| 研究生: |
吳宜諠 Wu, Yi-Hsuan |
|---|---|
| 論文名稱: |
高熵氧化物陰極多硫化物吸附劑以提升鋰硫電池長循環穩定性 High entropy oxide as a lithium polysulfide-trapping additive for enhancing the long-term cycling stability of lithium sulfur battery |
| 指導教授: |
丁志明
Ting, Jyh-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 英文 |
| 論文頁數: | 71 |
| 中文關鍵詞: | 高熵氧化物 、鋰硫電池 、穿隧效應 、多硫化物 |
| 外文關鍵詞: | high entropy oxides, lithium sulfur batteries, shuttle effect, lithium polysulfides |
| 相關次數: | 點閱:80 下載:35 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
能源議題日趨重視,工業界致力於開拓替代能源以及電動車市場,目前市面上鋰離子電池技術相當成熟,卻也面臨了電容量極限、安全性等問題,因此具備更高重量比容量的鋰硫電池引起廣泛性關注。鋰硫電池的發展主要受限於循環穩定性,溶於電解液中的多硫化物(lithium polysulfides)造成之穿隧效應(shuttle effect)使得反應活性物質損失、電容量降低,以及循環穩定性不佳。為了減緩穿隧效應,吸附多硫化物為目前常見的改善方案。本研究將首次嘗試以組成為鉻、錳、鐵、鎳、鎂的高熵氧化物作為鋰硫電池陰極之添加劑,並比較移除錳或鎂元素對電池表現之影響,藉以探討元素之功能性。本研究添加高熵氧化物的硫陰極在0.1C 的充放電速率下,最高電容量為857 mAh g-1,循環300 圈後電容量為552 mAh g-1,衰減速率每圈大約0.12%,此研究初步證明使用高熵氧化物能夠成功抑制鋰硫電池之穿隧效應並改善循環穩定性。
The development of renewable energy and electrical vehicles becomes considerably crucial due to the energy crisis. Lithium-ion batteries are widely used in the end use of energy industries, but they also face technical issues such as the bottleneck of the maximum capacity and safety concern. Lithium-sulfur batteries (LSBs) thus attract a considerable attention due to higher gravimetric energy densities. However, the poor cycle stability of LSB retards its progress.
The shuttle effect, which results from the diffusion of soluble lithium
polysulfides (LiPSs) between the cathode and anode, brings out the loss of active materials, capacity reduction, and poor stability. The addition of LiPStrappers is the most common strategy currently. In this study, a high entropy oxide (HEO) with the composition of Cr, Mn, Fe, Ni, and Mg, noted by 5M, is the first attempt to be the LiPS-trapper for the sulfur cathode, and the removal of Mn or Mg is further discussed to understand their functionalities. The sulfur cathode with 5M shows the maximum discharge capacity of 857 mAh g-1 and maintain 552 mAh g-1 after 300 cycles at 0.1C with the decay rate of 0.12% per cycle. It is demonstrated that HEO can be an effective LiPS-trapper to mitigate the shuttle effect and improve the cycle stability.
[1] M. Hagen, D. Hanselmann, K. Ahlbrecht, R. Maça, D. Gerber, J. Tübke, Adv. Energy Mater. 2015, 5, 1401986.
[2] J.B. Robinson, K. Xi, R.V. Kumar, A.C. Ferrari, H. Au, M.-M. Titirici, A. Parra-Puerto, A. Kucernak, S.D.S. Fitch, N. Garcia-Araez, Z.L. Brown, M. Pasta, L. Furness, A.J. Kibler, D.A. Walsh, L.R. Johnson, C. Holc, G.N. Newton, N.R. Champness, F. Markoulidis, C. Crean, R.C.T. Slade, E.I. Andritsos, Q. Cai, S. Babar, T. Zhang, C. Lekakou, N. Kulkarni, A.J.E. Rettie, R. Jervis, M. Cornish, M. Marinescu, G. Offer, Z. Li, L. Bird, C.P. Grey, M. Chhowalla, D.D. Lecce, R.E. Owen, T.S. Miller, D.J.L. Brett, S. Liatard, D. Ainsworth, P.R. Shearing, J. Phys. Energy. 2015, 3, 031501.
[3] A. Manthiram, Y. Fu, S.H. Chung, C. Zu, Y.S. Su, Chem. Rev. 2014, 114, 11751.
[4] W. Ren, W. Ma, S. Zhang, B. Tang, Energy Stor. Mater. 2019, 23, 707.
[5] Y. Zheng, Y. Yi, M. Fan, H. Liu, X. Li, R. Zhang, M. Li, Z.-A. Qiao, Energy Stor. Mater. 2019, 23, 678.
[6] L. Y. Tian, Z. Zhang, S. Liu, G.-R. Li, X. P. Gao, Energy Environ. Mater. 2022.
[7] J.-W. Yeh, S.-K. Chen, S.-J. Lin, J.-Y. Gan, T.-S. Chin, T.-T. Shun, C.-H. Tsau, S.-Y. Chang, Adv. Eng. Mater. 2004, 6, 299.
[8] A. Sarkar, L. Velasco, D. Wang, Q. Wang, G. Talasila, L. de Biasi, C. Kübel, T. Brezesinski, S.S. Bhattacharya, H. Hahn, B. Breitung, Nat. Commun. 2018,679, 3400.
[9] A. Sarkar, Q. Wang, A. Schiele, M.R. Chellali, S.S. Bhattacharya, D. Wang, T. Brezesinski, H. Hahn, L. Velasco, B. Breitung, Adv. Mater. 2019, 31,1806236.
[10] T.X. Nguyen, Y.-C. Liao, C.-C. Lin, Y.-H. Su, J.-M. Ting, Adv. Funct. Mater. 2021, 31, 2101632.
[11] T.X. Nguyen, J. Patra, J.-K. Chang, J.-M. Ting, J. Mater. Chem. A 2020, 8, 18963.
[12] E. Castle, T. Csanádi, S. Grasso, J. Dusza, M. Reece, Sci. Rep. 2018, 8, 8609.
[13] P. Sarker, T. Harrington, C. Toher, C. Oses, M. Samiee, J.-P. Maria, D.W. Brenner, K.S. Vecchio, S. Curtarolo, Nat. Commun. 2018, 9, 4980.
[14] D. Moskovskikh, S. Vorotilo, V. Buinevich, A. Sedegov, K. Kuskov, A. Khort, C. Shuck, M. Zhukovskyi, A. Mukasyan, Sci. Rep. 2020, 10, 19874.
[15] O.F. Dippo, N. Mesgarzadeh, T.J. Harrington, G.D. Schrader, K.S. Vecchio, Sci. Rep. 2020, 10, 21288.
[16] T.X. Nguyen, Y.-H. Su, C.-C. Lin, J.-M. Ting, Adv. Funct. Mate. 2021, 31, 2106229.
[17] L. Lin, K. Wang, A. Sarkar, C. Njel, G. Karkera, Q. Wang, R. Azmi, M. Fichtner, H. Hahn, S. Schweidler, B. Breitung, Adv. Energy Mater. 2022, 12, 2103090.
[18] J.-W. Yeh, In: J. Brechtl, P.K. Liaw (Eds.), Springer, Cham. 2021, 37. 68
[19] C.M. Rost, E. Sachet, T. Borman, A. Moballegh, E.C. Dickey, D. Hou, J.L. Jones, S. Curtarolo, J.P. Maria, Nat. Commun. 2015, 6, 8485.
[20] D. Bérardan, S. Franger, D. Dragoe, A.K. Meena, N. Dragoe, Phys. Status Solidi RRL. 2016, 10, 328-333.
[21] J. Gild, M. Samiee, J.L. Braun, T. Harrington, H. Vega, P.E. Hopkins, K. Vecchio, J. Luo, J. Eur. Ceram. Soc. 2018, 38, 3578.
[22] L. Spiridigliozzi, C. Ferone, R. Cioffi, G. Dell'Agli, Acta Mater. 2021, 202, 181.
[23] J. Patra, T.X. Nguyen, C.-C. Tsai, O. Clemens, J. Li, P. Pal, W.K. Chan, C.-H. Lee, H.-Y.T. Chen, J.-M. Ting, J.-K. Chang, Adv. Funct. Mater. 2022, 32, 2110992.
[24] T.X. Nguyen, C.-C. Tsai, J. Patra, O. Clemens, J.-K. Chang, J.-M. Ting, Chem. Eng. J. 2022, 430, 132658.
[25] A. Sarkar, R. Djenadic, D. Wang, C. Hein, R. Kautenburger, O. Clemens, H. Hahn, J. Eur. Ceram. Soc. 2018, 38, 2318.
[26] M. Fu, X. Ma, K. Zhao, X. Li, D. Su, iScience, 2021, 24, 102177.
[27] T.X. Nguyen, Y.-H. Su, C.-C. Lin, J. Ruan, J.-M. Ting, Adv. Sci. 2021, 8, 2002446.
[28] G. Zhang, K. Ming, J. Kang, Q. Huang, Z. Zhang, X. Zheng, X. Bi, Electrochim. Acta 2018, 279, 19.
[29] S. Nellaiappan, N.K. Katiyar, R. Kumar, A. Parui, K.D. Malviya, K.G. Pradeep, A.K. Singh, S. Sharma, C.S. Tiwary, K. Biswas, ACS Catal. 2020, 10,693658.
[30] C. Zhao, F. Ding, Y. Lu, L. Chen, Y.-S. Hu, Angew. Chem. Int. Ed. 2020, 59, 264.
[31] Z.-Y. Gu, J.-Z. Guo, J.-M. Cao, X.-T. Wang, X.-X. Zhao, X.-Y. Zheng, W.-H. Li, Z.-H. Sun, H.-J. Liang, X.-L. Wu, Adv. Mater. 2022, 34, 2110108.
[32] H. Shen, J. Zhang, J. Hu, J. Zhang, Y. Mao, H. Xiao, X. Zhou, X. Zu, Nanomaterials, 2019, 9, 248.
[33] K. Kong, J. Hyun, Y. Kim, W. Kim, D. Kim, J. Power Sources, 2019, 437, 226927.
[34] Y. Ma, Y. Ma, Q. Wang, S. Schweidler, M. Botros, T. Fu, H. Hahn, T. Brezesinski, B. Breitung, Energy Environ. Sci. 2021, 14, 2883.
[35] M. Li, C.J. Jafta, I. Belharouak, In: R. Raccichini, U. Ulissi (Eds.) Front. Nanosci. Elsevier, 2021, 137.
[36] M. Nestoridi, H. Barde, E3S Web Conf. 2017, 16, 08005.
[37] S. Dörfler, S. Walus, J. Locke, A. Fotouhi, D.J. Auger, N. Shateri, T. Abendroth, P. Härtel, H. Althues, S. Kaskel, Energy Technol. 2021, 9, 2000694.
[38] H. Chen, Z. Wu, M. Zheng, T. Liu, C. Yan, J. Lu, S. Zhang, Mater. Today, 2022, 52, 364.
[39] J. Guo, J. Liu, Nanoscale Adv. 2019, 1, 2104.
[40] W.G. Lim, S. Kim, C. Jo, J. Lee, Angew. Chem. Int. Ed. Engl. 2019, 58, 18746.70
[41] Y.V. Mikhaylik, J.R. Akridge, Polysulfide Shuttle Study in the Li/S Battery System, J. Electrochem. Soc. 2004, 151, A1969.
[42] C.J. Hart, M. Cuisinier, X. Liang, D. Kundu, A. Garsuch, L.F. Nazar, Chem. Commun. 2015, 51, 2308.
[43] L. Borchardt, M. Oschatz, S. Kaskel, Chemistry, 2016, 22, 7324.
[44] L. Kong, X. Chen, B.Q. Li, H.J. Peng, J.Q. Huang, J. Xie, Q. Zhang, Adv. Mater. 2018, 30, 1705219.
[45] Q. Pang, D. Kundu, M. Cuisinier, L.F. Nazar, Nat. Commun. 2014, 5, 4759.
[46] X. Liang, C. Hart, Q. Pang, A. Garsuch, T. Weiss, L.F. Nazar, Nat. Commun. 2015, 6, 5682.
[47] X. Liang, C.Y. Kwok, F. Lodi-Marzano, Q. Pang, M. Cuisinier, H. Huang, C.J. Hart, D. Houtarde, K. Kaup, H. Sommer, T. Brezesinski, J. Janek, L.F.Nazar, Adv. Energy Mater. 2016, 6, 1501636.
[48] E. Cha, M. Patel, S. Bhoyate, V. Prasad, W. Choi, Nanoscale Horiz. 2020, 5, 808.
[49] O. Sapunkov, V. Pande, A. Khetan, C. Choomwattana, V. Viswanathan, Transl. Mater. Res. 2015, 2, 045002.
[50] H. Wang, M. Zhang, Q. Lv, Water, 2019, 11, 781.
[51] B. Bao, J. Liu, H. Xu, B. Liu, K. Zhang, Z. Jin, RSC Adv. 2017, 7, 8589.
[52] T. Fujii, F. De Groot, G. Sawatzky, F. Voogt, T. Hibma, K. Okada, Phys. Rev. B 1999, 59, 3195.
[53] X. Zheng, Y. Zhang, H. Liu, D. Fu, J. Chen, J. Wang, C. Zhong, Y. Deng, 71X. Han, W. Hu, Small, 2018, 14, 1803666.
[54] D.D. La, J.M. Patwari, L.A. Jones, F. Antolasic, S.V. Bhosale, ACS Omega,2017, 2, 218.
[55] Y. Zhu, W. Zhou, Y. Chen, J. Yu, M. Liu, Z. Shao, Adv. Mater. 2015, 27,7150.
[56] G. Zhang, Z.-W. Zhang, H.-J. Peng, J.-Q. Huang, Q. Zhang, Small Methods, 2017, 1, 1700134.
[57] X. Xu, C. Niu, M. Duan, X. Wang, L. Huang, J. Wang, L. Pu, W. Ren, C. Shi, J. Meng, B. Song, L. Mai, Nat. Commun. 2017, 8, 460.
[58] N. Qiu, H. Chen, Z. Yang, S. Sun, Y. Wang, Y. Cui, J. Alloys Compd. 2019, 777, 767.