簡易檢索 / 詳目顯示

研究生: 李家昀
Li, Jia-Yun
論文名稱: 選擇性雷射熔融積層製程翹曲預測方法與驗證
Warpage Prediction and Validation for Selective Laser Melting Additive Manufacturing
指導教授: 屈子正
Chiu, Tz-Cheng
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 86
中文關鍵詞: 積層製造選擇性雷射熔融翹曲變形等效應變支撐設置密度
外文關鍵詞: Additive manufacturing, Selective laser melting, Warpage, Equivalent strain, Support density
相關次數: 點閱:112下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 積層製造為近年來逐漸興起的新型加工方法,有別於舊式將材料除去的減法加工,其是透過一體成型的方式,直接將產品一層一層地製作出來,這種加工方式可以用來製造幾何形狀極為複雜的特殊零件,也可使新型產品在設計以及開發上更加靈活便利。選擇性雷射熔融(SLM)是一種金屬積層製造技術,其加工原理為,利用高能量雷射熱源使金屬粉末熔化後凝固成加工層,並重複鋪粉及燒熔的程序將工件一層一層地製造出來。而其最大的問題在於,材料在製程中會因為雷射燒熔產生高溫度梯度,進而引發熱殘留應力,使得成品常會有翹曲等變形缺陷。有鑑於此,本研究針對SLM製程成品之翹曲變形部分,發展一套翹曲預測方法,先由逆向分析方法得到SLM製程應變,並將之用於等效數值模擬中,基於對效率的追求,先後建立兩種模型模擬製程,同時設計不同試件執行製程實驗,驗證數值模擬之準確性,亦透過實驗結果得到優化之製程參數。其中翹曲變形之實驗和模擬結果達到良好的驗證,兩種數值模擬的模型分別在準度及效率上達到一定的成效。透過本研究所提供之模擬方法以及參數結果,讓使用者可以在實際執行製程前,即先有效率地預測變形結果以掌控製程情況,進而調整設計或做更進一步的應用,使SLM加工法在設計及製造上更趨成熟穩定。

    Additive manufacturing (AM) is a form of rapid-prototyping fabrication. It enables manufacturing products of complex geometry in a layer-by-layer process directly. Among the AM processes, selective laser melting (SLM) is a promising technology for fabricating metallic workpieces. A key challenge in SLM technology is the warpage of the workpiece due to high residual stress. This thesis proposes a numerical prediction procedure for considering the warpage. The SLM process strain for SS316L was characterized experimentally, and used as an equivalent strain in the simplified finite element (FE) simulation. Two types of numerical models were constructed for efficient prediction of the workpiece warpage, and were validated by experimental measurements. The warpage values obtained from the simulations and experiments are in good agreements, and a set of optimized model parameters were obtained from SLM experiments. The methodology proposed in this thesis can also be implemented for different combinations of SLM machine and metal powder to allow fast prediction of SLM workpiece distortion and establishing mitigation plans.

    摘要 I Extended Abstract II 致謝 XIV 目錄 XV 表目錄 XVII 圖目錄 XVIII 符號說明 XXII 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 5 1.3 研究動機與目的 9 1.4 研究方法與流程 10 第二章 選擇性雷射熔融製程分析 12 2.1 逆向分析方法 12 2.2 材料之應力應變情形 14 2.3 數值模擬-彈塑性模型 17 2.4 數值模擬-彈性模型 24 第三章 選擇性雷射熔融製程實驗 30 3.1 翹曲變形實驗介紹 30 3.2 樑型試件 41 3.3 平板型試件 44 3.4 支撐密度測試 48 3.5 進階工件製造 52 第四章 結果與討論 57 4.1 實驗與模擬之驗證-樑型試件 57 4.2 實驗與模擬之驗證-平板型試件 60 4.3 支撐密度測試結果分析 68 4.4 進階工件之結果分析 71 第五章 結論與未來展望 79 5.1 結論 79 5.2 未來工作 81 參考文獻 82

    [1] I. Gibson, D. Rosen, and B. Stucker, Additive manufacturing technologies. New York: Springer, 2014.
    [2] Y. Lu, S. Wu, Y. Gan, T. Huang, C. Yang, L. Junjie, and J. Lin, “Study on the microstructure, mechanical property and residual stress of SLM Inconel-718 alloy manufactured by differing island scanning strategy,” Optics & Laser Technology, vol. 75, pp. 197-206, 2015.
    [3] I. Yadroitsev, I. Yadroitsava, P. Bertrand, and I. Smurov, “Factor analysis of selective laser melting process parameters and geometrical characteristics of synthesized single tracks,” Rapid Prototyping Journal, vol. 18, pp. 201-208, 2012.
    [4] Z. Khoo, Y. Liu, J. An, C. Chua, Y. Shen, and C. Kuo, “A Review of Selective Laser Melted NiTi Shape Memory Alloy,” Materials, vol. 11, p. 519, 2018.
    [5] L. Mugwagwa, D. Dimitrov, S. Matope, and I. Yadroitsev, “Influence of process parameters on residual stress related distortions in selective laser melting,” Procedia Manufacturing, vol. 21, pp. 92-99, 2018.
    [6] J.-P. Kruth, M. Badrossamay, E. Yasa, J. Deckers, L. Thijs, and J. Van Humbeeck, “Part and material properties in selective laser melting of metals,” proceedings of the 16th International Symposium on Electromachining, Shanghai, China, Apr. 19-23, 2010.
    [7] T. Simson, A. Emmel, A. Dwars, and J. Böhm, “Residual stress measurements on AISI 316L samples manufactured by selective laser melting,” Additive Manufacturing, vol. 17, pp. 183-189, 2017.
    [8] M. Shiomi, K. Osakada, K. Nakamura, T. Yamashita, and F. Abe, “Residual stress within metallic model made by selective laser melting process,” CIRP Annals, vol. 53, pp. 195-198, 2004.
    [9] D. Buchbinder, W. Meiners, N. Pirch, K. Wissenbach, and J. Schrage, “Investigation on reducing distortion by preheating during manufacture of aluminum components using selective laser melting,” Journal of Laser Applications, vol. 26, p. 012004, 2014.
    [10] P. Promoppatum, Numerical Modeling of Thermal and Mechanical Behaviors in the Selective Laser Sintering of Metals, Ph.D dissertation, Carnegie Mellon University, 2018.
    [11] C. Li, J. F. Liu, X. Y. Fang, and Y. B. Guo, “Efficient predictive model of part distortion and residual stress in selective laser melting,” Additive Manufacturing, vol. 17, pp. 157-168, 2017.
    [12] B. Ahmad, S. O. van der Veen, M. E. Fitzpatrick, and H. Guo, “Residual stress evaluation in selective-laser-melting additively manufactured titanium (Ti-6Al-4V) and inconel 718 using the contour method and numerical simulation,” Additive Manufacturing, vol. 22, pp. 571-582, 2018.
    [13] I. Setien, M. Chiumenti, S. van der Veen, M. San Sebastian, F. Garciandía, and A. Echeverría, “Empirical methodology to determine inherent strains in additive manufacturing,” Computers and Mathematics with Applications, vol. 78, pp. 2282-2295, 2019.
    [14] 鐘詠迪, 316L 不鏽鋼之選擇性雷射熔融積層製程應力與變形分析, 國立成功大學機械工程學系碩士論文, 2018.
    [15] 陳世春, 新型選擇性雷射熔融製程有限元素分析方法發展, 國立成功大學機械工程學系碩士論文, 2019.
    [16] A. Yaghi, S. Ayvar-Soberanis, S. Moturu, R. Bilkhu, and S. Afazov, “Design against distortion for additive manufacturing,” Additive Manufacturing, vol. 27, pp. 224-235, 2019.
    [17] D. Wang, S. Mai, D. Xiao, and Y. Yang, “Surface quality of the curved overhanging structure manufactured from 316-L stainless steel by SLM,” The International Journal of Advanced Manufacturing Technology, vol. 86, pp. 781-792, 2016.
    [18] D. Wang, Y. Yang, Z. Yi, and X. Su, “Research on the fabricating quality optimization of the overhanging surface in SLM process,” The International Journal of Advanced Manufacturing Technology, vol. 65, pp. 1471-1484, 2013.
    [19] M. Bugatti and Q. Semeraro, “Limitations of the inherent strain method in simulating powder bed fusion processes,” Additive Manufacturing, vol. 23, pp. 329-346, 2018.
    [20] F. Calignano, “Design optimization of supports for overhanging structures in aluminum and titanium alloys by selective laser melting,” Materials and Design, vol. 64, pp. 203-213, 2014.
    [21] B. Cheng, S. Shrestha, and K. Chou, “Stress and deformation evaluations of scanning strategy effect in selective laser melting,” Additive Manufacturing, vol. 12, pp. 240-251, 2016.
    [22] M. X. Gan and C. H. Wong, “Practical support structures for selective laser melting,” Journal of Materials Processing Technology, vol. 238, pp. 474-484, 2016.
    [23] P. Mercelis and J.-P. Kruth, “Residual stresses in selective laser sintering and selective laser melting,” Rapid Prototyping Journal, vol. 12, pp. 254-265, 2006.
    [24] L. Papadakis, A. Loizou, J. Risse, S. Bremen, and J. Schrage, “A computational reduction model for appraising structural effects in selective laser melting manufacturing: a methodical model reduction proposed for time-efficient finite element analysis of larger components in Selective Laser Melting,” Virtual and Physical Prototyping, vol. 9, pp. 17-25, 2014.
    [25] M. Strantza, R. K. Ganeriwala, B. Clausen, T. Q. Phan, L. E. Levine, D. Pagan, W. E. King, N. E. Hodge, and D. W. Brown, “Coupled experimental and computational study of residual stresses in additively manufactured Ti-6Al-4V components,” Materials Letters, vol. 231, pp. 221-224, 2018.
    [26] I. Yadroitsev and I. Yadroitsava, “Evaluation of residual stress in stainless steel 316L and Ti6Al4V samples produced by selective laser melting,” Virtual and Physical Prototyping, vol. 10, pp. 67-76, 2015.
    [27] Magics 21.11, Materialise NV, Leuven, Belgium.

    下載圖示 校內:2023-07-23公開
    校外:2023-07-23公開
    QR CODE