| 研究生: |
李冠瑩 Li, Kuan-Ying |
|---|---|
| 論文名稱: |
肝細胞還原壓力與精胺丁二酸合成酶活性相關之研究 Relation of cytosolic reducing power to argininosuccinate synthetase activity in hepatocyte |
| 指導教授: |
謝淑珠
Shiesh, Shu-Chu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 醫學檢驗生物技術學系 Department of Medical Laboratory Science and Biotechnology |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 英文 |
| 論文頁數: | 92 |
| 中文關鍵詞: | 新生兒肝內膽汁淤積症 、成人第二型瓜胺酸血症 、精胺丁二酸合成酶 、還原壓力 |
| 外文關鍵詞: | NICCD, Type II citrullinemia, Argininosuccinate synthetase, Reducing power |
| 相關次數: | 點閱:202 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
精胺丁二酸合成酶(argininosuccinate synthetase, ASS)廣泛存在於人體內,尤其大量表現於肝臟與腎臟中。ASS在尿素循環、多胺(polyamine)及肌酸酐生合成中扮演重要的角色,也參與製造一氧化氮的精胺酸-瓜胺酸循環中。成人發作第二型瓜胺酸血症(adult-onset type II citrullinemia, CTLN2)的致病原因為位於粒線體內膜上維持胞內氧化還原平衡的天門冬胺酸-谷胺酸載體(檸檬酸)的缺乏,而且其肝臟中的ASS活性降低。然而,在另一檸檬酸缺乏的疾病:新生兒肝內膽汁淤積症(neonatal intrahepatic cholestasis caused by citrin deficiency, NICCD),病人肝臟ASS蛋白質含量差異大。NICCD患者常伴隨著代謝性異常的症狀,如半乳糖血症,而且一部分NICCD患者會在長大後發展為CTLN2,但目前原因尚不清楚。臨床上NICCD病人在使用無乳糖配方奶粉後,可以明顯改善他們的臨床症狀。先前已有研究指出,細胞培養在含有半乳糖的培養基中會使細胞內還原壓力增加。因此,本研究目的為探討肝細胞培養於非葡萄糖培養基的代謝壓力及ASS變化。首先建立使用液相層析串聯質譜儀(liquid chromatography-tandem mass spectrometry, LC-MS/MS) 測定ASS活性、以及精胺酸與其代謝物的方法;探討半乳糖、果糖與低濃度葡萄糖(9 mM葡萄糖)對於有無檸檬酸抑制之肝細胞中細胞狀態、ASS活性、細胞內還原壓力以及精胺酸代謝的變化。此外,我們也嘗試周邊淋巴球ASS活性的測定,並與肝臟ASS活性做對照。我們利用小鼠肝細胞AML12,經Slc25a13-shRNA轉染以抑制檸檬酸表現,並以含有半乳糖、果糖或低濃度之葡萄糖的培養基進行培養。培養在半乳糖、果糖或低濃度葡萄糖培養之肝細胞,其ASS活性會降低(154.7, 140.0 and 159.8 v.s 203.1 mU/g)、培養基上清液乳酸對丙酮酸比值增加(64.5, 63.7 and 101.1 v.s 53.3),而且細胞質中NADH濃度升高(44.6, 40.8 and 52.0 v.s 22.5 nmol/g)。經西方墨點法測量發現檸檬酸的抑制並不影響ASS蛋白質量。然而,檸檬酸抑制的肝細胞培養在半乳糖、果糖或9 mM葡萄糖中,其粒線體膜電位會降低、ASS活性降低、乳糖對丙酮酸比值增加,且NADH濃度升高。這些細胞再給予過氧化氫的刺激會造成細胞存活率下降,而且,培養在半乳糖、果糖或低濃度葡萄糖中會使肝細胞對過氧化氫的傷害有加劇的現象。而我們也發現,乳酸對丙酮酸比值與ASS活性呈現負相關(r=-0.647, p<0.001)。在代謝變化的部分,給予細胞不同含糖的培養基中,我們發現細胞內精胺酸及賴胺酸不會受影響;但是,asymmetry dimethylarginine (ADMA)、symmetry dimethylarginine (SDMA)及瓜胺酸則會上升。給予丙酮酸或甘胺酸皆可以有效回復ASS活性;而N-乙醯基半胱胺酸、丙酮酸或甘胺酸也都可以回復NADH濃度(p<0.05)以及經過過氧化氫刺激對肝細胞加劇的傷害和存活率。本研究中建立之ASS活性測定方法可以成功應用於活化之周邊淋巴球,參考活性範圍為88 ± 24 mU/g。總結,本研究已建立使用LC-MS/MS測定ASS活性以及精胺酸相關代謝之方法,其結果顯示肝細胞在非葡萄糖培養基內,其還原壓力會上升,ASS活性會下降;而給予丙酮酸、甘胺酸或N-乙醯基半胱胺酸可以有效回復。
Argininosuccinate synthetase (ASS) is a ubiquitous enzyme with most abundant levels in liver and kidney. ASS plays a key role in pathways of urea cycle, polyamine synthesis, creatinine synthesis and arginine-citrulline cycle for NO production. Decreased liver-specific ASS activity was found in adult-onset type II citrullinemia (CTLN2) patients, which is due to the deficiency of citrin, an aspartate-glutamate carrier on the inner membrane of mitochondria to maintain cellular redox states. However, ASS activity was at variable levels in neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD). Metabolic disorders, such as galactosemia, are shown in NICCD patients. Some NICCD patients progress to CTLN2 decades later with unknown mechanism. Lactose-restricted formula improved clinical symptoms in NICCD patients. Moreover, increased cytosolic reducing power was found in cells grown in galactose-containing culture medium. Therefore, this study aimed to establish two liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods for the measurements of ASS activity, and arginine and its related metabolites, and to investigate the impact of galactose, fructose and low glucose (9 mM glucose) on reducing power, ASS activity and cellular stress in primary hepatocytes with or without citrin-knockdown. In addition, we examined the feasibility of ASS activity measurement in peripheral lymphocytes, and the comparison with liver ASS activity. Mice hepatocytes, AML12, were transfected with Slc25a13-shRNA to knockdown citrin and cultured in medium with or without galactose, fructose or low glucose. Decreased ASS specific activity was found in hepatocytes cultured in galactose- (154.7 ± 8.0 mU/g), fructose- (140.0 ± 9.2 mU/g) or low glucose-containing medium (159.8 ± 11.4 mU/g), compared with 18 mM glucose medium (203.1 ± 3.0 mU/g). Increased lactate/pyruvate ratio in culture media was also found in 9 mM glucose + 9 mM galactose or fructose, or 9 mM glucose only (64.5, 63.7 and 101.1 v.s 53.3), as well as cytosolic NADH concentrations (44.6, 40.8 and 52.0 v.s 22.5 nmol/g). Citrin knockdown did not alter ASS protein levels measured by western bloting. However, glucose insufficient culture medium caused impaired mitochondrial membrane potential (MMP) in citrin-KD cells, as well as the decreased ASS activity, increased lactate/pyruvate ratio and increased NADH concentration. The above changes were similar with AML12 cells without citrin-KD. Moreover, hepatocytes cultured in glucose insufficient medium displayed increased degree of vulnerability to H2O2, as indicated by decreased MMP and cell viability. The lactate/pyruvate ratio and ASS activity showed a negative correlation (r=-0.647, p<0.001). Despite of the changes in ASS activity and cytosolic reducing power, the intracellular arginine and lysine did not change, but citrulline, asymmetry dimethylarginine (ADMA), and symmetry dimethylarginine (SDMA) were increased in AML12 cultured with glucose insufficient medium. Glucose insufficiency-induced changes of ASS activity were restored by the treatment of pyruvate or glycine, and the enhanced NADH, impaired MMP reduced cell viability were restored by N-acetylcysteine (NAC), pyruvate or glycine. The ASS1 mRNA expression did not change in AML12 cells cultured with glucose insufficient medium. The established ASS activity measurement was applied to activated lymphocytes, with 88 ± 24 mU/g in normal subjects (N=10). Taken together, the method for measuring ASS activity by LC-MS/MS was established. Our results indicate that glucose-insufficiency induced reducing power which may be associated with the decrease of ASS activity from NICCD progression to CTLN2, and pyruvate, glycine or NAC treatment would reverse the changes.
1. Annie H, Carole BL, Alain F, Sylvie R, Alain L. Argininosuccinate synthetase from the urea cycle to the citrulline–NO cycle. Eur J Biochem 2003;270:1887-1899.
2. Ratner S. Argininosuccinate synthetase of bovine liver: chemical and physical
properties. Proc Natl Acad Sci USA 1982;79:5197-5199.
3. Cohen NS, Kuda A. Argininosuccinate synthetase and argininosuccinate lyase are localized around mitochondria: an immunocytochemical study. J Cell Biochem 1996;60:334-340.
4. Flam BR, Hartmann PJ, Harrell-Booth M, Solomonson LP, Eichler DC. Caveolar localization of arginine regeneration enzymes, argininosuccinate synthase, and lyase, with endothelial nitric oxide synthase. Nitric Oxide 2001;5:187-197.
5. Mummedy S, Intan NMZ, KNS. Sirajudeen, Zulkarnain M, Chandran G. Immunohistochemical Analysis of Citrulline-Nitric Oxide Cycle Enzymes and Glutamine Synthetase in Different Regions of Brain in Epilepsy Rat Model. Neurosci Med 2014;5:131-138.
6. Haines RJ, Pendleton LC, Eichler DC. Argininosuccinate synthase: at the center of arginine metabolism. Int J Biochem Mol Biol 2011;2:8-23.
7. Dimitris T, Anna-Maria K, Costas TNP, Christodoulos S. The Role of Nitric Oxide on Endothelial Function. Curr vasc pharmacol 2012;10:1-18.
8. Ulbright C, Snodgrass PJ. Coordinate induction of the urea cycle enzymes by glucagon and dexamethasone is accomplished by three different mechanisms. Arch Biochem Biophys 1993;301:237-243.
9. Morris SM, Jr., Moncman CL, Rand KD, Dizikes GJ, Cederbaum SD, O'Brien WE. Regulation of mRNA levels for five urea cycle enzymes in rat liver by diet, cyclic AMP, and glucocorticoids. Arch Biochem Biophys 1987;256:343-353.
10. Nebes VL, Morris SM, Jr. Regulation of messenger ribonucleic acid levels for five urea cycle enzymes in cultured rat hepatocytes. Requirements for cyclic adenosine monophosphate, glucocorticoids, and ongoing protein synthesis. Mol Endocrinol 1988;2:444-451.
11. Snodgrass PJ, Lin RC, Muller WA, Aoki TT. Induction of urea cycle enzymes of rat liver by glucagon. J Biol Chem 1978;253:2748-2753.
12. Grofte T, Jensen DS, Gronbaek H, Wolthers T, Jensen SA, Tygstrup N, Vilstrup H. Effects of growth hormone on steroid-induced increase in ability of urea synthesis and urea enzyme mRNA levels. Am J Physiol 1998;275:E79-86.
13. Husson A, Guechairi M, Fairand A, Bouazza M, Ktorza A, Vaillant R. Effects of pancreatic hormones and glucocorticosteroids on argininosuccinate synthetase and argininosuccinase activities of rat liver during the perinatal period: in vivo and in vitro studies. Endocr 1986;119:1171-1177.
14. Saheki T, Katsunuma T, Sase M. Regulation of urea synthesis in rat liver. Changes of ornithine and acetylglutamate concentrations in the livers of rats subjected to dietary transitions. J Biochem 1977;82:551-558.
15. Snodgrass PJ, Lin RC. Induction of urea cycle enzymes of rat liver by amino acids. J Nutr 1981;111:586-601.
16. Zhao Y, Zhang J, Li H, Li Y, Ren J, Luo M, Zheng X. An NADPH sensor protein (HSCARG) down-regulates nitric oxide synthesis by association with argininosuccinate synthetase and is essential for epithelial cell viability. J Biol Chem 2008;283:11004-11013.
17. Imami K, Sugiyama N, Kyono Y, Tomita M, Ishihama Y. Automated phosphoproteome analysis for cultured cancer cells by two-dimensional nanoLC-MS using a calcined titania/C18 biphasic column. Anal Sci 2008;24:161-166.
18. Corbin KD, Pendleton LC, Solomonson LP, Eichler DC. Phosphorylation of argininosuccinate synthase by protein kinase A. Biochem Biophys Res Commun. 2008;377:1042-1046.
19. Ricci JH, Karen DC, Laura CP, Duane CE. Protein kinase Cα phosphorylates a novel argininosuccinate synthase site at serine 328 during calcium dependent stimulation of endothelial nitric-oxide synthase in vascular endothelial cells. J Biol Chem 2012;287:26168-26176.
20. Hao G, Xie L, Gross SS. Argininosuccinate synthetase is reversibly inactivated by S-nitrosylation in vitro and in vivo. J Biol Chem 2004;279:36192-36200.
21. Delage B, Fennell DA, Nicholson L, McNeish I, Lemoine NR, Crook T, Szlosarek PW. Arginine deprivation and argininosuccinate synthetase expression in the treatment of cancer. Int J Cancer 2010;126:2762-2772.
22. Delage B, Luong P, Maharaj L, O'Riain C, Syed N, Crook T, Hatzimichael E, Papoudou-Bai A, Mitchell TJ, Whittaker SJ, Cerio R, Gribben J, Lemoine N, Bomalaski J, Li CF, Joel S, Fitzgibbon J, Chen LT, Szlosarek PW. Promoter methylation of argininosuccinate synthetase-1 sensitises lymphomas to arginine deiminase treatment, autophagy and caspase-dependent apoptosis. Cell Death Dis 2012;3:e342-350.
23. Syed N, Langer J, Janczar K, Singh P, Lo Nigro C, Lattanzio L, Coley HM, Hatzimichael E, Bomalaski J, Szlosarek P, Awad M, O'Neil K, Roncaroli F, Crook T. Epigenetic status of argininosuccinate synthetase and argininosuccinate lyase modulates autophagy and cell death in glioblastoma. Cell Death Dis 2013;4;3:e458-468.
24. Szlosarek PW, Grimshaw MJ, Wilbanks GD, Hagemann T, Wilson JL, Burke F, Stamp G, Balkwill FR. Aberrant regulation of argininosuccinate synthetase by TNF-alpha in human epithelial ovarian cancer. Int J Cancer 2007;121:6-11.
25. Windmueller HG, Spaeth AE. Source and fate of circulating citrulline. Am J Physiol 1981;241:E473-480.
26. Guoyao Wu, Fuller WB, Teresa AD, Sung WK, Peng Li, J. Marc R, M. Carey Satterfield, Stephen BS, Thomas ES, Yulong Yin. Arginine metabolism and nutrition in growth, health and disease. Amino Acids 2009;37:153-168.
27. Abedini S, Meinitzer A, Holme I, März W, Weihrauch G, Fellstrøm B, Jardine A, Holdaas H. Asymmetrical dimethylarginine is associated with renal and cardiovascular outcomes and all-cause mortalilty in renal transplant recipients. Kidney Int 2012;77:44-50.
28. Böger RH, Sullivan LM, Schwedhelm E, Wang TJ, Maas R, Benjamin EJ, Schulze F, Xanthakis V, Benndorf RA, Vasan RS. Plasma asymmetric dimethylarginine and incidence of cardiovascular disease and death in the community. Circulation 2009;119:1592-1600.
29. Edzard S, Rainer HB. The role of asymmetric and symmetric dimethylarginines in renal disease. Nat Rev Nephrol 2011;7:275-285.
30. McMurray WC, Mohyuddin F, Rossiter RJ, Rathbun JC, Valentine GH, Koegler SJ, Zarfas DE. Citrullinuria, a new amino aciduria associated with mental retardation. Lancet 1962;279:138.
31. Beaudet AL, O'Brien WE, Bock HG, Freytag SO, Su TS. The human argininosuccinate synthetase locus and citrullinemia. Adv Human Genet 1986;15:161-196.
32. Song YZ, Deng M, Chen FP, Wen F, Guo L, Cao SL, Gong J, Xu H, Jiang GY, Zhong L, Kobayashi K, Saheki T, Wang ZN. Genotypic and phenotypic features of citrin deficiency: five-year experience in a Chinese pediatric center. Int J Mol Med. 2011;28:33-40.
33. Serrano M, Martins C, Perez-Duenas B, Gomez-Lopez L, Murgui E, Fons C, Garcia-Cazorla A, Artuch R, Jara F, Arranz JA, Haberle J, Briones P, Campistol J, Pineda M, Vilaseca MA. Neuropsychiatric manifestations in late-onset urea cycle disorder patients. J Child Neurol 2010;25:352-358.
34. Ohura T, Kobayashi K, Abukawa D, Tazawa Y, Aikawa J, Sakamoto O, Saheki T, Iinuma K. A novel inborn error of metabolism detected by elevated methionine and/or galactose in newborn screening: neonatal intrahepatic cholestasis caused by citrin deficiency. Eur J Pediatr 2003;162:317-322.
35. Ohura T, Kobayashi K, Tazawa Y, Abukawa D, Sakamoto O, Tsuchiya S, Saheki T. Clinical pictures of 75 patients with neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD). J Inherit Metab Dis 2007;30:139-144.
36. Kobayashi K, Horiuchi M, Saheki T. Pancreatic secretory trypsin inhibitor as a diagnostic marker for adult-onset type II citrullinemia. Hepatology 1997;25:1160-1165.
37. Yasuda T, Yamaguchi N, Kobayashi K, Nishi I, Horinouchi H, Jalil MA, Li MX, Ushikai M, Iijima M, Kondo I, Saheki T. Identification of two novel mutations in the SLC25A13 gene and detection of seven mutations in 102 patients with adult-onset type II citrullinemia. J Hum Genet 2000;107:537-545.
38. Saheki T, Kobayashi K. Mitochondrial aspartate glutamate carrier (citrin) deficiency as the cause of adult-onset type II citrullinemia (CTLN2) and idiopathic neonatal hepatitis (NICCD). J Hum Genet 2002;47:333-341.
39. Ikeda S, Kawa S, Takei Y, Yamamoto K, Shimojo H, Tabata K, Kobayashi K, Saheki T. Chronic pancreatitis associated with adult-onset type II citrullinemia: clinical and pathologic findings. Ann Intern Med 2004;141:W109-110.
40. Imamura Y, Kobayashi K, Shibatou T, Aburada S, Tahara K, Kubozono O, Saheki T. Effectiveness of carbohydrate-restricted diet and arginine granules therapy for adult-onset type II citrullinemia: a case report of siblings showing homozygous SLC25A13 mutation with and without the disease. Hepatol Res 2003;26:68-72.
41. Komatsu M, Yazaki M, Tanaka N, Sano K, Hashimoto E, Taker YI, Song YZ, Tanaka E, Kiyosawa K, Saheki T, Aoyama T, Kobayashi K. Citrin deficiency as a cause of chronic liver disorder mimicking non-alcoholic fatty liver disease. J Hepatol 2008;49:810-820.
42. Fukumoto K, Sumida Y, Yoshida N, Sakai K, Kanemasa K, Itoh Y, Mitsufuji S, Kataoka K, Okanoue T. A case of adult-onset type II citrullinemia having a liver histology of nonalcoholic steatohepatitis (NASH). Nihon Shokakibyo Gakkai Zasshi 2008;105:244-251.
43. Saheki T, Kobayashi K, Iijima M, Horiuchi M, Begum L, Jalil MA, Li MX, Lu YB, Ushikai M, Tabata A, Moriyama M, Hsiao KJ, Yang Y. Adult-onset type II citrullinemia and idiopathic neonatal hepatitis caused by citrin deficiency: involvement of the aspartate glutamate carrier for urea synthesis and maintenance of the urea cycle. Mol Genet Metab 2004;81:20:26.
44. Saheki T, Kobayashi K, Terashi M, Ohura T, Yanagawa Y, Okano Y, Hatttori T, Fujimoto H, Mutoh K, Kizaki Z, Inui A. Reduced carbohydrate intake in citrin-deficient subjects. J Inherit Metab Dis 2008;31:386-394.
45. Saheki T, Iijima M, Li MX, Kobayashi K, Horiuchi M, Ushikai M, Okumura F, Meng XJ, Inoue I, Tajima A, Moriyama M, Eto K, Kadowaki T, Sinasac DS, Tsui LC, Tsuji M, Okano A, Kobayashi T. Citrin/mitochondrial glycerol-3-phosphate dehydrogenase double knock-out mice recapitulate features of human citrin deficiency. J Biol Chem 2007;282:25041-25052.
46. Saheki T, Inoue K, Ono H, Tushima A, Katsura N, Yokogawa M, Yoshidumi Y, Kuhara T, Ohse M, Eto K, Kadowaki T, Sinasac DS, Kobayashi K. Metabolomic analysis reveals hepatic metabolite perturbations in citrin/mitochondrial glycerol-3-phosphate dehydrogenase double-knockout mice, a model of human citrin deficiency. Mol Genet Metab. 2011;104:492-500.
47. Yazaki M, Takei Y, Kobayashi K, Saheki T, Ikeda S. Risk of worsened encephalopathy after intravenous glycerol therapy in patients with adult-onset typeII citrullinemia (CTLN2). Intern Med 2005;44:188-195.
48. Fukushima K, Yazaki M, Nakamura M, Tanaka N, Kobayashi K, Saheki T, Takei H, Ikeda, S. Conventional diet therapy for hyperammonemia is risky in the treatment of hepatic encephalopathy associated with citrin deficiency. Intern Med 2010;49:243-247.
49. Saheki T, Kobayashi K, Iijima M, Horiuchi M, Begum L, Jalil MA, Li MX, Lu YB, Ushikai M, Tabata A, Moriyama M, Hsiao KJ, Yang Y. Adult-onset type II citrullinemia and idiopathic neonatal hepatitis caused by citrin deficiency: involvement of the aspartate glutamate carrier for urea synthesis and maintenance of the urea cycle. Mol Genet Metab 2004;81 Suppl 1:S20-26.
50. Saheki T, Kobayashi K, Iijima M, Nishi I, Yasuda T, Yamaguchi N, Gao HZ, Jalil MA, Begum L, Li MX. Pathogenesis and pathophysiology of citrin (a mitochondrial aspartate glutamate carrier) deficiency. Metab Brain Dis 2002;17:335-346.
51. Brusilow SW, Horwich AL. Urea cycle enzymes. In: Valle D, Beaudet AL, Vogelstein B, Kinzler KW, Antonarakis SE, Ballabio A. The Online Metabolic and molecular bases of inherited disease (OMMBID). Availableonline. 2006. Accessed 1-17-14.
52. Yoon HR, Lee KR, Kim H, Kang S, Ha Y, Lee DH. Tandem mass spectrometric analysis for disorders in amino, organic and fatty acid metabolism: two year experience in South Korea. Southeast Asian J Trop Med Public Health 2003;34:115-120.
53. Niu DM, Chien YH, Chiang CC, Ho HC, Hwu WL, Kao SM, Chiang SH, Kao CH, Liu TT, Chiang H, Hsiao KJ. Nationwide survey of extended newborn screening by tandem mass spectrometry in Taiwan. J Inherit Metab Dis 2010;33 Suppl 2:S295-305.
54. Kobayashi K, Bang Lu Y, Xian Li M, Nishi I, Hsiao KJ, Choeh K, Yang Y, Hwu W, Reichardt J, Palmier F, Okano Y, Saheki T. Screening of nine SLC25A13 mutations: their frequency in patients with citrin deficiency and high carrier rates in Asian populations. Mol Genet Metab 2003;80:356-359
55. Lu YB, Kobayashi K, Ushikai M, Tabata A, Iijima M, Li MX, Lei L, Kawabe K, Taura S, Yang Y, Liu TT, Chiang SH, Hsiao KJ, Lau YL, Tsui LC, Lee DH, Saheki T. Frequency and distribution in East Asia of 12 mutations identified in the SLC25A13 gene of Japanese patients with citrin deficiency. J Hum Genet 2005;50:338-346.
56. Lin JT, Hsiao KJ, Chen CY, Wu CC, Lin SJ, Chou YY, Shiesh SC. High resolution melting analysis for the detection of SLC25A13 gene mutations in Taiwan. Clin Chim Acta 2011;412:460-465.
57. Kobayashi K, Saheki T. Molecular basis of citrin deficiency. Seikagaku 2004;76:1543-1559.
58. Dimmock D, Kobayashi K, Iijima M, Tabata A, Wong LJ, Saheki T, Lee B, Scaglia F. Citrin deficiency: a novel cause of failure to thrive that responds to a high-protein, low-carbohydrate diet. Pediatrics 2007;119:773-777
59. Fiermonte G, Parisi G, Martinelli D, De Leonardis F, Torre G, Pierri CL, Saccari A, Lasorsa FM, Vozza A, Palmieri F, Dionisi-Vici C. A new Caucasian case of neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD): a clinical, molecular, and functional study. Mol Genet Metab 2011;104:501-506.
60. Ko JM, Kim GH, Kim JH, Kim JY, Choi JH, Ushikai M, Saheki T, Kobayashi K, Yoo HW. Six cases of citrin deficiency in Korea. Int J Mol Med 2007;20:809-815.
61. Giuseppe F, Derek S, Eleonora P, Philip JL, Steve K, Ferdinando P, Robin HL. An adult with type 2 citrullinemia presenting in Europe. N Engl J Med 2008;358:1408-1409.
62. Human Gene Mutation Database. http://www.hgmd.cf.ac.uk/ac/index.php [accessed July 2014].
63. Chen R, Wang XH, Fu HY, Zhang SR, Abudouxikuer K, Saheki T, Wang JS. Different regional distribution of SLC25A13 mutations in Chinese patients with neonatal intrahepatic cholestasis. World J Gastroenterol 2013;19:4545-51.
64. Tazawa Y, Kobayashi K, Ohura T, Abukawa D, Nishinomiya F, Hosoda Y, Yamashita M, Nagata I, Kono Y, Yasuda T, Yamaguchi N, Saheki T. Infantile cholestatic jaundice associated with adult-onset type II citrullinemia. J Pediatr 2001;138:735-740.
65. Ghyczy M, Boros M. Electrophilic methyl groups present in the diet ameliorate pathological states induced by reductive and oxidative stress: a hypothesis. Brit J Nutr 2001;85:409-414.
66. Arnt-Ramos LR, O'Brien WE, Vincent SR. Immunohistochemical localization of argininosuccinate synthetase in the rat brain in relation to nitric oxide synthase-containing neurons. Neurosci 1992;51:773–789.
67. Wu G, Morris SM., Jr. Arginine metabolism: nitric oxide and beyond. Biochem J 1998;336:1–17.
68. Hayasaka K, Numakura C, Toyota K, Kimura T. Treatment with lactose (galactose)-restricted and medium-chain triglyceride-supplemented formula for neonatal intrahepatic cholestasis caused by citrin deficiency. JIMD Rep 2012;2:37-44.
69. Kiyoshi H, Chikahiko N, Kentaro T, Satoru K, Hisayoshi W, Hiroaki H, Hiroshi T, Yoshimi T, Mieko K, Mitsunori Y, Hiroyuki N, Takeo K, Yoshiyuki U, Masatomo M. Medium-chain triglyceride supplementation under a low-carbohydrate formula is a promising therapy for adult-onset type II citrullinemia. Mol Genet Metab Rep 2014;1:42-50.
70. Kogure T, Kondo Y, Kakazu E, Ninomiya M, Kimura O, Kabayashi N, Shimosegawa T. Three cases of adult-onset type II citrullinemia treated with different therapies: Efficacy of sodium pyruvate and low-carbohydrate diet. Hepatol Res 2014;44:707-712.
71. Silva MA, Navarro AM, Lourenco CM, Sicchieri JMF. Carbohydrate counting in the nutritional treatment of Citrullinemia Type II: Case report. e-SPEN J 2013;8:e256-259.
72. Saheki T, Inoue K, Tushima A, Mutoh K, Kobayashi K. Citrin deficiency and current treatment concepts. Mol Genet Metab 2010;100 Suppl 1:S59-64.
73. Enns GM, Berry SA, Berry GT, Rhead WJ, Brusilow SW, Hamosh A. Survival after Treatment with Phenylacetate and Benzoate for Urea-Cycle Disorders. N Engl J Med 2007;356:2282-2292.
74. Gallagher JV, Rifai N, Conry J, Soldin SJ. Role of the clinical laboratory in evaluation of argininosuccinate lyase deficiency. Clin Chem 1991;37:1384-1389.
75. Batshaw ML, MacArthur RB, Tuchman M. Alternative pathway therapy for urea cycle disorders: twenty years later. J Pediatr 2001;138:S46-54.
76. Jaeschke H, Kleinwaechter C, Wendel A. NADH-dependent reductive stress and ferritin-bound iron in allyl alcohol-induced lipid peroxidation in vivo: the protective effect of vitamin E. Chem Biol Interact 1992;81:57-68.
77. Moriyama M, Li MX, Kobayashi K, Sinasac DS, Kannan Y, Iijima M, Horiuchi M, Tsui LC, Tanaka M, Nakamura Y, Saheki T. Pyruvate ameliorates the defect in ureogenesis from ammonia in citrin-deficient mice. J Hepatol 2006;44:930-938.
78. Takenaka K, Yasuda I, Araki H, Naito T, Fukutomi Y, Ohnishi H, Yamakita N, Hasegawa T, Sato H, Shimizu Y, Matsunami H, Moriwaki H. Type II citrullinemia in an elderly patient treated with living related partial liver transplantation. Intern Med 2000;39:553-558.
79. Maestri NE, Hauser ER, Bartholomew D, Brusilow SW. Prospective treatment of urea cycle disorders. J Pediatr 1991;119:923-928.
80. Kimura N, Kubo N, Narumi S, Toyoki Y, Ishido K, Kudo D, Umehara M, Yokoshi Y, Hamakada K. Liver transplantation versus conservative treatment for adult-onset type II citrullinemia: our experience and a review of the literature. Transplant Proc 2013;45:3432-3437.
81. Ikeda S, Yazaki M, Takei Y, Ikegami T, Hashikura Y, Kawasaki S, Iwai M, Kobayashi K, Saheki T. Type II (adult onset) citrullinaemia: clinical pictures and the therapeutic effect of liver transplantation. J Neurol Neurosurg Psychiatry 2001;71:663-670.
82. Saito C, Zwingmann C, Jaeschke H. Novel mechanisms of protection against acetaminophen hepatotoxicity in mice by glutathione and N-acetylcysteine. Hepatology 2010;51:246-254.
83. Christine K, Rachel MT, Paul C, Sanjay B, Giorgina MV, and Anil D. Safety and efficacy of N-acetylcysteine in children with non-acetaminophen-induced acute liver failure. Liver Transplant 2008;14:25-30.
84. Lai KY, Ng WY, Osburga Chan PK, Wong KF, Cheng F. High-dose N-acetylcysteine therapy for novel H1N1 influenza pneumonia. Ann Intern Med 2010;152:687-688.
85. Millar AB, Pavia D, Agnew JE, Lopez-Vidriero MT, Lauque D, Clarke SW. Effect of oral N-acetylcysteine on mucus clearance. Br J Dis Chest 1985;79:262-266.
86. Xia Z, Liu M, Wu Y, Sharma V, Luo T, Ouyang J, McNeill JH. N-acetylcysteine attenuates TNF-alpha-induced human vascular endothelial cell apoptosis and restores eNOS expression. Eur J Pharmacol. 2006; ;550:134-142.
87. Uraz S, Tahan G, Aytekin H, Tahan V. N-acetylcysteine expresses powerful anti-inflammatory and antioxidant activities resulting in complete improvement of acetic acid-induced colitis in rats. Scand J Clin Lab Invest. 2013;73:61-66.
88. Galicia-Moreno M, Faravi L, Muriel P. Antifibrotic and antioxidant effects of N-acetylcysteine in an experimental cholestatic model. Eur J Gastron Hepat 2012;24:179-185.
89. Haber CA, Lam TK, Yu Z, Gupta N, Goh T, Bogdanovic E, Giacca A, Fantus IG. N-acetylcysteine and taurine prevent hyperglycemia-induced insulin resistance in vivo: possible role of oxidative stress. Am J Physiol Endocrinol Metab 2003;285:E744-753.
90. Reza BS, Mark RH, Andrei VA. N-acetylcysteine (NAC) in neurological disorders: mechanisms of action and therapeutic opportunities. Br Behav 2014;4:108-122.
91. Squires RH, Dhaean A, Alonso E, Narkewicz MR, Shneider BL, Rodriguez-Baez N, Olio DD, Karpen S, Bucuvalas J, Lobritto S, Rand E, Rosenthal P, Horslen S, Ng V, Subbarao G, Kerkar N, Rudnick D, Lopez MJ, Schwarz K, Romero R, Elisofon S, Doo E, Robuck PR, Lawlor S, Belle SH. Intravenous N-acetylcysteine in pediatric patients with nonacetaminophen acute liver failure: a placebo-controlled clinical trial. Hepatology 2013;57:1542-1549.
92. Nehru B, Kanwar SS. Modulation by N-acetylcysteine of lead-induced alterations in rat brain: reduced glutathione levels and morphology. Toxicol Mech Methods 2007;17:289-293.
93. Reddy PS, Rani GP, Sainath SB, Meena R, Supriya Ch. Protective effects of N-acetylcysteine against arsenic-induced oxidative stress and reprotoxicity in male mice. J Trace Elem Med Biol. 2011;25:247-253.
94. Zhong Z, Wheeler MD, Li X, Froh M, Schemmer P, Yin M, Bunzendaul H, Bradford B, Lemasters JJ. L-Glycine: a novel antiinflammatory, immunomodulatory, and cytoprotective agent. Curr Opin Clin Nutr Metab Care 2003;6:229-240.
95. Odara M, Nilza N, Maria T, Rajesh V, Maria L, Eliana M. Glycine supplementation reduces the severity of chemotherapy-induced oral mucositis in hamsters. Nat Sci 2013;5:972-978.
96. Den Eynden JV, Ali SS, Horwood N, Carmans S, Brone B, Hellings N, Steels P, Harvey RJ, Rigo JM. Glycine and glycine receptor signalling in non-neuronal cells. Front Mol Neurosci 2009;2:9.
97. Rivera CA, Bradford BU, Hunt KJ, Adachi Y, Schrum LW, Koop DR, Burchardt ER, Rippe RA, Thurman RG. Attenuation of CCl4-induced hepatic fibrosis by GdCl3 treatment or dietary glycine. Am J Physiol Gastrointest Liver Physiol 2001;208:G200-207.
98. Jacob T, Ascher E, Hingorani A, Kallakuri S. Glycine prevents the induction of apoptosis attributed to mesenteric ischemia/reperfusion injury in a rat model. Surgery 2003;134:457-466.
99. Lu Y, Zhang J, Ma B, Li K, Li X, Bai H, Yang Q, Zhu X, Ben J, Chen Q. Glycine attenuates cerebral ischemia/reperfusion injury by inhibiting neuronal apoptosis in mice. Neurochem Int 2012;61:649-58.
100. Chen CY, Wang BT, Wu ZC, Yu WT, Lin PJ, Tsai WL, Shiesh SC. Glycine ameliorates liver injury and vitamin D deficiency induced by bile duct ligation. Clin Chim Acta 2013;420:150-154.
101. Albert PC, Ralph EH, Marie AS, Angus ZL, Yi-ping G, Wilfred WL, Jennifer B, James T, and Charles HC. Simultaneous investigation of cardiac pyruvate dehydrogenase flux, Krebs cycle metabolism and pH, using hyperpolarized [1,2-13C2]pyruvate in vivo. NMR in Biomed 2012;25:305-311.
102. Sinasac DS, Moriyama M, Jalil MA, Begum L, Li MX, Iijima M, Horiuchi M, Robinson BH, Kobayashi K, Saheki T, Tsui LC. Slc25a13-knockout mice harbor metabolic deficits but fail to display hallmarks of adult-onset type II citrullinemia. Mol Cell Biol 2003;24:527-536.
103. Eiichi H, Takeshi T, Yuriko T, Sayumi F, Nobuaki M, Liyang W, Kyosuke U, and Yukio Y. A Molecular Mechanism of Pyruvate Protection against Cytotoxicity of Reactive Oxygen Species in Osteoblasts. Mol Pharmacol 2006;70:925-935.
104. Ojha S, Goyal S, Kumari S, Arya DS. Pyruvate attenuates cardiac dysfunction and oxidative stress in isoproterenol-induced cardiotoxicity. Experi Toxicol Patho 2012;64:393-399.
105. Amin F, David A, Malik Y. Ethyl pyruvate treatment mitigates oxidative stress damage in cultured trabecular meshwork cells. Mol Vis 2013;19:1304-1309.
106. Undurti ND. Pyruvate is an endogenous anti-inflammatory and anti-oxidant molecule. Med Sci Monit 2006;12:RA79-84.
107. Ryou MG, Liu R, Ren M, Sun J, Mallet RT, Yang SH. Pyruvate protects the brain against ischemia-reperfusion injury by activating the erythropoietin signaling pathway. Stroke 2012;43:1101-1107.
108. Mutoh K, Kurokawa K, Kobayashi K, Saheki T. Treatment of a citrin-deficient patient at the early stage of adult-onset type II citrullinemia with arginine and sodium pyruvate. J Inherit Metab Dis 2008;31:343-347.
109. Yazaki M, Kinoshita M, Ogawa S, Fujimi S, Matsushima A, Hineno A, Tazawa KI, Fukushima K, Kimura R, Yanagida M, Matsunaga H, Saheki T, Ikeda S. A 73-year-old patient with adult-onset type II citrullinemia successfully treated by sodium pyruvate and arginine. Clin Neurol Neurosurg 2013;115:1542-1545.
110. Jianhai D, Whitney C, Laura C, Jonathan D, Guy C.-K, Andrei OCc, Takeyori S, Viren G, Martin S, Jorgina S, and James B. H. Cytosolic reducing power preserves glutamate in retina. Proc Natl Acad Sci U S A 2013;110:18501-18506.
111. Barngrover D, Thomas J, Thilly WG. Thilly. High density mammalian cell growth in Leibovitz bicarbonate-free medium: effects of fructose and galactose on culture biochemistry. J Cell Set 1985;78:173-189.
112. Berry GT, Wehrli S, Reynolds R, Palmieri M, Frangos M, Williamson JR, Segal S. Elevation of erythrocyte redox potential linked to galactonate biosynthesis: Elimination by Tolrestat. Metabolism 1998;47:1423-1428.
113. Lisa DM, James H, James AD, Joseph DJ, Yvonne W. Circumventing the crabtree effect: replacing media glucose with galactose increases susceptibility of HepG2 cells to mitochondrial toxicants. Toxicol Sci 2007;97:539-547.
114. Thomas L, Dimitrios T, Nele K, Bernhard V, Anibh MD. Elevated plasma concentrations of the endogenous nitric oxide synthase inhibitor asymmetric dimethylarginine in citrullinemia. Metabolism 2006;55:1599-1603.
115. Hironori N, Hirokazu T, Tohru Y, Takashi M, Kei M, Tomoko T, Tomozumi T, Masaki K, Kunihiko K, Yoshiyuki O, Masaki T. Evaluation of endogenous nitric oxide synthesis in congenital urea cycle enzyme defects. Metabolism 2009;58:278-282.
116. Oksana L, Elaine BS, Arthur DB. Argininosuccinate synthetase activity in cultured human lymphocytes. Biochem Genet 1977;15:395-407.
校內:2024-12-31公開