簡易檢索 / 詳目顯示

研究生: 周志明
Chou, Chih-Ming
論文名稱: 類石墨烯生物炭應用於電化學即時監測四環素類抗生素之研究
The application of graphene-like biochar for electrochemical real-time monitoring of tetracycline antibiotics
指導教授: 申永輝
Shen, Yun-Hwei
學位類別: 博士
Doctor
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 136
中文關鍵詞: 四環素電化學感測器農業廢棄物循環經濟高值化
外文關鍵詞: Tetracycline, Electrochemical sensor, Agricultural waste, Circular economy, High-value
相關次數: 點閱:62下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 四環素 (Tetracycline, TC) 廣泛存在於水環境中,會引發生態失衡並對人類健康產生不良影響。因此,開發一種快速、低成本且簡單的水體TC檢測方法具有其必要性。本研究以四種農業廢棄物(菱角殼/Water caltrop shells、花生殼/Peanut shells、苦楝樹/Chinaberry、稻草/Straw)製備成類石墨烯生物炭作為感測電極材料,應用於檢測水體中的四環素,透過拉曼光譜、 TEM及SDAE圖分析證實,利用水熱和熱裂解程序能將農業廢棄物製備成類石墨烯的生物炭材料。隨後,將該類石墨烯生物炭材料塗佈於玻碳電極 (GCE) 表面,製備成菱角殼之類石墨烯生物炭複合玻碳電極(WB@GCE)、花生殼之類石墨烯生物炭複合玻碳電極(PB@GCE)、苦楝樹之類石墨烯生物炭複合玻碳電極(CB@GCE)以及稻草之類石墨烯生物炭複合玻碳電極(SB@GCE) 電極,探討該感測器在水體中檢測四環素的可行性。結果顯示,利用PB@GCE 感測器具有較優異的靈敏度,檢測限低至 3.6×10−9 nM,線性檢測範圍為 10−10∼102 µM,其可能與 花生殼之類石墨烯生物炭(PB) 類石墨烯生物炭具有較大的比表面積、低電阻和高導電性有關。此外,當四環素濃度為 10−4 M、干擾物濃度為 10−2 M 時,對感測器的穩定性進行測試,回收率介在 86.4%–116.0% 之間。針對不同基質進行檢測結果顯示,回收率在 84.3%–98.2% 之間,相對標準偏差 (RSD) 低於 6%,證實了 PB@GCE 電極應用於電化學感測器上具備優異的重複性,因此,該感測電極在天然水體四環素檢測方面具有良好的應用潛力。

    Tetracycline (TC) is ubiquitous in aquatic environments, causing ecological imbalance and posing potential threats to human health. Therefore, developing a rapid, low-cost, and simple method for detecting tetracycline in water systems is essential. This study reports the preparation of graphene-like biochar from four types of agricultural waste as sensing electrode materials for tetracycline detection in water. Raman spectroscopy, TEM, and SAED analyses confirmed that the agricultural waste was successfully converted into graphene-like biochar through hydrothermal and pyrolysis processes. The prepared graphene-like biochar was coated onto the surface of a glassy carbon electrode (GCE) to fabricate WB@GCE, PB@GCE, CB@GCE, and SB@GCE electrodes. The feasibility of using these sensors to detect tetracycline in aqueous systems was investigated.The results showed that the PB@GCE sensor exhibited superior sensitivity, with a detection limit as low as 3.6×10−9 nM and a linear detection range of 10−10∼102 µM, which was attributed to the large specific surface area, low resistance, and high conductivity of the PS biochar. In addition, the stability of the sensor was tested with a tetracycline concentration of 10−4 M and interferents at 10−2 M, achieving recovery rates ranging from 86.4% to 116.0%. The detection results for different matrices showed recovery rates between 84.3% and 98.2%, with a relative standard deviation (RSD) below 6%, demonstrating the excellent reproducibility of the PB@GCE electrode. Therefore, the sensor electrode shows great potential for application in detecting tetracycline in natural water systems.

    第一章前言1 1.1研究背景1 1.2研究目的2 1.3研究內容3 第二章文獻回顧4 2.1含碳廢棄物4 2.1.1生物炭4 2.1.2生物炭之特性5 2.1.2.1生物炭之化學特性6 2.1.2.2生物炭之物理特性6 2.1.3生物炭製備技術6 2.1.4製備參數對生物炭之影響7 2.1.4.1原料粒徑8 2.1.4.2熱裂解溫度9 2.1.4.3反應停留時間10 2.1.4.4升溫速率11 2.1.5生物炭應用12 2.2石墨烯15 2.2.1石墨烯製備16 2.2.2石墨烯應用17 2.3四環素類抗生素20 2.4電化學感測器25 2.4.1電化學感測原理27 2.4.1.1循環伏安法28 2.4.1.2電化學交流阻抗28 2.4.2感測器種類28 2.4.3電極表面修飾方法29 2.5常見應用於電化學感測器之材料34 2.5.1奈米碳管複合材料37 2.5.2石墨烯複合材料37 2.5.3聚合物複合材料40 第三章研究方法42 3.1研究架構42 3.2實驗設備與材料43 3.2.1儀器與設備43 3.2.2實驗材料44 3.3類石墨烯製備方法44 3.4表面形貌分析45 3.5石墨化分析46 3.6感測器製備與分析方法46 3.7實驗規劃設計46 第四章結果與討論52 4.1農業廢棄物成分及類石墨烯生物炭特性分析52 4.1.1農業廢棄物成分分析52 4.1.2表面特性分析54 4.1.3石墨化程度分析58 4.1.4表面形貌分析61 4.1.5小結66 4.2電化學感測電極對四環素效能測試67 4.2.1花生殼類石墨烯生物炭電極67 4.2.1.1靈敏度分析67 4.2.1.2精準度分析68 4.2.2菱角殼類石墨烯電極69 4.2.2.1靈敏度分析69 4.2.2.2精準度分析71 4.2.3苦楝樹類石墨烯生物炭電極71 4.2.3.1靈敏度分析72 4.2.3.2精準度分析73 4.2.4稻草感測電極對四環素感測效能測試74 4.2.4.1靈敏度分析75 4.2.4.2精準度分析75 4.2.5環境水體應用75 4.2.5.1pH影響76 4.2.5.2離子強度80 4.2.5.3實際水體83 4.2.6四環素感測效能比較86 4.3類石墨烯生物炭感測電極電化學特性分析91 4.3.1電荷傳遞電阻的比較91 4.3.2電容特性比較93 4.4類石墨烯生物炭電極感測機制95 第五章結論與建議97 5.1結論97 5.2建議98 參考文獻99

    Abdellatif, M.H., Keshavan, S., Dante, S., Salerno, M., 2017a. Induced inhomogeneity in graphene work function due to graphene - TiO2 /Ag/glass substrate interaction. Thin Solid Films 628, 43-49.
    Abdellatif, M.H., Salerno, M., Polovitsyn, A., Marras, S., De Angelis, F., 2017b. Sensing the facet orientation in silver nano-plates using scanning Kelvin probe microscopy in air. Appl. Surf. Sci. 403, 371-377.
    Abdolhosseinzadeh, S., Asgharzadeh, H., Seop Kim, H., 2015. Fast and fully-scalable synthesis of reduced graphene oxide. Sci Rep 5, 10160-10160.
    Ahmad, M., Rajapaksha, A.U., Lim, J.E., Zhang, M., Bolan, N., Mohan, D., Vithanage, M., Lee, S.S., Ok, Y.S., 2014. Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere 99, 19-33.
    Akhtar, J., Saidina Amin, N., 2012. A review on operating parameters for optimum liquid oil yield in biomass pyrolysis. Renew Sust Energ Rev 16, 5101-5109.
    Al-Fatesh, A.S.A., Fakeeha, A.H., 2012. Effects of calcination and activation temperature on dry reforming catalysts. J of Saudi Chem Soc 16, 55-61.
    Aller, M.F., 2016. Biochar properties: Transport, fate, and impact. Crit Rev Env Sci Tec 46, 1183-1296.
    Azimov, F., Kim, J., Choi, S.M., Jung, H.M., 2021. Synergistic Effects of Fe(2)O(3) Nanotube/Polyaniline Composites for an Electrochemical Supercapacitor with Enhanced Capacitance. Nanomaterials (Basel) 11, 1557.
    Benvidi, A., Tezerjani, M.D., Moshtaghiun, S.M., Mazloum-Ardakani, M., 2016. An aptasensor for tetracycline using a glassy carbon modified with nanosheets of graphene oxide. Microchim Acta 183, 1797-1804.
    Berger, C., Song, Z., Li, X., Wu, X., Brown, N., Naud, C.c., Mayou, D., Li, T., Hass, J., Marchenkov, A.N., Conrad, E.H., First, P.N., de Heer, W.A., 2006. Electronic Confinement and Coherence in Patterned Epitaxial Graphene. Science 312, 1191-1196.
    Bi, Z., Kong, Q., Cao, Y., Sun, G., Su, F., Wei, X., Li, X., Ahmad, A., Xie, L., Chen, C.-M., 2019. Biomass-derived porous carbon materials with different dimensions for supercapacitor electrodes: a review. Journal of Materials Chemistry A 7, 16028-16045.
    Bianco, A., Cheng, H.-M., Enoki, T., Gogotsi, Y., Hurt, R.H., Koratkar, N., Kyotani, T., Monthioux, M., Park, C.R., Tascon, J.M.D., Zhang, J., 2013. All in the graphene family – A recommended nomenclature for two-dimensional carbon materials. Carbon 65, 1-6.
    Bolan, N.S., Thangarajan, R., Seshadri, B., Jena, U., Das, K.C., Wang, H., Naidu, R., 2013. Landfills as a biorefinery to produce biomass and capture biogas. Bioresource Technology 135, 578-587.
    Bonaccorso, F., Lombardo, A., Hasan, T., Sun, Z., Colombo, L., Ferrari, A.C., 2012. Production and processing of graphene and 2d crystals. Materials Today 15, 564-589.
    Buledi, J.A., Amin, S., Haider, S.I., Bhanger, M.I., Solangi, A.R., 2020. A review on detection of heavy metals from aqueous media using nanomaterial-based sensors. Environmental Science and Pollution Research 28, 58994-59002.
    Calvelo Pereira, R., Kaal, J., Camps Arbestain, M., Pardo Lorenzo, R., Aitkenhead, W., Hedley, M., Macías, F., Hindmarsh, J., Maciá-Agulló, J.A., 2011. Contribution to characterisation of biochar to estimate the labile fraction of carbon. Organic Geochemistry 42, 1331-1342.
    Cao, X., Sun, S., Sun, R., 2017. Application of biochar-based catalysts in biomass upgrading: a review. RSC Adv. 7, 48793-48805.
    Carolina Torres, A., Barsan, M.M., Brett, C.M.A., 2014. Simple electrochemical sensor for caffeine based on carbon and Nafion-modified carbon electrodes. Food Chemistry 149, 215-220.
    Casanova, A., Iniesta, J., Gomis-Berenguer, A., 2022. Recent progress in the development of porous carbon-based electrodes for sensing applications. The Analyst 147, 767-783.
    Castro Neto, A.H., Guinea, F., Peres, N.M.R., Novoselov, K.S., Geim, A.K., 2009. The electronic properties of graphene. Reviews of Modern Physics 81, 109-162.
    Cetin, E., Moghtaderi, B., Gupta, R., Wall, T.F., 2004. Influence of pyrolysis conditions on the structure and gasification reactivity of biomass chars. Fuel 83, 2139-2150.
    Chen, D., Feng, H., Li, J., 2012. Graphene Oxide: Preparation, Functionalization, and Electrochemical Applications. Chemical Reviews 112, 6027-6053.
    Chen, J., Bai, H., Li, Z., Xia, J., Cao, Q., 2018. Stripping voltammetric determination of cerium in food using an electropolymerized poly-catechol and ion-imprinted membrane modified electrode. Journal of Electroanalytical Chemistry 808, 41-49.
    Cheng, B.-H., Zeng, R.J., Jiang, H., 2017. Recent developments of post-modification of biochar for electrochemical energy storage. Bioresource Technology 246, 224-233.
    Crombie, K., Mašek, O., Cross, A., Sohi, S., 2014. Biochar - synergies and trade-offs between soil enhancing properties and C sequestration potential. GCB Bioenergy 7, 1161-1175.
    Cross, A., Sohi, S.P., 2012. A method for screening the relative long‐term stability of biochar. GCB Bioenergy 5, 215-220.
    Dai, Y., Liu, M., Li, J., Yang, S., Sun, Y., Sun, Q., Wang, W., Lu, L., Zhang, K., Xu, J., Zheng, W., Hu, Z., Yang, Y., Gao, Y., Liu, Z., 2019. A review on pollution situation and treatment methods of tetracycline in groundwater. Separation Science and Technology 55, 1005-1021.
    De, S., Balu, A.M., van der Waal, J.C., Luque, R., 2015. Biomass-Derived Porous Carbon Materials: Synthesis and Catalytic Applications. ChemCatChem 7, 1608-1629.
    Delgado, K.P., Raymundo‐Pereira, P.A., Campos, A.M., Oliveira, O.N., Janegitz, B.C., 2018. Ultralow Cost Electrochemical Sensor Made of Potato Starch and Carbon Black Nanoballs to Detect Tetracycline in Waters and Milk. Electroanalysis 30, 2153-2159.
    Deng, K., Li, C., Li, X., Huang, H., 2016. Simultaneous detection of sunset yellow and tartrazine using the nanohybrid of gold nanorods decorated graphene oxide. Journal of Electroanalytical Chemistry 780, 296-302.
    Dong, W., Wen, H., Du, X., Li, L., Li, Z., 2022. Electrochemical sensing of tetracycline based on Au NPs@MoS2/Ch hybrid structures. Journal of Electroanalytical Chemistry 923, 116807.
    Duan, L., Li, L., Xu, Z., Chen, W., 2014. Adsorption of tetracycline to nano-NiO: the effect of co-existing Cu(ii) ions and environmental implications. Environmental Science: Processes & Impacts 16, 1462.
    Ferrari, A.C., Rodil, S.E., Robertson, J., 2003. Interpretation of infrared and Raman spectra of amorphous carbon nitrides. Physical Review B 67.
    Fu, P., Yi, W., Bai, X., Li, Z., Hu, S., Xiang, J., 2011. Effect of temperature on gas composition and char structural features of pyrolyzed agricultural residues. Bioresource Technology 102, 8211-8219.
    Gan, T., Shi, Z., Sun, J., Liu, Y., 2014. Simple and novel electrochemical sensor for the determination of tetracycline based on iron/zinc cations–exchanged montmorillonite catalyst. Talanta 121, 187-193.
    Gan, T., Sun, J., Wu, Q., Jing, Q., Yu, S., 2013. Graphene Decorated with Nickel Nanoparticles as a Sensitive Substrate for Simultaneous Determination of Sunset Yellow and Tartrazine in Food Samples. Electroanalysis 25, 1505-1512.
    Gao, Z., Liu, M., Xu, K., Tang, M., Lin, X., Hu, S., Ren, X., 2020. Facile fabrication of N/S/P tri-doped carbon dots for tetracycline detection by an internal filtering effect of a two-way matching strategy. Analytical Methods 12, 2551-2554.
    García, R., Pizarro, C., Lavín, A.G., Bueno, J.L., 2013. Biomass proximate analysis using thermogravimetry. Bioresource Technology 139, 1-4.
    Garner, E., Chen, C., Xia, K., Bowers, J., Engelthaler, D.M., McLain, J., Edwards, M.A., Pruden, A., 2018. Metagenomic Characterization of Antibiotic Resistance Genes in Full-Scale Reclaimed Water Distribution Systems and Corresponding Potable Systems. Environmental Science & Technology 52, 6113-6125.
    Glaser, B., Lehmann, J., Zech, W., 2002. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal - a review. Biology and Fertility of Soils 35, 219-230.
    Guo, Z., Gai, P., 2011. Development of an ultrasensitive electrochemiluminescence inhibition method for the determination of tetracyclines. Analytica Chimica Acta 688, 197-202.
    Hao, L., Gu, H., Duan, N., Wu, S., Wang, Z., 2016. A chemiluminescent aptasensor for simultaneous detection of three antibiotics in milk. Analytical Methods 8, 7929-7936.
    Hassanpour, B., Riazi, S.F., Menzies Pluer, E.G., Geohring, L.D., Guzman, C.D., Steenhuis, T.S., 2020. Biochar acting as an electron acceptor reduces nitrate removal in woodchip denitrifying bioreactors. Ecological Engineering 149, 105724.
    Haykiri-Acma, H., 2006. The role of particle size in the non-isothermal pyrolysis of hazelnut shell. Journal of Analytical and Applied Pyrolysis 75, 211-216.
    He, L., Yang, Y., Kim, J., Yao, L., Dong, X., Li, T., Piao, Y., 2020. Multi-layered enzyme coating on highly conductive magnetic biochar nanoparticles for bisphenol A sensing in water. Chemical Engineering Journal 384, 123276.
    He, S., He, P., Zhang, X., Zhang, X., Liu, K., Jia, L., Dong, F., 2018. Poly(glycine)/graphene oxide modified glassy carbon electrode: Preparation, characterization and simultaneous electrochemical determination of dopamine, uric acid, guanine and adenine. Analytica Chimica Acta 1031, 75-82.
    Hernandez, Y., Nicolosi, V., Lotya, M., Blighe, F.M., Sun, Z., De, S., McGovern, I.T., Holland, B., Byrne, M., Gun'Ko, Y.K., Boland, J.J., Niraj, P., Duesberg, G., Krishnamurthy, S., Goodhue, R., Hutchison, J., Scardaci, V., Ferrari, A.C., Coleman, J.N., 2008. High-yield production of graphene by liquid-phase exfoliation of graphite. Nature Nanotechnology 3, 563-568.
    Huang, Q., Song, S., Chen, Z., Hu, B., Chen, J., Wang, X., 2019. Biochar-based materials and their applications in removal of organic contaminants from wastewater: state-of-the-art review. Biochar 1, 45-73.
    Huang, X., Yin, Z., Wu, S., Qi, X., He, Q., Zhang, Q., Yan, Q., Boey, F., Zhang, H., 2011. Graphene-Based Materials: Synthesis, Characterization, Properties, and Applications. Small 7, 1876-1902.
    Hui, B., Chen, H., Zhou, C., Cai, L., Zhang, K., Quan, F., Yang, D., 2022. Biochar aerogel-based electrocatalyst towards efficient oxygen evolution in acidic media. Biochar 4.
    Jahanbani, S., Benvidi, A., 2016. Comparison of two fabricated aptasensors based on modified carbon paste/oleic acid and magnetic bar carbon paste/Fe3O4@oleic acid nanoparticle electrodes for tetracycline detection. Biosensors and Bioelectronics 85, 553-562.
    Justino, C.I.L., Freitas, A.C., Pereira, R., Duarte, A.C., Rocha Santos, T.A.P., 2015. Recent developments in recognition elements for chemical sensors and biosensors. TrAC Trends in Analytical Chemistry 68, 2-17.
    Kafaei, R., Papari, F., Seyedabadi, M., Sahebi, S., Tahmasebi, R., Ahmadi, M., Sorial, G.A., Asgari, G., Ramavandi, B., 2018. Occurrence, distribution, and potential sources of antibiotics pollution in the water-sediment of the northern coastline of the Persian Gulf, Iran. Science of The Total Environment 627, 703-712.
    Kalinke, C., de Oliveira, P., Mangrich, A., Marcolino‑Junior, L., Bergamini, M., 2020. Chemically-Activated Biochar from Ricinus communis L. Cake and Their Potential Applications for the Voltammetric Assessment of Some Relevant Environmental Pollutants. Journal of the Brazilian Chemical Society.
    Kalinke, C., Oliveira, P.R., Oliveira, G.A., Mangrich, A.S., Marcolino-Junior, L.H., Bergamini, M.F., 2017. Activated biochar: Preparation, characterization and electroanalytical application in an alternative strategy of nickel determination. Analytica Chimica Acta 983, 103-111.
    Keiluweit, M., Nico, P.S., Johnson, M.G., Kleber, M., 2010. Dynamic Molecular Structure of Plant Biomass-Derived Black Carbon (Biochar). Environmental Science & Technology 44, 1247-1253.
    Kim, S.-S., Ly, H.V., Choi, G.-H., Kim, J., Woo, H.C., 2012. Pyrolysis characteristics and kinetics of the alga Saccharina japonica. Bioresource Technology 123, 445-451.
    Kong, X., Zhu, Y., Lei, H., Wang, C., Zhao, Y., Huo, E., Lin, X., Zhang, Q., Qian, M., Mateo, W., Zou, R., Fang, Z., Ruan, R., 2020. Synthesis of graphene-like carbon from biomass pyrolysis and its applications. Chemical Engineering Journal 399, 125808.
    Leng, L., Huang, H., 2018. An overview of the effect of pyrolysis process parameters on biochar stability. Bioresource Technology 270, 627-642.
    Li, W., Zhou, Q., Hua, T., 2010. Removal of Organic Matter from Landfill Leachate by Advanced Oxidation Processes: A Review. International Journal of Chemical Engineering 2010, 1-10.
    Li, X., Cai, W., An, J., Kim, S., Nah, J., Yang, D., Piner, R., Velamakanni, A., Jung, I., Tutuc, E., Banerjee, S.K., Colombo, L., Ruoff, R.S., 2009. Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science 324, 1312-1314.
    Lin, A.Y.-C., Yu, T.-H., Lin, C.-F., 2008. Pharmaceutical contamination in residential, industrial, and agricultural waste streams: Risk to aqueous environments in Taiwan. Chemosphere 74, 131-141.
    Lin, W.-C., Li, Z., Burns, M.A., 2017. A Drinking Water Sensor for Lead and Other Heavy Metals. Analytical Chemistry 89, 8748-8756.
    Liu, H., Li, H., Ying, T., Sun, K., Qin, Y., Qi, D., 1998. Amperometric biosensor sensitive to glucose and lactose based on co-immobilization of ferrocene, glucose oxidase, β-galactosidase and mutarotase in β-cyclodextrin polymer. Analytica Chimica Acta 358, 137-144.
    Liu, H., Ying, T., Sun, K., Li, H., Qi, D., 1997. Reagentless amperometric biosensors highly sensitive to hydrogen peroxide, glucose and lactose based on N-methyl phenazine methosulfate incorporated in a Nafion film as an electron transfer mediator between horseradish peroxidase and an electrode. Analytica Chimica Acta 344, 187-199.
    Liu, X., Huang, D., Lai, C., Zeng, G., Qin, L., Zhang, C., Yi, H., Li, B., Deng, R., Liu, S., Zhang, Y., 2018. Recent advances in sensors for tetracycline antibiotics and their applications. TrAC Trends in Analytical Chemistry 109, 260-274.
    Liu, X., Zhu, H., Yang, X., 2011. An amperometric hydrogen peroxide chemical sensor based on graphene-Fe3O4 multilayer films modified ITO electrode. Talanta 87, 243-248.
    Liu, Z., Liao, D., Yu, J., Jiang, X., 2022. An electrochemical sensor based on oxygen-vacancy cobalt–aluminum layered double hydroxides and hydroxylated multiwalled carbon nanotubes for catechol and hydroquinone detection. Microchemical Journal 175, 107216.
    Lomeda, J.R., Doyle, C.D., Kosynkin, D.V., Hwang, W.-F., Tour, J.M., 2008. Diazonium Functionalization of Surfactant-Wrapped Chemically Converted Graphene Sheets. Journal of the American Chemical Society 130, 16201-16206.
    Majidi, M.R., Fadakar Bajeh Baj, R., Naseri, A., 2012. Carbon Nanotube–Ionic Liquid (CNT–IL) Nanocamposite Modified Sol-Gel Derived Carbon-Ceramic Electrode for Simultaneous Determination of Sunset Yellow and Tartrazine in Food Samples. Food Analytical Methods 6, 1388-1397.
    Manasa, G., Mascarenhas, R.J., Satpati, A.K., D'Souza, O.J., Dhason, A., 2017. Facile preparation of poly(methylene blue) modified carbon paste electrode for the detection and quantification of catechin. Materials Science and Engineering: C 73, 552-561.
    Marrikar, F.S., Brumbach, M., Evans, D.H., Lebrón-Paler, A., Pemberton, J.E., Wysocki, R.J., Armstrong, N.R., 2007. Modification of Indium−Tin Oxide Electrodes with Thiophene Copolymer Thin Films: Optimizing Electron Transfer to Solution Probe Molecules. Langmuir 23, 1530-1542.
    Mayavan, S., Jang, H.-S., Lee, M.-J., Choi, S.H., Choi, S.-M., 2013. Enhancing the catalytic activity of Pt nanoparticles using poly sodium styrene sulfonate stabilized graphene supports for methanol oxidation. Journal of Materials Chemistry A 1, 3489.
    Mendonça, F.G.d., Cunha, I.T.d., Soares, R.R., Tristão, J.C., Lago, R.M., 2017. Tuning the surface properties of biochar by thermal treatment. Bioresource Technology 246, 28-33.
    Mishra, N., Boeckl, J., Motta, N., Iacopi, F., 2016. Graphene growth on silicon carbide: A review. physica status solidi (a) 213, 2277-2289.
    Mohammed, I., Nemakal, M., Sajjan, V.A., Puttappashetty, D.B., Sannegowda, L.K., 2018. Electropolymerized film of cobalt tetrabenzimidazolephthalocyanine for the amperometric detection of H2O2. Journal of Electroanalytical Chemistry 826, 96-103.
    Mohan, D., Pittman, C.U., Steele, P.H., 2006. Pyrolysis of Wood/Biomass for Bio-oil:  A Critical Review. Energy & Fuels 20, 848-889.
    Muramatsu, H., Kim, Y.A., Yang, K.-S., Cruz-Silva, R., Toda, I., Yamada, T., Terrones, M., Endo, M., Hayashi, T., Saitoh, H., 2014. Rice Husk-Derived Graphene with Nano-Sized Domains and Clean Edges. Small 10, 2766-2770.
    Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A., 2004. Electric Field Effect in Atomically Thin Carbon Films. Science 306, 666-669.
    Novoselov, K.S., Morozov, S.V., Mohinddin, T.M.G., Ponomarenko, L.A., Elias, D.C., Yang, R., Barbolina, I.I., Blake, P., Booth, T.J., Jiang, D., Giesbers, J., Hill, E.W., Geim, A.K., 2007. Electronic properties of graphene. physica status solidi (b) 244, 4106-4111.
    Pütün, A.E., Özbay, N., Apaydın Varol, E., Uzun, B.B., Ateş, F., 2007. Rapid and slow pyrolysis of pistachio shell: effect of pyrolysis conditions on the product yields and characterization of the liquid product. International Journal of Energy Research 31, 506-514.
    Palanisamy, S., Kokulnathan, T., Chen, S.-M., Velusamy, V., Ramaraj, S.K., 2017. Voltammetric determination of Sudan I in food samples based on platinum nanoparticles decorated on graphene-β-cyclodextrin modified electrode. Journal of Electroanalytical Chemistry 794, 64-70.
    Pandikumar, A., Soon How, G.T., See, T.P., Omar, F.S., Jayabal, S., Kamali, K.Z., Yusoff, N., Jamil, A., Ramaraj, R., John, S.A., Lim, H.N., Huang, N.M., 2014. Graphene and its nanocomposite material based electrochemical sensor platform for dopamine. RSC Adv. 4, 63296-63323.
    Prado, M.A., Boas, L.F.V., Bronze, M.R., Godoy, H.T., 2006. Validation of methodology for simultaneous determination of synthetic dyes in alcoholic beverages by capillary electrophoresis. Journal of Chromatography A 1136, 231-236.
    Raghavan, N., Thangavel, S., Venugopal, G., 2017. A short review on preparation of graphene from waste and bioprecursors. Applied Materials Today 7, 246-254.
    Rahman, M.Z., Edvinsson, T., Kwong, P., 2020. Biochar for electrochemical applications. Current Opinion in Green and Sustainable Chemistry 23, 25-30.
    Ren, W., Cheng, H.-M., 2014. The global growth of graphene. Nature Nanotechnology 9, 726-730.
    Roy, S., Soin, N., Bajpai, R., Misra, D.S., McLaughlin, J.A., Roy, S.S., 2011. Graphene oxide for electrochemical sensing applications. Journal of Materials Chemistry 21, 14725.
    Ruiz-García, C., Darder, M., Aranda, P., Ruiz-Hitzky, E., 2014. Toward a green way for the chemical production of supported graphenes using porous solids. J. Mater. Chem. A 2, 2009-2017.
    Scaria, J., Anupama, K.V., Nidheesh, P.V., 2021. Tetracyclines in the environment: An overview on the occurrence, fate, toxicity, detection, removal methods, and sludge management. Science of The Total Environment 771, 145291.
    Seow, Y.X., Tan, Y.H., Mubarak, N.M., Kansedo, J., Khalid, M., Ibrahim, M.L., Ghasemi, M., 2022. A review on biochar production from different biomass wastes by recent carbonization technologies and its sustainable applications. Journal of Environmental Chemical Engineering 10, 107017.
    Septien, S., Valin, S., Dupont, C., Peyrot, M., Salvador, S., 2012. Effect of particle size and temperature on woody biomass fast pyrolysis at high temperature (1000–1400°C). Fuel 97, 202-210.
    Spanu, D., Binda, G., Dossi, C., Monticelli, D., 2020. Biochar as an alternative sustainable platform for sensing applications: A review. Microchemical Journal 159, 105506.
    Strudwick, A.J., Weber, N.E., Schwab, M.G., Kettner, M., Weitz, R.T., Wünsch, J.R., Müllen, K., Sachdev, H., 2014. Chemical Vapor Deposition of High Quality Graphene Films from Carbon Dioxide Atmospheres. ACS Nano 9, 31-42.
    Sun, Z., Zheng, M., Hu, H., Dong, H., Liang, Y., Xiao, Y., Lei, B., Liu, Y., 2018. From biomass wastes to vertically aligned graphene nanosheet arrays: A catalyst-free synthetic strategy towards high-quality graphene for electrochemical energy storage. Chemical Engineering Journal 336, 550-561.
    Suárez-Abelenda, M., Kaal, J., McBeath, A.V., 2017. Translating analytical pyrolysis fingerprints to Thermal Stability Indices (TSI) to improve biochar characterization by pyrolysis-GC-MS. Biomass and Bioenergy 98, 306-320.
    Tang, P., Hu, G., Li, M., Ma, D., 2016. Graphene-Based Metal-Free Catalysts for Catalytic Reactions in the Liquid Phase. ACS Catalysis 6, 6948-6958.
    Tang, Z.-E., Lim, S., Pang, Y.-L., Ong, H.-C., Lee, K.-T., 2018. Synthesis of biomass as heterogeneous catalyst for application in biodiesel production: State of the art and fundamental review. Renewable and Sustainable Energy Reviews 92, 235-253.
    Tashkhourian, J., Nami-Ana, S.F., 2015. A sensitive electrochemical sensor for determination of gallic acid based on SiO2 nanoparticle modified carbon paste electrode. Materials Science and Engineering: C 52, 103-110.
    Tripathi, M., Sahu, J.N., Ganesan, P., 2016. Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review. Renewable and Sustainable Energy Reviews 55, 467-481.
    van Schooten, K.S., Pijnappels, M., Lord, S.R., van Dieën, J.H., 2019. Quality of Daily-Life Gait: Novel Outcome for Trials that Focus on Balance, Mobility, and Falls. Sensors 19, 4388.
    Wang, H., Li, Z., Mitlin, D., 2013a. Tailoring Biomass‐Derived Carbon Nanoarchitectures for High‐Performance Supercapacitors. Chem Electro Chem 1, 332-337.
    Wang, H., Xu, Z., Kohandehghan, A., Li, Z., Cui, K., Tan, X., Stephenson, T.J., King’ondu, C.K., Holt, C.M.B., Olsen, B.C., Tak, J.K., Harfield, D., Anyia, A.O., Mitlin, D., 2013b. Interconnected Carbon Nanosheets Derived from Hemp for Ultrafast Supercapacitors with High Energy. ACS Nano 7, 5131-5141.
    Wang, J., Dai, J., Yarlagadda, T., 2004. Carbon Nanotube−Conducting-Polymer Composite Nanowires. Langmuir 21, 9-12.
    Wang, J., Golden, T., Li, R., 1988. Cobalt phthalocyanine/cellulose acetate chemically modified electrodes for electrochemical detection in flowing streams. Multifunctional operation based upon the coupling of electrocatalysis and permselectivity. Analytical Chemistry 60, 1642-1645.
    Wang, J., Kaskel, S., 2012. KOH activation of carbon-based materials for energy storage. Journal of Materials Chemistry 22, 23710.
    Wang, L., Bolan, N.S., Tsang, D.C.W., Hou, D., 2020. Green immobilization of toxic metals using alkaline enhanced rice husk biochar: Effects of pyrolysis temperature and KOH concentration. Science of The Total Environment 720, 137584.
    Wang, M., Zhao, J., 2015. Facile synthesis of Au supported on ionic liquid functionalized reduced graphene oxide for simultaneous determination of Sunset yellow and Tartrazine in drinks. Sensors and Actuators B: Chemical 216, 578-585.
    Wang, Y., Zhang, S., Du, D., Shao, Y., Li, Z., Wang, J., Engelhard, M.H., Li, J., Lin, Y., 2011. Self assembly of acetylcholinesterase on a gold nanoparticles–graphene nanosheet hybrid for organophosphate pesticide detection using polyelectrolyte as a linker. Journal of Materials Chemistry 21, 5319.
    Windeatt, J.H., Ross, A.B., Williams, P.T., Forster, P.M., Nahil, M.A., Singh, S., 2014. Characteristics of biochars from crop residues: Potential for carbon sequestration and soil amendment. Journal of Environmental Management 146, 189-197.
    Wong, A., Scontri, M., Materon, E.M., Lanza, M.R.V., Sotomayor, M.D.P.T., 2015. Development and application of an electrochemical sensor modified with multi-walled carbon nanotubes and graphene oxide for the sensitive and selective detection of tetracycline. Journal of Electroanalytical Chemistry 757, 250-257.
    Wu, Z., Wang, B., Dong, S., Wang, E., 2000. Amperometric glucose biosensor based on lipid film. Biosensors and Bioelectronics 15, 143-147.
    Xie, Y.-L., Zhao, S.-Q., Ye, H.-L., Yuan, J., Song, P., Hu, S.-Q., 2015. Graphene/CeO 2 hybrid materials for the simultaneous electrochemical detection of cadmium(II), lead(II), copper(II), and mercury(II). Journal of Electroanalytical Chemistry 757, 235-242.
    Xu, D., Yang, L., Zhao, M., Zhang, J., Syed-Hassan, S.S.A., Sun, H., Hu, X., Zhang, H., Zhang, S., 2021a. Conversion and transformation of N species during pyrolysis of wood-based panels: A review. Environmental Pollution 270, 116120.
    Xu, J., Wang, Y., Hu, S., 2016. Nanocomposites of graphene and graphene oxides: Synthesis, molecular functionalization and application in electrochemical sensors and biosensors. A review. Microchimica Acta 184, 1-44.
    Xu, L., Zhang, H., Xiong, P., Zhu, Q., Liao, C., Jiang, G., 2021b. Occurrence, fate, and risk assessment of typical tetracycline antibiotics in the aquatic environment: A review. Science of The Total Environment 753, 141975.
    Xue, Y., Gao, B., Yao, Y., Inyang, M., Zhang, M., Zimmerman, A.R., Ro, K.S., 2012. Hydrogen peroxide modification enhances the ability of biochar (hydrochar) produced from hydrothermal carbonization of peanut hull to remove aqueous heavy metals: Batch and column tests. Chemical Engineering Journal 200-202, 673-680.
    Yang, H., Yan, R., Chen, H., Lee, D.H., Zheng, C., 2007. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86, 1781-1788.
    Yang, L., Liu, D., Huang, J., You, T., 2014. Simultaneous determination of dopamine, ascorbic acid and uric acid at electrochemically reduced graphene oxide modified electrode. Sensors and Actuators B: Chemical 193, 166-172.
    Yang, W., Yang, W., Kong, L., Song, A., Qin, X., Shao, G., 2018. Phosphorus-doped 3D hierarchical porous carbon for high-performance supercapacitors: A balanced strategy for pore structure and chemical composition. Carbon 127, 557-567.
    Yang, X., Cheng, H., 2020. Recent Developments of Flexible and Stretchable Electrochemical Biosensors. Micromachines 11, 243.
    Yi, Y., Wang, P., Fan, G., Wang, Z., Chen, S., Xue, T., Wen, Y., 2020. Hierarchically Porous Carbon Microsphere Doped with Phosphorus as a High Conductive Electrocatalyst for Oxidase-like Sensors and Supercapacitors. ACS Sustainable Chemistry & Engineering 8, 9937-9946.
    Yorgun, S., Yıldız, D., 2015. Slow pyrolysis of paulownia wood: Effects of pyrolysis parameters on product yields and bio-oil characterization. Journal of Analytical and Applied Pyrolysis 114, 68-78.
    Yoshioka, N., Ichihashi, K., 2008. Determination of 40 synthetic food colors in drinks and candies by high-performance liquid chromatography using a short column with photodiode array detection. Talanta 74, 1408-1413.
    Zhan, X., Hu, G., Wagberg, T., Zhan, S., Xu, H., Zhou, P., 2015. Electrochemical aptasensor for tetracycline using a screen-printed carbon electrode modified with an alginate film containing reduced graphene oxide and magnetite (Fe3O4) nanoparticles. Microchimica Acta 183, 723-729.
    Zhang, H., Wang, Z., Li, R., Guo, J., Li, Y., Zhu, J., Xie, X., 2017. TiO2 supported on reed straw biochar as an adsorptive and photocatalytic composite for the efficient degradation of sulfamethoxazole in aqueous matrices. Chemosphere 185, 351-360.
    Zhang, K., Sun, P., Faye, M.C.A.S., Zhang, Y., 2018. Characterization of biochar derived from rice husks and its potential in chlorobenzene degradation. Carbon 130, 730-740.
    Zhang, L., Yin, M., Wei, X., Sun, Y., Luo, Y., Lin, H., Shu, R., Xu, D., 2024. An aptamerelectrochemical sensor based on functional carbon nanofibers for tetracycline determination. Bioelectrochemistry 157, 108668.
    Zhang, Q.-Q., Ying, G.-G., Pan, C.-G., Liu, Y.-S., Zhao, J.-L., 2015. Comprehensive Evaluation of Antibiotics Emission and Fate in the River Basins of China: Source Analysis, Multimedia Modeling, and Linkage to Bacterial Resistance. Environmental Science & Technology 49, 6772-6782.
    Zhao, B., O'Connor, D., Zhang, J., Peng, T., Shen, Z., Tsang, D.C.W., Hou, D., 2018. Effect of pyrolysis temperature, heating rate, and residence time on rapeseed stem derived biochar. Journal of Cleaner Production 174, 977-987.
    Zheng, Y., Yu, C., Fu, L., 2023. Biochar-based materials for electroanalytical applications: An overview. Green Analytical Chemistry 7, 100081.
    Zhu, Z., Garcia-Gancedo, L., Flewitt, A.J., Moussy, F., Li, Y., Milne, W.I., 2011. Design of carbon nanotube fiber microelectrode for glucose biosensing. Journal of Chemical Technology & Biotechnology 87, 256-262.
    Zhu, Z., Xu, Z., 2020. The rational design of biomass-derived carbon materials towards next-generation energy storage: A review. Renewable and Sustainable Energy Reviews 134, 110308.
    Zornoza, R., Moreno-Barriga, F., Acosta, J.A., Muñoz, M.A., Faz, A., 2016. Stability, nutrient availability and hydrophobicity of biochars derived from manure, crop residues, and municipal solid waste for their use as soil amendments. Chemosphere 144, 122-130.
    王聖璁, 2014. 二維碳材料的能帶結構與電性傳輸機制的探討. 國立交通大學電子物理系所博士班.
    吳仁瀚, 2020. 金屬有機骨架材料 NiBTC 與還原石墨烯修飾網版印刷碳電極檢測食用色素. 輔仁大學.
    李至正, 2015. 利用白腐真菌產生的漆氧化酶和錳離子過氧化酶分解四環黴素. 微生物學系. 東吳大學.
    陳志昇, 2012. 奈米碳黑修飾電極於雌激素化合物之應用與方法開發. 化學所. 輔仁大學.
    陳東煌, 2016. 石墨烯奈米複合材料在感測及可撓式透明導電膜與儲能元件上之應用. 國立成功大學化學工程學系.
    陳柏翰, 2013. 微氣相層析晶片應用於甲醇分析.
    陳證壹, 2019. 由植物原料製備具有有機溶液吸附效能之功能性石墨烯. 國立臺灣海洋大學光電與材料科技學系碩士班.
    程梅萍, 2012. 畜牧業廢棄物中抗生素及抗藥性基因流佈研究(第3年). 行政院農業委員會畜產試驗所101年度科技計畫研究報告,行政院農業委員會畜產試驗所。.
    程梅萍, 2018. 豬糞尿和廢水中抗生素與四環素抗性基因流布研究.畜產研究.
    黃煒婷, 2018. 經磷摻雜之還原氧化石墨烯電極於同時偵測多巴胺及尿酸之應用. 化學工程學系. 國立成功大學.
    謝文陽, 2012. 台灣沿岸海域中抗生素與抗藥性細菌及抗藥性基因的分布及關係之探討研究成果報告(精簡版). 行政院國家科學委員會專題研究計畫成果報告,行政院國家科學委員會.
    林家后, 2022. 以類石墨烯生物炭摻雜碘-二氧化鈦複合光觸媒於擬太陽光光源下降解磺胺甲噁唑之研究. 土木與環境工程學系. 國立高雄大學.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE