Zhang, L., and Li, W. J. Phys. Chem. C 2007 111 11291 11301
    40. (a) Chou, P. T., and Chi, Y. Chem. Eur. J. 2007 13 380 395 (b) Forrest, S. R., and Thompson, M. E. Chem. Rev. 2007 107 923 925 (c) Grushin, V. V. Chem, Rev. 2004 104 1629 1662
    41. a) Lamansky, S., Djurovich, P., Murphy, D., Abdel-Razzaq, F., Kwong, R., Tsyba, I., Bortz, M., Mui, B., Bau, R., and Thompson, M. E. Inorg. Chem. 2001 40 1704 1711 (b) Tamayo, A. B., Garon, S., Sajoto, T., Djurovich, P. I., Tsyba, I. M., Bau, R., and Thompson, M. E. Inorg. Chem. 2005 44 8723 8732 (c) Lo, S.-C., Anthopoulos, T. D., Namdas, E. B., Burn, P. L., and Samuel, I. D. W. Adv, Mater. 2005 17 1945 1948 (d) Lo, S.-C., Richards, G. J., Markham, P. J., Namdas, E. B., Sharma, S., Burn, P. L., and Samuel, I. D. W. Adv. Funct. Mater. 2005 15 1451 1458 (e) Bettington, S.,Tavasli, M., Bryce, M. R., Beeby, A., Al-Attar, H. A., and Monkman, A. P. Chem. Eur. J. 2007 13 1423 1431 (f) King, S. M., Al-Attar, H. A., Evans, R. J., Congreve, A., Beeby, A., and Monkman, A. P. Adv. Funct. Mater. 2006 16 1043 1050 (g) Zhou, G., Ho, C. L., Wong, W. Y., Wang, Q., Ma, D., Wang, L., Lin, Z., Marder, T. B., and Beeby, A. Adv. Funct. Mater. 2008 18 499 511
    42. (a) Zhao, Q., Jiang, C.-Y., Shi, M., Li, F.-Y., Yi, T., Cao, Y., and Huang, C.-H. Organometallics 2006 25 3631 3638 (b) Zhao, Q., Liu, S., Shi, M., Wang, C., Yu, M., Li, L., Li, F., Yi, T., and Huang, C. Inorg. Chem. 2006 45 6152 6160 (c) Liu, S. J., Zhao, Q., Chen, R. F., Deng, Y., Fan, Q. L., Li, F. Y., Wang, L. H., Huang, C. H., and Huang, W. Chem. Eur. J. 2006 12 4351 4361 (d) Liu, Z. W., Guan, M., Bian, Z. Q., Nie, D. B., Gong, Z. L., Li, Z. B., and Huang, C. H. Adv. Funct. Mater. 2006 16 1441 1448 (e) Li, X. H., Chen, Z., Shen, L., Li, F. Y., Zhao, Q., Yi, T., Cao, Y., and Huang, C. H. Inorg. Chem. 2007 46 5518 5527 (f) Liu, S. J., Zhao, Q., Deng, Y., Xia, Y. J., Lin, J., Fan, Q. L., Wang, L. H., and Huang, W. J. Phys. Chem. C 2007 111 1166 1175 (g) Zhao, Q., Li, L., Li, F. Y., Yu, M. X., Liu, Z. P., Yi, T., and Huang, C. H. Chem. Commun. 2008 685 687 (h) Yu, M. X., Zhao, Q., Shi, L. X., Li, F. Y., Zhou, Z. G., Yang, H., Yi, T., and Huang, C. H. Chem. Commun. 2008 2115 2117
    43. (a) Lo, K. K.-W., Chung, C.-K., and Zhu, N. Chem. Eur. J. 2003 9 475 483 (b) Lo, K. K.-W., Chan, J. S.-W., Lui, L.-H., and Chung, C.-K. Organometallics 2004 23 3108 3116 (c) Lo, K. K.-W., Li, C.-K., and Lau, J. S.-Y. Organometallics 2005 24 4594 4601 (d) Lo, K. K.-W., Chung, C.-K., and Zhu, N. Chem. Eur. J. 2006 12 1500 1512 (e) Lo, K. K. W., and Lau, J. S. Y. Inorg. Chem. 2007 46 700 709 (f) Lo, K. K.-W., Zhang, K. Y., Chung, C.-K., and Kwok, K. Y. Chem. Eur. J. 2007 13 7110 7120 (g) Lo, K. K. W, Hui, W. K., Chung, C. K., Tsang, K. H. K., Lee, T. K. M., Li, C. K., Lau, J. S. Y., and Ng, D. C. M. Coord. Chem. Rev. 2006 250 1724 1736
    44. (a) Yersin, H. Top. Curr. Chem. 2004 241 1 6 (b) You, Y. M., and Park, S. Y. J. Am. Chem. Soc. 2005 127 12438 12439 (c) Tsuboyama, A., Iwawaki, H., Furugori, M., Mukaide, T., Kamatani, J., Igawa, S., Moriyama, T., Miura, S., Takiguchi, T., Okada, S., Hoshino, M., and Ueno, K. J. Am. Chem. Soc. 2003 125 12971 12979 (d) Polson, M., Ravaglia, M., Fracasso, S., Garavelli, M., and Scandola, F. Inorg. Chem. 2005 44 1282 1289 (e) Obara, S., Itabashi, M., Okuda, F., Tamaki, S., Tanabe, Y., Ishii, Y., Nozaki, K., and Haga, M. Inorg. Chem. 2006 45 8907 8921 (f) Wilkinson, A. J., Puschmann, H., Howard, J. A. K., Foster, C. E., and Williams, J. A. G. Inorg. Chem. 2006 45 8685 8699(g) Schmittel,M Lin,S. Inorg. Chem., 2007, 46 , 9139–9145 .(h) Qiang,Z, Fuyou,L†, Shujuan,L, Mengxiao,Y, Zhiqiang,L, Tao,Y, Chunhui,H . Inorg. Chem., 2008, 47 (20), 9256–9264. (i) Qiang ,Z, Shujuan,L, Mei ,S, Fuyou ,L, Hao ,J, Tao ,Y, Chunhui ,H . Organometallics, 2007, 26 (24), 5922–5930 (j) Huili ,C, Qiang,Z, Yanbo ,W, Fuyou ,L, Hong ,Y, Tao ,Y, Chunhui , H . Inorg. Chem., 2007, 46 (26), 11075–11081. (k) Ok, H,K, Shin,W, H, Jae Il,K, Jin,K,L . ACS Nano, 2010, 4 (6), 3397–3405
    45. (a) Ho, M. L., Hwang, F. M., Chen, P. N., Hu, Y. H., Cheng, Y. M., Chen, K. S., Lee, G. H., Chi, Y., and Chou, P. T. Org. Biomol. Chem. 2006 4 98 103 (b) Goodall, W., and Williams, J. A. G. J. Chem. Soc., Dalton Trans. 2000 2893 2895 (c) Zhao, Q., Liu, S. J., Shi, M., Li, F. Y., Jing, H., Yi, T., and Huang, C. H. Organometallics 2007 26 5922 5930 (d) Chen, H. L., Zhao, Q., Li, F. Y., Wu, Y. B., Yang, H., Yi, T., and Huang, C. H. Inorg. Chem. 2007 46 11075 11081
    46. Cameron, C.G.; Pickup, P.G. .J. Am. Chem. Soc. 1999, 121, 11773

    下載圖示 校內:2012-06-29公開
    校外:2012-06-29公開
    QR CODE