| 研究生: |
陳眉羽 Chen, Mei-Yu |
|---|---|
| 論文名稱: |
可互溶磁性流體在旋轉Hele-Shaw Cell中的界面不穩定現象之研究 Study on Flow Instabilities on the Miscible Magnetic Fluid Interface in the Rotating Hele-Shaw Cell |
| 指導教授: |
溫志湧
Wen, Chih-Yung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 112 |
| 中文關鍵詞: | 開放式Hele-Shaw Cell 、封閉式Hele-Shaw Cell 、可互溶界面 、平均旋轉半徑 |
| 外文關鍵詞: | Open Hele-Shaw cell, Closed Hele-Shaw cell, Miscible ferrofluid interface, Gyration radius |
| 相關次數: | 點閱:64 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以理論推導及實驗分析來探討旋轉Hele-Shaw Cell中磁性流體與柴油間可互溶界面的不穩定現象。首先以因次分析方法得到了磁力、黏滯力、離心力、壓力和科氏力間的大小量級關係,並依此為基準設計實驗。在無磁場的旋轉Hele-Shaw Cell實驗中,可以觀察到在越高轉速下其可互溶界面呈現越不穩定現象,且產生之指狀物個數也越多。
接著,開放式的流場與封閉式流場中實驗結果幾近相同,首先可以觀察到在同種磁性流體且同磁場下,其越高轉速下其指狀化現象越加明顯,是為離心力作用;然而在同轉速之實驗下,可以觀察到前期在越高磁場下界面旋轉半徑之成長趨勢為最高,是為磁力作用,而後期低磁場實驗的旋轉半徑成長極速增強是為離心力作用,而高磁場實驗則由於不同磁場會造成其黏滯度增加程度不同,因而成長趨勢有所抑制,是為黏滯力作用。
而比較三種磁性流體之結果,可以觀察到磁性流體EMG905之成長趨勢為最快,EMG909和EMG911則排序次之,第一個因素為EMG905的初始磁化率和濃度為最高,故其擴散作用和磁力作用最為強烈;第二個因素為EMG905與柴油之密度差異最大,故在旋轉流場下由於其離心力會增加其Rayleigh-Taylor instability,故EMG905之成長趨勢為最快。
在封閉式流場之實驗中,可視為剛體運動故產生一逆向壓力梯度(無因次參數為 ∆ρ/ρ_0 ),會抑制指狀化不穩定現象之成長,故封閉式流場的旋轉半徑成長趨勢會較開放式流場之結果為慢。
最後,比較開放式流場中不同平板間距h之實驗結果,可以得到在較大之平板間距h下之旋轉半徑成長速率較快的結果,故可得到三維方向之平板間距h會對可互溶界面不穩定現象之成長造成一定的影響。
In this study, the interfacial instabilities of miscible magnetic fluids and diesel were theoretically and experimentally studied in a rotating Hele-Shaw cell. First, the dimensional analysis was used to understand the relation magnetic force, viscous force, centrifugal force, pressure force and Coriolis force. In addition, it could assist in experimental design.
Two kinds of the flow field were studied, the open Hele-Shaw cell and the closed Hele-Shaw cell. The labyrinthine fingering phenomena of the miscible magnetic fluid interface on a perpendicular magnetic field were investigated. First, the interface of miscible magnetic fluids and diesel became more unstable when the rotating speed and the consequent centrifugal force were increased without magnetic field applied.
Three ferrofluids were used in this study. To compare the results, the gyration radius will be grown fast with ferrofluid EMG905. The first reason was that the initial susceptibility and particle concentration for EMG905 were higher than that for the other two ferrofluids. So the diffusion and magnetic effects for EMG905 will be the most obvious one. The second reason was that the density difference between EMG905 and the diesel was the highest, so the Rayleigh-Taylor instability will increase for the centrifugal force.
In the first part, the subject focused on the labyrinthine fingering phenomena of the interface in an open Hele-Shaw cell. Experimental results showed that the gyration radius will be grown fast with increasing the rotating speed in the same magnetic field. Under the same rotating speed condition, the gyration radius will be grown fast with higher magnetic field in the first stage. And in the later stage, there will be some differences between the developments of gyration radius with different magnetic fields. For lower magnetic field, the growth will be demonstrated by the centrifugal force. For higher magnetic field, the viscosity will be increased because of the perpendicular magnetic field, and the viscous force will stabilize the interface.
The second part of this study focused on the experiment in a closed Hele-Shaw cell. For the closed flow field, it can be regard as a solid-body rotation and there will produce an opposite pressure force, which can help to stabilize the interface. Experimental results showed that the growth of gyration radius will be fast in an open Hele-Shaw cell. By doing so, the appearance of the opposite pressure force can be proved.
At last, the experimental results also showed that the growth of gyration radius will be fast in an open Hele-Shaw cell with higher gap. So, the three-dimensional effect played an important role in miscible magnetic fluids and diesel.
[1] 黃忠良(1988),磁流體理論應用,復漢出版社。
[2] J.-C. Bacri and R. Perzynski (1995), “"Negative-Viscosity" Effect in a Magnetic Fluid”, PHYS ICAL REVIEW LETTERS, Vol. 594, No. 11.
[3] S. Odenbach and S. Thurm (2003), “Magnetoviscous Effects in Ferrofluids”, Lecture Notes in Physics, Vol. 594, pp.185-201.
[4] C.-Y. Chen and Z.-Y. Cheng(2008), “An experimental study on Rosensweig instability of a ferrofluid droplet”, Physics of Fluids, Vol. 20.
[5] L. Rayleigh(1900), Scientific Papers II , p. 200.
[6] G. I. Taylor(1950), “The Rayleigh-Taylor Instability,” Proc. R. Soc. London, Ser. A 201, 192.
[7] S. Hill(1952), “Channeling in Packed Colums,” Chemical Engineering Science, Vol. 1, pp. 247-253.
[8] P. Saffman and G. Taylor (1958), “The Penetration of a Fluid Into a Porous Medium or Hele-Shaw Cell Containing a More Viscous Liquid, ”Proceedings of Royal Society of London Series A, Vol. 245, pp. 312-329.
[9] L. Patterson (1981), “Radial Fingering in Hele-Shaw Cell,” Journal of Fluid Mechanics, Vol. 113, pp. 513-529.
[10] D. Korteweg(1901), ”Sur La Forme Que Prennent Les Equations Du Mouvement Des Fluids Si L’on Tient Compte Des Forces Capillaries Causes Par Des Variations De Densite,” Arch. Neel. Sci. Ex. Nat. (II) 6.
[11] K. McCloud and J. Maher (1995), “Experimental Perturbation to Saffman- Taylor Flow,” Physics Report 260, pp. 139-185.
[12] Q. Li, Y. Xuan and J. Wang(2004) , “Experimental Investigations on Transport Properties of Magnetic Fluids,” Experimental Thermal and Fluid Science, Vol. 30, pp.109-116 .
[13] A. Cebers and M. M. Mayorov(1980), “Magnetostatic Instabilities in Plane Layers of Magnetizable Fluids,” Magnetohydrodynamics (N.Y.), Vol. 16, No. 1, pp. 21-27.
[14] A. Cebers and M. M. Mayorov(1980), “Structures of Interface a Bubble and Magnetic Fluid in a Field,” Magnetohydrodynamics (N.Y.), Vol. 16, 231.
[15] A. Cebers(1997), “Stabilities of Diffusion Fronts of Magnetic Particles in Porous Media (Hele-Shaw Cell) Under the Action of External Magnetic Field,” Magnetohydrodynamics, Vol. 33, No. 1, pp. 48-55.
[16] M. Lgonin and A. Cebers (2003), “Labyrinthine Instability of Miscible Magnetic Fluids,” Physics of Fluids, Vol. 15, No. 6, pp. 1734-1744.
[17] S. A. Langer, R. E. Goldstein, and D. P. Jackson(1992), ‘‘Dynamics of Labyrinthinepattern Formation in Magnetic Fluids,’’ Phys. Rev. A, Vol. 46, pp. 4894-4904.
[18] D. Jackson, R. Goldstein and A. Cebers(1994), “Hydrodynamics of Fingering Instablilities in Droplet Fluids,” Physical Review E, Vol. 50, pp. 298-309.
[19] C. Flament, G. Pacitto, J. Bacri, I. Drikis, and A. Cebers(1998), "Viscous Fingering in a Magnetic Fluid. I. Radial Hele-Shaw flow," Phys. of Fluids, Vol. 10, pp. 2464-2472 .
[20] C.Y. Chen, and C.Y. Wen(2002), “Numerical Simulations of Miscible Magnetic Flows in a Hele-Shaw Cell, Part I. Radial Flows,” Journal of Magnetism and Magnetic Matericals, Vol. 252, No. 296, pp. 296-298,Nov.
[21] C.Y. Wen, C.Y. Chen, D.C. Kuan and S.Y. Wu(2007), “Labyrinthine Instability of a Miscible Magnetic Drop,” Journal of Magnetism and Magnetic Matericals, Vol. 310, pp. e1017-e1019.
[22] C.Y. Chen(2003), “Numerical Simulation of Fingering Instabilities In Miscible Magnetic Fluids in Hele-Shaw Cell and The Effects of Korteweg Stresses,” Physics of Fluids, 15, 4.
[23] H. Hu and D. Joseph (1992), “Miscible Displacement in a Hele-Shaw Cell,” Zeitschrift für Angewandte Mathematik und Physik, Vol. 43, pp. 626-644.
[24] I. Drikis and A. Cebers(1999), “Free Boundary Problems: Theory and Applications,” Chapman and Hall/CRC .
[25] D. Jackson, R. Goldstein and A. Cebers(1994), “Hydrodynamics of Fingering Instablilities in Droplet Fluids,” Physical Review E, Vol. 50, pp. 298-309.
[26] C.Y. Wen, C.Y. Chen, and D.C. Kuan(2007), “Experimental Studies of Labyrinthine Instabilities of Miscible Ferrofluids in a Hele-Shaw Cell,” Physics of Fluids, Vol. 19, pp. 084101-1 - 084101-8.
[27] 林佳宗(2009),「不同增強速率的外加磁場及旋轉對可互溶磁性流體複雜指狀化不穩定現象之研究」,國立成功大學航太所碩士論文。
[28] 陳力魁(2011),「可互溶磁性流體在靜止及旋轉之Hele-Shaw Cell 中的不穩定現象研究」,國立成功大學航太所碩士論文。
[29] L. W. Schwartz(1989), “Instability and Fingering in a Rotating Hele–Shaw Cell or Porous Medium,” Phys. Fluids A, Vol. 1, pp. 167-169 .
[30] S. L. Waters and L. J. Cumming(2005), “Coriolis Effects in a Rotating Hele-Shaw Cell,” Physics of Fluids, Vol. 17, pp. 048101-1 - 048101-4.
[31] Ll. Carrillo, F. Magdaleno, J. Casademunt, and J. Ortín(1996), “Experiments in a Rotating Hele-Shaw Cell,” Physical Review E, Vol. 54, pp. 6260-6267.
[32] Ll. Carrillo, J. Soriano, and J. Ortín(1998), “Radial Displacement of a Fluid Annulus in a Rotating Hele-Shaw Cell,” Physics of Fluids, Vol. 11, No. 4, pp. 778-785.
[33] Ll. Carrillo, J. Soriano, and J. Ortín(2000), “Interfacial instability of a Fluid Annulus in a Rotating Hele-Shaw Cell,” Physics of Fluids, Vol. 12, No. 7, pp. 1685-1698.
[34] E. Alvarez-Lacalle, J. Ortín, and J. Casademunt(2000), “Low Viscosity Contrast Fingering in a Rotating Hele-Shaw Cell,” Physics of Fluids, Vol. 16, No. 4, pp. 908-924.
[35] J. A. Miranda(2000), ”Rotating Hele-Shaw Cells with Ferrofluids,” Physical Review E, Vol. 62, No. 2, pp. 2985-2988.
[36] D. P. Jackson and J. A. Miranda(2003), “Controlling Fingering Instabilities in Rotating Ferrofluids,” Physical Review E, Vol. 67, pp.017301-1 – 017301-4.
[37] C.Y. Chen and S.W. Wang(2002), “Interfacial Instabilities of Miscible Fluids in a Rotating Hele–Shaw Cell,” Fluid Dynamics Research 30, pp.315-330.
[38] S. L. Waters and L. J. Cummings(2005), “Coriolis effects in a rotating Hele-Shaw cell”, Physics of Fluids.
[39] C.-Y. Chen and Y.-C. Liu(2005), “Numerical simulations of miscible fluids on a rotating Hele–Shaw cell with effects of Coriolis forces”, International Journal for Numerical Methods in Fluids, pp.853-867.
[40] 官大勤(2006),「可互溶磁性流體複雜指狀化不穩定現象之實驗研究」,大葉大學機械工程研究所碩士論文。