| 研究生: |
陳志豪 Chen, Zhi-Hao |
|---|---|
| 論文名稱: |
H∞-ERL滑動控制器設計 The Composite Design of H∞-ERL Sliding-Mode Controller |
| 指導教授: |
黃正能
Hwang, Cheng-Neng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 系統及船舶機電工程學系 Department of Systems and Naval Mechatronic Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 英文 |
| 論文頁數: | 162 |
| 中文關鍵詞: | 滑動控制 、H_∞控制理論 、落後領先補償器 、Popov準則 |
| 外文關鍵詞: | Sliding mode control, H_∞ control theory, Lag-Lead compensator, Popov criterion |
| 相關次數: | 點閱:157 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在一個多輸入多輸出非線性系統中,由於系統受到外部干擾和參數不確定性的影響,將會使輸出響應無法達到所希望的規格,甚至使系統不穩定。本篇論文提出H∞-ERL滑動控制器來解決這些問題。
此控制器使用ERL型滑動控制來當作主要架構,並運用Lyapunov穩定性理論來確保系統在所預設的外部干擾與參數不確定性的範圍內為漸進穩定。為了最佳化ERL型滑動控制器中的可調參數,我們結合H_∞控制理論與落後領先補償器來找到最佳控制參數,而此參數可將外部干擾和參數不確定性所造成的不良影響壓至最低。我們指定擴增系統的閉迴路極點落在目標區域,而來滿足所希望的性能。最後使用Popov準則處理無法對消的系統不確定性,來確保系統的強健穩定性。
最後,將此篇論文所提出的控制器運用於機器手臂與水下載具上來進行電腦模擬。模擬結果展現出此控制器在滿足使用者所希望的規格時,對於外部干擾與參數不確定性有一定的強健性。
In a multi-input multi-output nonlinear system, because the system subjects to the impacts of external disturbances and parametric uncertainties, its output response may not be able to satisfy the desired specification or even may make the system unstable. The H∞-ERL sliding mode controller proposed in this thesis is motivated to solve these problems.
This controller utilizes the concept of sliding mode controller with ERL (Exponential Reaching Law) as its major framework, and then uses Lyapunov stability theorem to ensure the closed-loop stability when the system encounters prescribed external disturbances and parametric uncertainties. For optimal selection of the adjustable parameters in the proposed sliding mode control with ERL, the H_∞ control methodology and the lag-lead compensator are formulated together in the proposed control scheme to find optimal control gains, which are used to minimize the ill-effect of external disturbances and plant parametric uncertainties on the controlled output. The closed-loop poles of the augmented system are then placed on the specified region to match the desired performance. The Popov criterion is then applied to handle of the uncanceled dynamics caused by the unmodeled uncertainties so that the system robustness can be guaranteed.
Finally, a robot manipulator and a ROV are controlled and simulated respectively by the proposed controller. The simulation results reveal that the proposed control law is robust to plant uncertainties and disturbances while the desired specification assigned by users is matched.
1. Charles J. Fallaha, “Sliding-Mode Robot Control With Exponential Reaching Law,” IEEE Transactions on Industrial Electronics, Vol.58, No.2, pp. 600-610 (2011).
2. C.N. Hwang, ’’Tracking controllers for robot manipulator: A high gain respective,’’ Master Dissertation, Michigan state University (1986).
3. C.N. Hwang, “Formulation of H_2 and H_∞Optimal Control Problems – A Variational Approach,” Journal of the Chinese Institute of Engineering’s, Vol.16, No.6, pp. 853-866 (1993).
4. Francis, B.A., “A Course in H_∞ Control Theory,” Lecture Notes in Control and Information Sciences, Springer-Verlag, Vol. 88 (1987).
5. Gao, W., “Variable structure control of nonlinear system: a new approach,” IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL.40, NO.1, pp. 45-55 FEBRUARY (1993).
6. J.J. Slotine and W. Li, “Applied Nonlinear Control,” Prentice Hall, Englewood Cliffs, NJ (1991).
7. J.J. Slotine and S.S. Sastry, “Tracking Control of Nonlinear Systems Using Sliding Surfaces, with Application to Robot Manipulators,” International Journal of Control, vol.38, no.2, pp. 465-492 (1983).
8. John Y. Hung, “Variable structure control: A survey,” IEEE Transactions on Industrial Electronics, Vol.40, No.1, pp. 2-22 (1993).
9. John C. Doyle, Keith Glover, Pramod P. Khargoner and Bruce A. Francis, “State-Space Solution To Standard H_2 and H_∞ Control Problem”, IEEE Trans. Automatic Control, vol.34, no.8, pp. 831 -847 (1989).
10. Kimura, H., “Conjugation, Interpolation and Model-Matching in H_∞,” International Journal of Control, Vol. 49, No. 1, pp. 269-307 (1989).
11. Kang-Bark Park, Teruo Tsuji Terminal, “sliding mode control of second-order nonlinear uncertain systems”, International Journal of Robust and Nonlinear Control ,vol.9, Issue.11, pp. 769–780 (1999).
12. Slotine, J.J.E., ”Sliding controller design for nonlinear systems,” International Journal of Control, vol.40, No.2, pp. 421-434 (1984).
13. Vadim Utkin, Ju ̈rgen Huldner and Jingxin Shi, “Sliding mode control in electronmechanical systems,” CRC Press, Boca Raton (1999).
14. Vadim I. Utkin, “Variable Structure Systems with Sliding Modes,” IEEE Transactions on Automatic Control, Vol. Ac-22, No.2, pp. 212-222 (1977).
15. W.M. Bessa et al, “Depth control of remotely operated underwater vehicles using an adaptive fuzzy sliding mode controller,” Robotics and Autonomous Systems, vol.56, pp. 670-677 (2008).
16. Xinghuo Yu, Okyay Kaynak, “ Sliding-Mode Control With Soft Computing: A Survey,” IEEE Transactions on Industrial Electronics, vol.56, pp. 3275 – 3285 (2009).
17. Young, K.D., “A control engineer’s guide to sliding mode control,” IEEE Transactions On Control System Technology, Vol.7, No.3, pp. 328-342 (1999).
校內:2024-12-31公開