簡易檢索 / 詳目顯示

研究生: 許文哲
Xu, Wen-Zhe
論文名稱: 外圓磨削過程之振動機制及再生顫振穩定性分析
Analysis of Grinding Vibration Mechanism and Regenerative Chatter Stability in Cylindrical Grinding Process
指導教授: 陳朝光
Chen, Cha’o-Kuang
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 209
中文關鍵詞: 動態外圓磨削力再生顫振幾何卜瓦松隨機過程尺寸效應撓度
外文關鍵詞: dynamic external cylindrical grinding force, regenerative chatter, geometric Poisson random process, size effect, deflection
相關次數: 點閱:72下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著工業蓬勃發展,產品零件所需要之精度亦日益上升,做為工件加工最後一道工序之磨削精加工,是控制精度與成品表面品質最重要製程,因此需要建立一套完整的磨削過程振動機制,找出磨削振動根源,用以改善振動問題,進而提升工件之品質。然而砂輪表面磨刃分佈具有隨機性質導致振動機制較其他加工方式複雜,因此本文將以機率統計之概念導入,建立一套統合隨機動態外圓磨削力、機台結構動態撓性之動態磨削系統,進而掌握磨削過程整體振動型態及特徵。後續先將工件磨削之再生性納入考量,再把圓柱體工件視為尤拉樑之彈性體而具有撓度,最終統整出一套外圓磨削振動系統。
    砂輪表面磨刃數分佈為一個隨機過程,所以本文將以幾何卜瓦松分佈特徵進行擬合,並以文獻實驗加以驗證磨刃數目分佈具有幾何卜瓦松隨機過程所有性質,並根據統計原理建立具有隨機特性之磨削系統。
    由於工件磨削具有再生之特性,導致磨削加工過程中會發生再生顫振,使得工件精度大打折扣,因此需要計算磨削之穩定邊界使加工免於磨削顫振困擾。然而再生顫振並非在固定某些磨削條件區域下必定發生之事件,而是有機率性得產生,因此本文將以機率分佈詮釋再生顫振主要發生區域,並對區域外之磨削條件給予風險評估,並於分析中加入了尺寸效應之影響,使得理論更加完整。
    以高速磨削、緩進給磨削、不使用頂心磨削與使用頂心磨削等磨削方式做為例子,驗證這些磨削方式對於振動之影響與現實加工實驗相符,說明磨削參數經過合理設計與調整,便可有效降低磨削振動量並提升穩定性,也證實本文磨削系統之正確性。

    This paper presents the external cylindrical grinding force model with dynamic properties. In the past studies, the external grinding force was assumed to be a gain constant, and the vibration system did not contain the dynamic characteristics of the external grinding force. However, the dynamic nature of the external cylindrical grinding force affect the grinding vibration. This paper assumes that the grit distribution of the wheel surface is a geometric Poisson random process. The dynamic model of the external cylindrical grinding force is then established using the external cylindrical grinding geometry and the grit distribution.

    This dynamic model is then combined with the dynamic compliance of the machine structure, the workpiece regenerative character, the size effect, the deformation of the workpiece to establish the external cylindrical plunge grinding vibration system. In the past studies, the workpiece regenerative chatter is a fixed critical stability boundary. This paper presents a "probability critical stability boundary" to explain the random occurrence of regenerative chatter.

    摘要 I Extended Abstract III 誌謝 X 目錄 XI 表目錄 XVI 圖目錄 XVII 符號說明 XXIV 第一章 緒論 1 1-1 前言 1 1-2 研究動機與目的 2 1-3 文獻回顧 4 1-3-1 磨削力與振動機制及系統建立相關研究 5 1-3-2 再生顫振機制建立相關研究 8 1-4 本文架構 10 第二章 動態磨削力之建模與驗證 16 2-1 基本磨削幾何理論 16 2-1-1 砂輪之表面形態 16 2-1-2 磨削切屑幾何 17 2-1-3 比磨削能 21 2-2 動態磨削力模式之建立 22 2-2-1 磨削座標系統 22 2-2-2 單一磨刃之磨削力推導 23 2-2-3 磨刃密度函數 27 2-2-4 建立動態磨削力之模式 36 2-3 動態磨削力模式功率強度頻譜分析 39 2-3-1 基本磨削函數之能量密度頻譜分析 40 2-3-2 磨刃密度函數之功率密度頻譜分析 41 2-4 磨削常數之判認 43 2-4-1 磨削能與比磨削能 43 2-4-2 磨刃分散常數之判認 45 2-5 文獻驗證及討論 47 2-5-1 基本磨削函數正確性之驗證 49 2-5-2 磨刃密度分佈驗證與磨削條件對磨削力影響之探討 54 2-6 結語 60 第三章 平面磨削振動建模 86 3-1 磨削力對徑向磨削寬度線性化推導 86 3-2 平面磨削強迫振動系統之建立 91 3-3 平面磨削振動系統驗證及討論 92 3-3-1 平面磨削振動系統之驗證 93 3-3-2 文獻實驗與系統模擬磨削振動差異性分析 98 3-3-3 結構撓性對磨削力影響之分析 100 3-4 結語 102 第四章 外圓磨削之再生顫振穩定性分析 115 4-1 外圓磨削振動系統建模 115 4-1-1 外圓磨削振動系統之建立 115 4-1-2 外圓磨削系統驗證及討論 117 4-1-3 磨削條件對外圓磨削振動之影響 121 4-2 穩定性分析 127 4-2-1 尺寸效應 128 4-2-2 外圓磨削再生顫振穩定性之分析 131 4-2-3 結果及討論 134 4-3 結語 139 第五章 外圓磨削考慮工件撓度之再生顫振穩定性分析 160 5-1 外圓工件撓度之振動分析 160 5-1-1 工件徑向振動之振動分析 160 5-1-2 工件徑向振動之自由振動分析 162 5-1-3 不使用頂心下工件徑向振動之自由振動分析 164 5-1-4 使用頂心下工件徑向振動之自由振動分析 172 5-1-5 工件徑向振動之強制振動分析 176 5-2 考慮工件撓度之外圓磨削振動系統建模與穩定性分析 179 5-3 系統穩定性結果及討論 186 5-4 結語 190 第六章 結論與建議 200 6-1 結論 200 6-2 未來研究方向與建議 203 文獻參考 205

    1. Inasaki, I., B.a. Karpuschewski, and H.-S. Lee, Grinding chatter–origin and suppression. CIRP Annals, 2001. 50(2): p. 515-534.
    2. Hillier, M., On a three-dimensional model of the surface grinding process. International Journal of Machine Tool Design and Research, 1966. 6(3): p. 109-113.
    3. Kumar, K., et al., A new method of studying the performance of grinding wheels. Journal of Engineering for Industry, 1980. 102(1): p. 80-84.
    4. Shaw, M.C., Principles of abrasive processing. 1996: Oxford University Press on Demand.
    5. Pecherer, E. and S. Malkin, Grinding of steels with cubic boron nitride (CBN). CIRP Annals-Manufacturing Technology, 1984. 33(1): p. 211-216.
    6. Malkin, S. and C. Guo, Grinding technology: theory and application of machining with abrasives. 2008: Industrial Press Inc.
    7. Malkin, S., Selection of operating parameters in surface grinding of steels. Journal of Engineering for Industry, 1976. 98(1): p. 56-62.
    8. Rubenstein, C., The mechanics of grinding. International Journal of Machine Tool Design and Research, 1972. 12(2): p. 127-139.
    9. Patnaik Durgumahanti, U.S., V. Singh, and P. Venkateswara Rao, A New Model for Grinding Force Prediction and Analysis. International Journal of Machine Tools and Manufacture, 2010. 50(3): p. 231-240.
    10. Ji, S., et al., Finite Element Analysis and Simulation about Microgrinding of SiC. Journal of Nanomaterials, 2015. 2015: p. 1-9.
    11. Lortz, W., A model of the cutting mechanism in grinding. Wear, 1979. 53(1): p. 115-128.
    12. Malkin, S. and N.H. Cook, The wear of grinding wheels: part 1—attritious wear. Journal of Engineering for Industry, 1971. 93(4): p. 1120-1128.
    13. Lichun, L., F. Jizai, and J. Peklenik, A study of grinding force mathematical model. CIRP Annals-Manufacturing Technology, 1980. 29(1): p. 245-249.
    14. Nayak, P.R., Random process model of rough surfaces. Journal of Lubrication Technology, 1971. 93(3): p. 398-407.
    15. Hecker, R.L., et al., Grinding force and power modeling based on chip thickness analysis. The International Journal of Advanced Manufacturing Technology, 2006. 33(5-6): p. 449-459.
    16. Agarwal, S. and P. Venkateswara Rao, Modeling and prediction of surface roughness in ceramic grinding. International Journal of Machine Tools and Manufacture, 2010. 50(12): p. 1065-1076.
    17. Agarwal, S. and P. Venkateswara Rao, Predictive modeling of force and power based on a new analytical undeformed chip thickness model in ceramic grinding. International Journal of Machine Tools and Manufacture, 2013. 65: p. 68-78.
    18. Hecker, R.L. and S.Y. Liang, Predictive modeling of surface roughness in grinding. International Journal of Machine Tools and Manufacture, 2003. 43(8): p. 755-761.
    19. Khare, S.K. and S. Agarwal, Predictive Modeling of Surface Roughness in Grinding. Procedia CIRP, 2015. 31: p. 375-380.
    20. Stępień, P., A probabilistic model of the grinding process. Applied Mathematical Modelling, 2009. 33(10): p. 3863-3884.
    21. Altintas, Y. and M. Weck, Chatter Stability of Metal Cutting and Grinding. CIRP Annals, 2004. 53(2): p. 619-642.
    22. Chang, H.-C. and J.J.J. Wang, A stochastic grinding force model considering random grit distribution. International Journal of Machine Tools and Manufacture, 2008. 48(12-13): p. 1335-1344.
    23. Wang, J.-J.J. and C. Zheng, An analytical force model with shearing and ploughing mechanisms for end milling. International Journal of Machine Tools and Manufacture, 2002. 42(7): p. 761-771.
    24. Wang, J.-J.J., S.Y. Liang, and W.J. Book, Convolution analysis of milling force pulsation. 1994.
    25. Snoeys, R. and D. Brown, DOMINATING PARAMETERS IN GRINDING WHEEL—AND WORKPIECE REGENERATIVE CHATTER, in Advances in Machine Tool Design and Research 1969. 1970, Elsevier. p. 325-348.
    26. Yan, Y., J. Xu, and M. Wiercigroch, Regenerative chatter in self-interrupted plunge grinding. Meccanica, 2016. 51(12): p. 3185-3202.
    27. Brian Rowe, W., Rounding and stability in centreless grinding. International Journal of Machine Tools and Manufacture, 2014. 82-83: p. 1-10.
    28. Hashimoto, F., et al., Stability Diagram for Chatter Free Centerless Grinding and its Application in Machine Development. CIRP Annals, 2000. 49(1): p. 225-230.
    29. Rowe, W. and F. Koenigsberger, The “work-regenerative” effect in centreless grinding. International Journal of Machine Tool Design and Research, 1965. 4(3): p. 175-187.
    30. Biera, J., J. Vinolas, and F. Nieto, Time-domain dynamic modelling of the external plunge grinding process. International Journal of Machine Tools and Manufacture, 1997. 37(11): p. 1555-1572.
    31. Moradi, H., et al., Vibration absorber design to suppress regenerative chatter in nonlinear milling process: Application for machining of cantilever plates. Applied Mathematical Modelling, 2015. 39(2): p. 600-620.
    32. Moradi, H., et al., Suppression of nonlinear regenerative chatter in milling process via robust optimal control. Journal of Process Control, 2013. 23(5): p. 631-648.
    33. Tsuwa, H., An investigation of grinding wheel cutting edges. Journal of Engineering for Industry, 1964. 86(4): p. 371-382.
    34. Martellotti, M., An analysis of the milling process. Trans ASME, 1941. 63: p. 677.
    35. Galliher, H., P.M. Morse, and M. Simond, Dynamics of two classes of continuous-review inventory systems. Operations Research, 1959. 7(3): p. 362-384.
    36. Minkova, L.D., The Pólya-Aeppli process and ruin problems. International Journal of Stochastic Analysis, 1900. 2004(3): p. 221-234.
    37. Sherbrooke, C.C., METRIC: A multi-echelon technique for recoverable item control. Operations Research, 1968. 16(1): p. 122-141.
    38. Grimmett, G. and D. Stirzaker, Probability and random processes. 2001: Oxford university press.
    39. 張煌權, 考慮磨粒隨機分佈之磨削力、振動及包含振動效應之表面粗糙度模式建立, in 機械工程學系碩博士班. 2008, 國立成功大學: 台南市. p. 115.
    40. Li, H. and Y.C. Shin, A study on chatter boundaries of cylindrical plunge grinding with process condition-dependent dynamics. International Journal of Machine Tools and Manufacture, 2007. 47(10): p. 1563-1572.
    41. Sugihara, K., Inasaki, I., Yonetsu, S., Stability limit of regenerative chatter in cylindrical plunge grinding -A proposal of the practical stability limit equation - (in Japanese). JSPE (46-2):201-206., 1980.
    42. Hwang, T., C.J. Evans, and S. Malkin, Size effect for specific energy in grinding of silicon nitride. Wear, 1999. 225: p. 862-867.
    43. Sabberwal, A. and F. Koenigsberger, Chip section and cutting force during the milling operation. CIRP Ann, 1961. 10(3): p. 62.
    44. Tlusty, J., Dynamics of cutting forces in end milling. Annals of CIRP, 1975. 24(1): p. 22-25.
    45. Melkote, S. and W. Endres, The importance of including size effect when modeling slot milling. Journal of manufacturing science and engineering, 1998. 120(1): p. 68-75.
    46. Chen, C.K. and Y.M. Tsao, A stability analysis of turning a tailstock supported flexible work-piece. International Journal of Machine Tools and Manufacture, 2006. 46(1): p. 18-25.
    47. Chen, C.K. and Y.M. Tsao, A stability analysis of regenerative chatter in turning process without using tailstock. The International Journal of Advanced Manufacturing Technology, 2006. 29(7-8): p. 648-654.

    無法下載圖示 校內:2023-09-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE