| 研究生: | 張聞珊 Chang, Wen-shan | 
|---|---|
| 論文名稱: | 客廳數位裝置之手勢輸入系統 The Gestural Input System for Digital Devices of Living Room | 
| 指導教授: | 吳豐光 Wu, Fonggong | 
| 學位類別: | 碩士 Master | 
| 系所名稱: | 規劃與設計學院 - 工業設計學系 Department of Industrial Design | 
| 論文出版年: | 2009 | 
| 畢業學年度: | 97 | 
| 語文別: | 中文 | 
| 論文頁數: | 114 | 
| 中文關鍵詞: | 家庭影音多媒體 、認知 、手勢符號 、手勢辨識 、視覺符號 | 
| 外文關鍵詞: | visual signs, signs distinguish, home audiovisual multimedia system, cognition | 
| 相關次數: | 點閱:99 下載:2 | 
| 分享至: | 
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 | 
   現今數位家庭輸入系統高度發展緣故,使得操作、輸入的型態發展的更多元,也因此人性化介面的發展成為一大重點,本研究針對不需透過其他控制媒介的手勢輸入為基礎。
    本研究的重點針對由語意認知幫助使用者學習手勢符號,以語意認知為基礎,藉由質性與數性分析描述數位家庭─以客廳為例的立體空間手勢符號,進而推論出不同感覺語意之設計原則,根據此設計原則建構出樣本案例,並進行檢驗與評估,以說明此原則具有準確性與可行性。
    本研究內容分成兩大部分,第一部份為質性分析,第二部份為數性分析。第一階段廣泛蒐集數位影音家電產品樣本,歸納出七樣產品樣本;並蒐產品指令語彙,整理出63項指令語彙,藉由問卷調查萃取出30項常用之指令語彙,將七樣產品樣本與這30項指令語彙進行因素分析與集群分析,可獲得最終的15項指令語彙群組。
    第二階段根據15項指令語彙群組建構新的單手與雙手手勢輸入樣本,進行數量化分析。本研究共24位受測者,經過三項實驗: 學習性、混淆度及主觀評量實驗。在單手手勢系統中,反應時間為1.79秒至3.49秒、錯誤率為0%至12.5%、混淆度為0%至8%、主觀喜好度為50.3%至87.3%;雙手手勢系統中,反應時間為1.76秒至4.06秒、錯誤率為0%至16.6%、混淆度為0%至8%、主觀喜好度為43.1%至86.8%。
    本研究做為介面設計及手勢辨識系統在綜合性環境之參考依據。並對未來藉由語意認知設計手勢符號之相關設計提供參考之設計準則。
Because Home digital input application was highly developed, the development of operation and input type was various. The hand signal input system does not have any appliance and the development of human-centered interface was getting important. 
      The key point of this research is to helps the user for semantic cognition to study the graphic gesture, take semantic cognition as a foundation and employ qualitative and quantitative analyses to define the style of the Digital Family Input system : A case study on living- room. Therefore, different sensational image samples of the design principal will emerge. In accordance with this design, the principal is to develop samples. Afterwards, it is to verify and evaluate. This demonstration should be accurate and possible to undertake. 
     The content of this research has two sections. The first section is a qualitative analysis and the second section is a quantitative analysis. Stage one has selected 7 samples by Digital Family Input experiments as well as chosen 63 image words among the instruction terms. It employs a survey to choose 30 experimental image words. Factor and cluster analyses interpret 7 samples and 30 image words. Then a final 15 image words will be adopted. 
    Stage two create new single hand signal input system and both hand signal input system as samples. It uses quantitative analysis to analyze these 2 samples base on the final 15 vocabulary terms. The experiments were 24 subjects participated in the test. The test had three parts: symbol identification tests, cued response tests and symbol and set preferences. Results in the single hand signal input system: reaction time 1.79s to 3.49s、error rate 0% to 12.5%、Perplexity0% to 8%、objective 50.3% to 87.3% ; in the both hand signal input system: reaction time 1.76s to 4.06s、error rate 0% to 16.6%、Perplexity0% to 8%、objective 43.1% to 86.8%.
     The study offer results and suggestions about gesture recognition engineer and interface designer in comprehensive surrounding. This is helping us to evaluate the standard guideline of gesture symbol language as input rule of future semantic-recognized system.
Cassinelli, A., Perrin, S., Ishikawa, M., Smart Laser-Scanner for 3D Human-Machine Interface, ACM SIGCHI 2005 (CHI '05) International Conference on Human Factors in Computing Systems, Portland, OR, USA April 02 - 07, pp1138 - 1139, 2005
Chen, Y. T., Dengchuan, C., Huang, H. F., Jane, K., An Evaluation Model for Graphic Design Works, Department of Industrial Design, National Yunlin University of Science and Technology, Doului, Yunlin, Taiwan 640, R.O.C, 2002.
Christian,Ah.S., & Tombre, K., Architectural Symbol Recognition Using a Network of Constraints,Pattern Recognition Letters22(2),231-248,2001.
Fisher,J., Testing the Effect of Road , Traffic sing Information Valueon Driver Behavior, Human Factors34,231-237,1992.
Fiske,J.,Introduction to Communication Studies,ISBN 9573225204,1995.
Foley, J.D., &Wallace,V.L ., & Chan,P., The Human Factors of Computer Grsphics Interaction Techniqueu, IEEE Computer Grapgic and Application4,13-48,1984.
Frantz,J.P., & Miller,J.M., & Lehto,M.R., Must the Context Be Considered When Applying Generic Safety Symbols :A Case Study in Flammable Contact Adhesives ,Journal of Safety Research22,147-161,1991.
Gittins,D., Icon-based Human-Computer Interaction,International Journal of man-Machine Studies24,519-543,1986.
Goldman, A. E. MacDonald, S. S., The Group Depth Interview: Principles and practices, Prentice Hall, Englewood Cliffs, NJ., 1987
Greenbaum, T. L., The Handbook for Focus Group Research. Lexington Books, NY., 1993
Horton,W., The Icon Book Visual Symbols for Computer Systems and Documentation,John Wiley& sons,Inc,ISBN0-471-59901-8,1994.
Hunt, J. M., The Rehabilitation of the hand, 3rd. ed, St Louis Mosby, ISBN080162472X,1990
Neilson, J., Top Ten Mistakes in Web Design, Sunsoft Distinguished Engineer, 1996. Caplan, S., Using focus groups methodology for ergonomic design, Ergonomic, Vol.33 No.5, pp527-533, 1990
Neilson, J., Usability Engineering. California: AP PROFESSIONAL Press., pp97-155, 1993.
Neilson, J., Usability Engineering. United Kingdom edition publish by Academic press-LTD, pp224, 1993
Nespoulous, J. L., Perron, P., Lecours, A. R., The Biological Foundations of Gestures: Motor and Semiotic Aspects, Lawrence Erlbaum Associates, Hillsdale, MJ, 1986.
Niemela, M. & Saarinen, J. (2000). Visual search for grouped versus ungrouped icons in a computer interface. Human Factors, 42, 630-635.
Nordin, A. (ed.), Taxonomy and phylogeny of Buellia species with pluriseptate spores (Lecanorales, Ascomycotina),- Symb. Bot. Ups. 33(1): pp1-117, 2000
O’Donnell, P. J., Scobie, G. & Baxter I., The use of focus groups as an evaluation technique in HCI, People and Computers VI, Cambridge University Press, U.K.,pp211-214,1991.
Oka K. and Sato Y., Real-Time Fingertip Tracking and Gesture Recognition University of Tokyo Hideki Koike University of Electro-Communications, Tokyo, 2002
Piaget, J., Construction of reality in the child, London: Routledge & Kegan Paul, 1954
Plamondon, R., Srihari, S. N., On-Line and Off-Line Handwriting Recognition : a Compre-hensive Survey. IEEE Trans. On Pattern Analysis and Machine Intelligence. 22(1) pp63-84, 2000
Richards, D., & McDougall, S. (1999). Road traffic signs: How implicit category knowledge improves learning. In D. Harris (Ed.) Engineering Psychology and Cognitive Ergonomics, Vol. 3 Transportation Systems, Medical Ergonomics & Training, pp. 329-336
Schlenzig, J., Hunter, E., Jain, R., Vision based gesture interpretation using recursive estimation. In Asilomar Conference on Signals, Systems and Computers, 1994
Starner, T., “Visual Recognition of American Sign Language Using Hidden Markov Model”, Master’s Thesis, MIT Media Laboratory, February 1995
Thad Starner. Visual recognition of American Sign Language using Hidden Markov Models. Master's thesis, MIT Media Lab, July 1995.
Turing,M.,& Hannemann,J.,& Haake,J.M., Hypermedia and Cognition: Design for Comprehension.Communications of the ACM38,57-66,1995.
Wallschlaeger,C., Basic Visual Concepts and Principles for Artists,Architects and Designers, Times Mirror Pte Ltd,1996.
Weimer, D., Ganapathy, S. K., Interaction techniques using hand tracking and speech recognition, Multimedia interface design, pp109-126, 1992
Whitaker,L. A., Sommer, R., Perception of Traffic Guidance sing ContainingConflicting Symbol and Direction Information, Ergonomics29(5), pp699-711,1986.
Wickens, C. D., and J. G. Hollands. Engineering Psychology and Human Performance. 3rd ed. Upper Saddle River, NJ: Prentice-Hall Inc., 2000, pp. 513-550.
Zwaga,H.J., & Boersema,T., Evaluation of a set of Graphic Symbols, Applied Ergonomics14(1),43-54,1983.
張春興編譯,教育心理學: 三化取向的理論與實踐,東華書局,pp85-97,1996
李佳勳,「互動式媒體」-以感官多模式探討數位設計環境中人機互動介面設計與應用實例,成大建築所碩士論文,2002
林靜,家庭多媒體影音系統操作之手勢符號認知設計,成大工業設計研究所碩士論文,2006
陳俊凱,以高階模擬架構為基礎之智慧型家電代理人設計,國立中正大學電機工程學研究所碩士論文,2007
鄭麗玉,認知心理學--理論與應用。台北市:五南圖書公司,1993