| 研究生: |
陳菁菘 Chen, Ching-Sung |
|---|---|
| 論文名稱: |
過氧化氫/汽油液態火箭之設計研究 Studies on the Design of Hydrogen Peroxide / Gasoline Liquid Rocket |
| 指導教授: |
賴維祥
Lai, Wei-Hsiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 120 |
| 中文關鍵詞: | 雙推進劑 、汽油 、液態火箭 、過錳酸鉀 、過氧化氫 |
| 外文關鍵詞: | Bi-propellant, Gasoline, Liquid rocket, Potassium permanganate, Hydrogen Peroxide |
| 相關次數: | 點閱:84 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,由於環保意識的提升以及降低研發成本的考量,像過氧化氫這類無毒性但又具有強氧化力的推進劑漸受重視,以取代如聯胺等的強毒性火箭推進劑。由於過氧化氫具有很高的分解熱,使得分解後的氣體溫度可以非常高,甚至可達1000℃左右,因此,非常適合用在單推進劑液態火箭上。此外,過氧化氫也可以與煤油、火箭燃油(RP-Fuel)等燃料形成雙推進劑液態火箭,其性能甚至不輸給MMH與NTO的組合。
本研究之目的為設計並測試一具以過氧化氫以及汽油為雙推進劑的液態火箭,所使用的催化劑為過錳酸鉀,點火方式採用能量較高的火藥點火方式。此火箭屬於二階段反應之雙推進劑液態火箭,第一階段為過氧化氫與過錳酸鉀反應,分解產生高溫的氧氣與水,第二階段則是汽油與氧氣的燃燒反應。本研究曾針對不同比例的火藥組成做測試,並觀察其燃燒現象,紀錄火焰溫度與燃燒時間,建立了相關的資料庫。
經由50%過氧化氫分解測試中可發現,即使過氧化氫流量高達9.7 kg/min,催化後的溫度依然可維持在130℃左右,分解效率可達80%以上,顯示過錳酸鉀有足夠的時間與過氧化氫反應。
火箭整合測試結果顯示,目前已經能夠成功點火並持續燃燒,燃燒室也已經可以建壓至240 psia以上,推力也可達56 lbf以上,而比衝值則在60~100秒之間。
Recently, because of the rise in environmental consciousness and under the consideration of cost reduction, toxic propellants such as MMH has gradually been replaced by non-toxic and powerful propellants such as hydrogen peroxide. Due to the high decomposition heat of hydrogen peroxide, the decomposed gases come with very high temperature, so it is very suitable for using in both mono-propellant and bi-propellant liquid rockets.
The purpose of this study is to design and test a hydrogen peroxide(50%) / gasoline bi-propellants liquid rocket with catalyst potassium permanganate. The ignition is carried out by powder compound. This rocket is designed in a two-stage of reaction; In the first stage, hydrogen peroxide reacts with potassium permanganate to produce high temperature oxygen and water vapor, and these high temperature gas further reacts and burns with gasoline in the second stage.
It is shown that decomposition temperature is not influenced by peroxide flow rate. The decomposition temperature is about 130℃, and the decomposition efficiency is higher than 80% all the time. It reveals that the peroxide has enough time to react with catalyst.
In the hot firing test, it is shown that successful ignition and combustion can be maintained continuously, and the maximum chamber pressure is measured about 240 psia, maximum thrust is around 56 lbf, and its specific impulse is about 80s±20s.
參考文獻
1. Ventura, M., and Garboden, G., “A Brief History of Concentrated Hydrogen Peroxide Uses,” AIAA-99-2739, 35th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, June 20-24, 1999, Los Angeles, CA.
2. Ventura, M., and Mullens, P., “The Use of Hydrogen Peroxide for Propulsion and Power,” AIAA-99-2880, 35th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, June 20-24, 1999, Los Angeles, CA.
3. Mitchell, B. C., Maxwell, W. H., “A Single Stage to Orbit Rocket with Non-Cryogenic Propellants,” AIAA-93-2285, 29th AIAA/ASME/SAE /ASEE Joint Propulsion Conference and Exhibit, June 28-30, 1993, Monterey, CA.
4. Anderson, W., Crockett, D., Hill, S., Lewis , T., Fuell, R., Morlan, P., Ruttle, D., Wu, P. K., and McNeal, C., “Low Cost Propulsion Using a High-Density, Storable, and Clean Propellant Combination,” AIAA-98-3679, 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, July 13-15, 1998, Cleveland, OH.
5. Wu, P. K., Fuller, R. P., Morlan, P. W., Ruttle, D. W., Nejad, A. S., and Anderson, W. E., “Development of a Pressure-Fed Rocket Engine Using Hydrogen Peroxide and JP-8,” AIAA-99-2877, 35th AIAA/ASME/ SAE/ASEE Joint Propulsion Conference and Exhibit, June 20-24, 1999, Los Angeles, CA.
6. Ross, R., Morgan, D., Anderson, W., and McNeal, C., “Upper Stage Flight Experiment 10K Engine Design and Test Results,” AIAA-2000-3558, 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, July 17-19, 2000, Huntsville, Alabama.
7. Rusek, J. J., Minthorn, M. K., Purcell, N. L., Pavia, T. C., Grote, J. R., Hudson, G. C., and McKinney, B., “Non-toxic Homogeneous Miscible Fuel Development for Hypergolic Bipropellant Engines,” Sixth Annual AIAA BMDO TBMD Conference, August 1997, San Diego, CA.
8. 王修哲,劉俊夆,賴維祥, “雙推進劑液態火箭設計與測試研究,” 民航學會/航太學會/燃燒學會學術聯合會議, 2002年3月.
9. Hurlbert, E., Applewhite, J., Nguyen, T., Reed, B., Baojiong, Z., and Yue, W., “Nontoxic Orbital Maneuvering and Reaction Control Systems for Reusable Spacecraft,” Journal of Propulsion and Power, Vol. 14, No. 5, pp. 676-687, September-October 1998.
10. Funk, J. E., Heister, S. D., Humble, R., and Purcell, N., “Development Testing of Non-Toxic, Storable Hypergolic Liquid Propellants,” AIAA-99-2878, 35th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 20-24 June, 1999, Los Angeles, CA.
11. Frolik, S. A., Austin, B. L., Rusek, J. J., and Heister, S. D., “Development of Hypergolic Liquid Fuels for use with Hydrogen Peroxide,” AIAA 2000-3684, 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 16-19 July, 2000, Huntsville, Alabama.
12. Humble, Ronald W., “Bipropellant Engine Development Using Hydrogen Peroxide and a Hypergolic Fuel,” AIAA 2000-3554, 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 16-19 July, 2000, Huntsville, Alabama.
13. Rusek, J. J., “New Decomposition catalyst and Characterization Techniques for Rocket-Grade Hydrogen peroxide,” Journal of Propulsion and Power, Vol.12, No.3, pp.574-579, May-June 1996.
14. Morlan, P. W., Wu, P. K., Ruttle, D., Fuller, R., and Nejad, A. S., “Silver Screen Catalyst Bed Design for a Pressure Fed Liquid Fueled Upper Stage Engine,” 1st Hydrogen Peroxide Propulsion Workshop, July 29-31, 1999.
15. Morlan, P. W., Wu, P. K., Ruttle, D., Fuller, R., and Nejad, A. S., “Catalyst development for Hydrogen Peroxide Rocket Engines,” AIAA-99-2740, 35th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, June 20-24, 1999, Los Angeles, CA.
16. Long, M. R., and Rusek, J. J., “The Characterization of the Propulsive Decomposition of Hydrogen Peroxide,” AIAA-2000-3683, 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, July 17-19, 2000, Huntsville, Alabama.
17. 趙怡欽,陳建安,李聰盛,許世典, “過氧化氫雙推進劑引擎研究,” 中國航空太空學會/中華民用航空學會學術研討會, 民國九十二年十二月.
18. Nimmerfroh, N., Pauls, D., and McMahon, S., “Propulse Hydrogen Peroxide: Manufacture, Quality, Transportation and Handling,” AIAA-2000-3682, 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, July 17-19, 2000, Huntsville, Alabama.
19. Sutton, G. P., “Rocket Propulsion Elements - An Introduction to the Engineering of Rockets,” 6th Ed., John Wiley and Sons, New York, 1992.
20. Hill, Philip G. and Peterson, Carl R., “Mechanics and Thermodynamics of Propulsion,” 2nd ED., Addison-Wesley, New York, 1992.
21. Krzycki, Leroy J., “How to Design, Build and Test Small Liquid Fuel Rocket Engine,” WWW Edition, June 1996.
22. McBride, Bonnie J. and Gordon, Sanford, “Computer Program for calculation of Complex Chemical Equilibrium Compositions and Applications-Ⅱ. Users Manual and Program Description,” NASA Lewis Research Center, June 1996.
23. Figliola, Richard S., and Beasley, Donald E., “Theory and design for Mechanical Measurements,” John Wiley & Sons, 1991.
24. Carter, James M., Penner, S. S. and Summerfield, Martin, “Liquid Propellant Rockets,” Princeton University Press, 1960.
25. 林震, 劉興華, 蘇金佳, “材料力學(上),”東華書局, 台北市, 2001.
26. 小栗富士雄, 小栗達男, “標準機械設計圖表便覽,” 增訂三版, 眾文圖書, 台北市, 1992.
27. www.h2o2.com
28. www.solvayinterox.com