| 研究生: |
簡伯任 Jian, Bo-Ren |
|---|---|
| 論文名稱: |
三價鈰配位聚合物的合成、結構、熱分析及磁性 Synthesis, Structures, Thermal Analyses and Magnetic Properties of Cerium(III) Coordination Polymers |
| 指導教授: |
許桂芳
Hsu, Kuei-Fang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 116 |
| 中文關鍵詞: | 配位聚合物 、開放性骨架 、水熱法合成 、鑭系 |
| 外文關鍵詞: | Coordination Polymer, Solvothermal Synthesis, Open framework, Lanthanide |
| 相關次數: | 點閱:79 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文利用溶劑熱法合成出五個具有孔洞骨架的鑭系配位聚合物,分別為[Ce2(H2O)2(C2O4)(CO3)2]•2H2O (1)、[Ce2(H2O)4(C2O4)(C4H4O4)2]•4H2O (2)、[Ce2(H2O)2(C4H4O4)3] (3)、[Ce2(H2O)2(C4H4O4)3]•H2O (4)及 NH4[Ce(H2O)(C2O4)(SO4)] (5)。
在結構1中,碳酸根配位基與鈰離子配位構成二維網狀結構,此網狀結構再藉由草酸根配位基支撐而構成三維骨架結構。在結構2中,丁二酸根配位基類似在結構1中碳酸根配位基的位置,此構成較開闊的網狀結構,然後再由草酸根配位基支撐而構成具有孔洞的骨架結構。在結構3和4中,其骨架是由丁二酸根配位基連接CeO8(H2O)多面體鏈而構成三維骨架結構。在結構5中,CeO8(H2O)多面體是藉由硫酸根配位基橋接構成一維直鏈,此直鏈再由草酸根配位基集結在一起而構成一開放骨架結構。結構1的脫水相〝[Ce2(H2O)2(C2O4)(CO3)2]〞及結構2的脫水相〝[Ce2(C2O4)(C4H4O4)2]〞仍維持結構的穩定。此外,這五個配位聚合物存在反鐵磁的行為。
Five new lanthanide coordination polymers adopting porous frameworks have been prepared by the solvothermal reactions, which are [Ce2(H2O)2(C2O4)(CO3)2]•2H2O (1), [Ce2(H2O)4(C2O4)(C4H4O4)2]•4H2O (2), [Ce2(H2O)2C4H4O4)3] (3), [Ce2(H2O)2(C4H4O4)3]•H2O (4) and NH4[Ce(H2O)(C2O4)(SO4)] (5). In 1, the carbonate ligands assemble with cerium ions to form a two-dimensional network. The networks are then pillared by oxalate ligands into a three-dimensional framework. In 2, succinate ligands resemble to the positions of carbonate ligands in 1 to form a related network. The network again pillar by the oxalate ligands into a porous polymeric framework. In 3 and 4, the frameworks are composed of CeO8(H2O) polyhedra chains, which are linked by succinate ligands into three-dimensional frameworks. In 5, CeO8(H2O) polyhedra are bridged through the sulfate ligands to form one-dimensional chains. The chains are fused together by the oxalate ligands into an open framework. The dehydrated phase of 〝[Ce2(H2O)2(C2O4)(CO3)2]〞 from 1 and 〝[Ce2(C2O4)(C4H4O4)2]〞 from 2 remain stability. Furthermore, antiferromagnetic behaviors exist in the five coordination polymers.
1.(a) M. E. Davis, Nature 2002, 417, 813.; (b) A. K. Cheemtham, G. Frey, T. Loiseau, Angew. Chem. Int. Ed. 1999, 38, 3268, (and the references therein).
2.S. Oliver, A. Kuperman, G. A. Ozin, Angew. Chem. 1998, 110, 48; Angew. Chem. Int. Ed. Engl. 1998, 37, 46.
3.(a) G. Frey, C. R. Acad. Sci. Ser. IIc, 1998, 1.; (b) G. Frey, J. Fluorine Chem., 1995, 72, 187, (and the references therein).
4.M. J. Rosseinsky, Microporous Mater. 2004, 73, 15, (and the references therein).
5.M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O’Keeffe, O. M. Yaghi, Science, 2002, 295, 469.
6.W. Clegg, D. R. Harbron, C. D. Homan, P. A. Hunt, I. R. Little, B. P. Straughan, Inorganica Chimica Acta, 1991, 186, 51.
7.O. Ohmori, M. Kawano, M. Fujita, Angew. Chem Int. Ed., 2005, 44, 1962.
8.J. S. Seo, D. Whang, H. Lee, S. I. Jum, J. Oh, Y. J. Jeon, K. Kim, Nature, 2000, 404, 982.
9.S.-i. Noro, S. Kitagawa, M. Kondo, K. Seki, Angew. Chem. Int. Ed., 2000, 39, 2082.
10.(a) W. Ouellette, M.-H. Yu, C. J. O’Connor, D. Hagrman, J. Zubieta, Angew. Chem. Int. Ed., 2006,45,3497.;(b) R. Vaidhyanathan, S. Natarajan, C. N. R. Rao, J. Solid State Chem. 2004, 177, 1444.
11.(a) G. Frey, Chem. Mater., 2001, 13, 3084.; (b) G. Frey, J. Solid State Chem., 2000, 152, 37, (and the references therein).
12.J. C. G. Bnzli, C. Piguet, Chem. Rev. 2002, 102, 1897, (and the references therein).
13.S.-L. Wang, J. W. Jr. Richardson, Z. Krystallogr. 1992, 202, 227.
14.G. D. Stucky, M. L. F. Phillids, T. E. Gier, Chem. Mater. 1989, 1, 492.
15.A. R. West, Solid State Chemistry and Its Applications, John Weiley & Sons, New York, 1984.
16.J. W. Johnson, A. J. Jacobson, Angew. Chem. Int. Ed. Engl. 1983, 22, 412.
17.A. Rabenau, Angew. Chem. Int. Ed. Engl. 1985, 24, 1026.
18.W. Cregg, Crystal Structure Determination, Oxford, New York, 1998.
19.M. F. Ladd, R. A. Palmer, Structure Determination by X-ray Crystallography, Plenum, New York, 1994.
20.(a) G. M. Sheldrick, SHELXTL-97, program for the Solution of Crystal Structures, University of Gttingen, Germany, 1997.;(b) G. M. Sheldrick, SHELXTL-97, program for the Refinement of Crystal Structures, University of Gttingen, Germany, 1997.
21.I. D. Brown, D. Altermatt, Acta Cryst. 1985, B41, 244.
22.(a) P. W. Selwood, Magnetochemistry, Interscience, New York, 78, 1956.;(b) F. E. Mabbs, D. J. Machin, Magnetism and Transition Metal Complexes, John wiley & Sons, New York, 5, 1973.
23.(a) H. Li, M. Eddaoudi, M. O’Keeffe, O. M. Yaghi, Nature 1999, 402, 276.;(b) M. Eddaoudi, D. B. Moler, H. Li, B. Chen, T. M. Reineke, M. O’Keeffe, O. M. Yaghi, Acc. Chem. Res. 2001, 34, 319.;(c) E. J. Cussen, J. B. Claridge, M. J. Rosseinsky, C. J. Kepert, J. Am. Chem. Soc., 2002, 124,9574.
24.C. N. R. Rao, S. Natarajan, R. Vaidhyanathan, Angew. Chem., Int. Ed. 2004, 43, 1466, (and the references therein).
25.(a) S. Romero, A. Mosset, J. C. Trombe, Eur. J. Solid State Inorg. Chem. 1997, 34, 209.;(b) M. Dan, G.. Gottereau, C. N. R. Rao, Solid State Sciences, 2005, 7, 437.;(c) P. Thomas, J. C. Trombe, J. Chem. Crystallogr. 2000, 30, 633.
26.L. J. Farrugia, Platon for Windows, University of Glasgow, 2005.
27.(a) S. Kitagawa, R Kitaura, S. Noro, Angew. Chem., Int. Ed. 2004, 43, 2334.; (b) M. Ruben, J. Rojo, F. J. Romero-Salguero, L. H. Uppadine, J. M. Lehn, Angew. Chem., Int. Ed. 2004, 43, 3644.;(c) O. M. Yaghi, M. O’Keeffe, N. W. Ockwig, H. K. Chae, M. Eddaoudi, J. Kim, Nature 2003, 423, 705.
28.(a) M. H. Cao, C. W. Hu, E. B . Wang, J. Am. Chem. Soc. 2003, 125, 11196.;(b) M. L. Tong, S. Kitagawa, H.-C. Chang, M. Ohba, Chem. Commun. 2004, 418.;(c) J. S. Seo, D. Wang, H. Lee, S. I. Jun, J. Oh, Y. J. Jeon, K. Kim, Nature 2000, 404, 982.;(d) T. M. Reineke, M. Eddaoudi, D. Moler, M. O’Keeffe, O. M. Yaghi, J. Am. Chem. Soc. 2000, 122, 4843.; (e) X. Zhao, B. Xiao, A. J. Fletcher, K. M. Thomas, D. Brandshaw, M. J. Rosseinsky, Science 2004, 306, 1012.
29.(a) X. L. Wang, C. Qin, E. B. Wang, Y. G. Li, C. W. Hu, L. Xu, Chem. Commun. 2004, 378.;(b) L. Carlucci, G. Ciani, , D. M. Proserpio, F. Porta, Angew. Chem., Int. Ed. 2003, 42, 317.;(c) M. Oh, G. B. Carpenter, D. A. Sweigart, Angew. Chem., Int. Ed. 2003, 42, 2026.
30.(a) C. Sere, F. Millange, S. Surbl, G. Frey, Angew. Chem. Int. Ed., 2004, 42, 6285.;(b) Y. Kim, M. Suh, D.-Y. Jung, Inorg. Chem., 2004, 43, 245.; (c) L. A. Borkowski, C. L. Cahill, Inorg. Chem. Commun. 2004, 7, 725.; (d) Z.-G. Sun, Y.-P. Ren, L.-S. Long, R.-B. Hung, L.-S. Zheng, Inorg. Chem. Commun., 2002, 5, 629.;(e) T. M. Reineke, M. Eddaoudi, M. Fehr, D. Kelley, O. M. Yaghi, J. Am. Chem. Soc., 1999, 121, 1651.
31.(a) F. Serpaggi, G. Frey, Micropor. Mater. 1999, 32, 311.;(b) F. Serpaggi, T. Luxbacher, A. K. Cheetham, G. Frey, J. Solid State Chem. 1999, 145, 580.;(c) M. Fleck, Z. Kristallogar, New Cryst. Struct. 2002, 217, 569.;(d) J. Perles, M. Iglesias, C. Ruiz-Valero, N. Snejko, Chem. Commun. 2003, 346.;(e) J. Perles, M. Iglesias, C. Ruiz-Valero, N. Snejko, J. Mater. Chem. 2004, 2683.;(f) G.-H. Cui, J.-R. Li, R.-H. Zhang, X.-H. Bu, J. Mole. Struct., 2005, 740, 187.
32.E. Antic-Fidancev, F. Serpaggi, G. Frey, J. Alloys Compd. 2002, 340, 88.
33.P. M. Forster, N. Stock, A. K. Cheetham, Angew. Chem. Int. Ed. 2005, 44, 7608.
34.(a) O. M. Yaghi, H. Li, C. Davis, D. Richardson, T. L. Groy, Acc. Chem. Res., 1998, 31, 474.;(b) B. Moulton, M. J. Zaworotko, Chem. Rev., 2001, 101, 1629.;(c) W. Lin, Z. Wang, L. Ma, J. Am. Chem. Soc., 1999, 121, 11249.;(d) O. Kahn, Acc. Chem. Res., 2000, 33, 647.
35.(a) S. M. Kuznicki, V. A. Bell, S. Nair, H. W. Hillhouse, R. M. Jacubinas, C. M. Braunbarth, B. H. Toby, M. Tsapatsis, Nature, 2001, 412, 720.;(b) S. Christian, P. Fabienne, G. Nicole, G. Frey, Chem. Mater., 2004, 16, 1177.;(c) Y.-Q. Sun, J. Zhang, Y.-M. Cheng, G.-Y. Yang, Angew. Chem., Int. Ed., 2005, 44, 5814.
36.D. W. Breck, Zeolite Molecular Sieves, Wiley, New York, 1974.;(b) W. M. Meier, D. H. Oslen, C. Baerlocher, Atlas of Zeolite Structure Types, Elsevier, London, 1996.
37.(a) C. N. R. Rao, S. Natarajan, A. Choudhury, S. Neeraj, A. A. Ayi, Acc. Chem. Res., 2001, 34, 80.;(b) G.-Y. Yang, S. C. Sevov, J. Am.Chem. Soc., 1999, 121, 8389.;(c) K.-F. Hsu, S.-L. Wang, Inorg. Chem. 2000 , 39 , 1773.
38.Z.-E Lin, J. Zhang, J.-T. Zhao, S.-T. Zheng, C.-Y. Pen, G.-M. Wang, G.-Y. Yang, Angew. Chem., Int. Ed. 2005, 44, 6881.
39.(a) K.-F. Hsu, S.-L. Wang, Inorg. Chem. 1997, 36, 3049.;(b) S. Ekambaram, S. C. Sevov, Inorg. Chem., 2000, 39, 2405.
40.D. Grohol, D. Papoutsakis, D. G. Nocera, Angew. Chem., Int. Ed. 2001, 40, 1519.;(b) G. Paul, A. Choudhury, E. V. Sampathkumaran, C. N. R. Rao, Angew. Chem., Int. Ed., 2002, 41, 4287.;(c) J. N. Behera, G. Paul, A. Choudhury, C. N. R. Rao, Chem. Commun., 2004, 456.
41.(a) P. C. Junk, C. J. K. Kepert, B. W. Skelton, A. H. White, Aust. J. Chem., 1999, 52, 601.;(b) M. S. Wickleder, Chem. Mater., 1998, 10, 3212.;(c) S. Govindarajan, K. C. Patil, H. Manohar, P. E. Werner, J. Chem. Soc., Dalton Trans., 1986, 119.
42.(a) Y. Xing, Z. Shi, G. Li, W. Pang, Dalton Trans., 2003, 940.;(b) T. Bataille, D. Lour, J. Mater. Chem., 2002, 12, 3487.;(c) M. Dan, J. N. Behera, C. N. R. Rao, J. Mater. Chem., 2004, 14, 1257.
43.Y.-P. Yuan et al., Inorg. Chem. Commun., 2004, 7, 24.
44.H. Akkari et al., Solid State Sciences, 2006, 8, 704.
45.Y.-Q. Sun, J. Zhang, G.-Y. Yang, Chem. Commun., 2006, 1947.
46.Z. He, E.-Q. Gao, Z.-M. Wang, C.-H. Yan, M. Kurmoo, Inorg. Chem., 2005, 44, 862.