簡易檢索 / 詳目顯示

研究生: 汪柏岑
Wang, Bo-Tsen
論文名稱: 尺度相依擴散係數於多孔介質中放射性核種傳輸之研究
The study of scale-dependent diffusion coefficient of radionuclide transport in porous media
指導教授: 徐國錦
Hsu, Kuo-Chin
學位類別: 博士
Doctor
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 85
中文關鍵詞: 尺度效應擴散係數幾何因子解析解參數反推擴散管柱試驗MX-80膨潤土
外文關鍵詞: Scale effect, Diffusion coefficients, Geometrical factor, Analytical solution, Parameter inversion, Through-diffusion column tests, MX-80 bentonite
相關次數: 點閱:154下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於多孔介質中的異質性、耦合的輸運機制和多種化學反應過程,導致處置庫中的放射性核素行為非常複雜。放射性物種的行為評估需要對於擴散機理和回填材料的特性進行研究,以防止其洩漏到生物圈中。因此,緩衝材料(如膨潤土)對於吸收放射性核素洩漏和阻止從放射性廢物罐的遷移至關重要。長期以來,人們已經認識到非吸附示踪劑(氚)和反應性示踪劑(銫)在多孔介質中的傳輸行為差異,但尚未完全了解,因此阻礙了對緩衝物質能力的有效評估。本文致力於通過實驗室實驗和作用機理的研究來探索和解釋非吸附性和反應性示踪劑在傳輸行為上的差異。本研究提出一新穎方法(PIPIAM)透過迭代計算並結合解析解方法的新穎參數識別過程,以利用濃度數據獲得膨潤土的目標參數。通過濃度誤差分析比較了PIPIAM和圖形方法的結果。結果表明,在降低濃度誤差方面,PIPIAM優於圖形法。根據實驗觀察和反算結果,本研究提出了與尺度相依的輸運參數,包括幾何因子,擴散係數,延遲因子和分佈係數。根據結果顯示,對於相同厚度的膨潤土樣品,銫的視擴散和有效擴散係數均低於氚,這些差異可以歸因於粘電效應、原子性質和化學反應。在不同厚度的膨潤土樣品的情況下,視擴散和有效擴散係數顯示隨著膨潤土厚度的增加而增加的趨勢,而幾何因子顯示出減少的趨勢。根據實驗數據和反演結果,擴散係數和幾何因子與膨潤土的厚度具有高度相關。因此,提出了對輸運參數的尺度效應來解釋結果,這歸因於膨潤土樣品中孔隙空間的不均勻分佈。示踪劑的尺度效應行為通過回歸分析進行定量。結果可用於改進放射性核素的緩衝液設計。本文有助於闡明與膨潤土中放射性核素行為有關的運輸機制,並為獲取用於核廢料庫安全性評估的運輸參數提供了另一種方法。結果可用於改進放射性核素的緩衝液設計。

    Radionuclide behavior in disposal repositories is complex because of the spatial heterogeneity of porous media, coupled flow-transport mechanisms, and multiple chemical reaction processes. The assessment of radioactive species behavior requires research on diffusion mechanism and backfill material characteristic, with the aim to protect the leakage of nuclide to biosphere. Thence, buffer materials such as bentonite are vital for absorbing radionuclide leakage and retarding migration from radioactive waste canisters. Discrepancies in the diffusion behavior of a non-sorbing tracer (HTO) and a reactive tracer (137Cs) in porous media have long been recognized but are not yet fully understood, which hinders effective assessment of the capabilities of buffer materials. This dissertation was dedicated to exploring and explaining the discrepancies in the transport behavior of non-sorbing and reactive tracers through laboratory experiments and an investigation of contributing mechanisms. A novel parameter identification process based on an iterative and analytical method (PIPIAM) is proposed here to obtain the target parameters of bentonite using concentration data. The results of PIPIAM and the graphical method are compared through an error analysis of concentration. The results show that PIPIAM outperforms the graphical method in terms of the error reduction of the concentration. According to the experimental observations and inverse results, for a bentonite sample of the same thickness,137Cs has smaller apparent and less effective diffusion coefficients than those for HTO. These discrepancies can be attributed to the viscoelectric effects, atomic properties, and chemical reactions. In the case of bentonite samples with different thicknesses, the apparent and effective diffusion coefficients show an increasing trend with bentonite thickness, and the geometrical factor shows a decreasing trend. According to the experimental data and inverse results, the diffusion coefficients and geometrical factor are highly related to bentonite thickness. Thus, scale effects on transport parameters were proposed to explain the results, which were attributed to the nonuniform distribution of the pore space in the bentonite sample. The scale effect behavior of tracers was quantified through a regression analysis. The results can be used to improve buffer designs for radionuclides. This study is contributing to clarify the transport mechanisms related to radionuclide behavior in bentonite and the provides alternative method for acquiring transport parameters for the use in safety assessments of nuclear waste repositories. The results can be used to improve buffer designs for radionuclides.

    Abstract I 摘要 III 誌謝 V Contents VI Table lists VIII Figure lists IX Notations XI Chapter 1 Introduction 1 1.1 Background, Motivation and Literature Review 1 1.2 Overview of the Research process 7 Chapter 2 Transport theory 9 2.1 Transport mechanism 9 2.1.1 Advection 9 2.1.2 Diffusion and Dispersion 10 2.2 Advection dispersion equation 12 2.3 Transport with chemical reactions 16 2.4 Diffusion equation 17 Chapter 3 Characteristics of Bentonite 24 3.1 Mineral composition and chemical properties 24 3.2 Deformation of clay structure 25 3.3 Pore space and accessible porosity 27 3.4 Adsorption mechanism 29 3.5 Radionuclides feature 30 Chapter 4 Methodology 33 4.1 Graphical method 33 4.2 Parameter identification process based on iterative and analytical method (PIPIAM) 37 4.3 Comparison criteria 40 Chapter 5 Through diffusion column tests (TD column tests) 41 5.1 Sample preparation 41 5.2 Diffusion equipment and set-up 42 Chapter 6 Data processing 45 6.1 Parameters estimation 45 6.2 Filter effect 45 Chapter 7 Results and discussion 47 7.1 PIPIAM and graphical method 47 7.1.1 HTO result 47 7.1.2 137Cs result 49 7.2 Scale effects on HTO and 137Cs tracer 53 Chapter 8 Conclusion 61 Chapter 9 References 64 個人簡歷 82

    1. American Society for Testing and Materials (2010). Standard Test Method for Distribution Coefficients of Inorganic Species by the Batch Method. C1733-10.
    2. Ames, L. L., Rai, D. (1978) Radionuclide interactions with soil and rock media. EPA 520/6-78-0027. Vol 1. UK, London.
    3. Appelo, C, A., Wersin, P. (2007). Multicomponent diffusion modeling in clay systems with application to the diffusion of tritium, iodide and sodium in Opalinus Clay, Environmental Science & Technology, 41, 14, 5002-5007.
    4. Benes, P., Borovec, Z., Strejc, P. (1985) Interaction of radium with freshwater sediments and their mineral components: II. Kaolinite and montmorillonite. Journal of Radioanalytical and Nuclear Chemistry, 339-351.
    5. Berner, R. A. (1980). Early Diagenesis: A Theoretical Approach; Princeton University Press: Princeton, New Jersey.
    6. Birgersson M., Karnland, O. (2009). Ion equilibrium between montmorillonite interlayer space and an external solution – Consequences for diffusional transport. Geochimica et Cosmochimica Acta 73, 1908–1923.
    7. Borgesson, L., Chijimatsu, M., Fujita, T., Nguyen, T. S., Rutqvist, J., Jing. L. (2001). Thermo-hydro-mechanical characterization of a bentonite-based buffer material by laboratory tests and numerical back analyses. International Journal of Rock Mechanics and Mining Sciences, 38, 95-104.
    8. Bourg I. C., Sposito G., Bourg A. C. M. (2006). Tracer diffusion in compacted, water-saturated bentonite. Clays and Clay Minerals 54(3), 363–374.
    9. Boschan A. and Nœtinger B. (2012) Scale Dependence of Effective Hydraulic Conductivity Distributions in 3D Heterogeneous Media: A Numerical Study, Transport in Porous Media, 94, 101–121.
    10. Brook, B.W., Alonso, A., Meneley, D.A., Misak, J., Blees, T., van Erp, J.B. (2014). Why nuclear energy is sustainable and has to be part of the energy mix. Sustainable Materials and Technologies, 1-2, 8-16.
    11. Brown, G. E., Chisholm-Brause, C. J. (1989). In-situ X-ray absorption spectroscopic studies of ions at oxide–water interfaces. Chimia (Aarau), 43:248–256.
    12. Brown, G. E. (1990). Spectroscopic studies of chemisorption reaction mechanisms at oxide–water interfaces. Reviews in Mineralogy and Geochemistry, 23:309–363.
    13. Brown, G. E., Parks, G. A., O’Day, P. A. (1995). Sorption at mineral–water interfaces: Macroscopic and microscopic perspectives. p. 129–183. In D.J. Vaughan and R.A.D. Pattrick (ed.) Mineral surfaces. Mineralogical Society Ser. 5. Chapman & Hill, New York.
    14. Brook, B.W., Alonso, A., Meneley, D.A., Misak, J., Blees, T., van Erp, J.B. (2014). Why nuclear energy is sustainable and has to be part of the energy mix. Sustainable Materials and Technologies, 1-2, 8-16.
    15. Chagneau, A., Claret, F., Enzmann, F., Kersten, M., Heck, S., Madé, B., Schäfer, T. (2015). Mineral precipitation-induced porosity reduction and its effect on transport parameters in-diffusion-controlled porous media, Geochemical Transactions, 16, 1-13.
    16. Cornelia, W., Van Loon, L. (2017). Importance of Interlayer Equivalent Pores for Anion Diffusion in Clay-Rich Sedimentary Rocks, Environmental Science and Technology, 51, 1998-2006
    17. Crank, J. (1975). The mathematic of diffusion, Great Baitain, Oxford university.
    18. Ding, C., Cheng,W., Sun, Y.,Wang, X., (2015). Effects of Bacillus subtilis on the reduction of U(VI) by nano-Fe0. Geochimica et Cosmochimica Acta, 165, 86–107.
    19. Eren, E. and Afsin, B., (2008). An investigation of Cu(II) adsorption by raw and acid-activated bentonite: A combined potentiometric, thermodynamic, XRD, IR, DTA study. Journal of Hazardous Materials, 51, 682.
    20. Eriksen, T. E., Jacobsson, A. (1984). Diffusion in clay. Experimental techniques and theoretical models. KBS TR 84-05, Swedish Nuclear Fuel and Waste management Co., Stockholm, Sweden.
    21. Frank, A. C., J. Delgado. (2012) Transport Processes in Porous Media. University of Ioannina. Springer. New York Dordrecht London.
    22. Frank, H. (2010). The Uncertain Future of Nuclear Energy, The International Panel on Fissile Materials (IPFM), Princeton University, USA.
    23. García-Gutiérrez, M., Cormenzana, J.L., Missana, T. and Mingarro, M., (2004). Diffusion coefficients and accessible porosity for HTO and 36Cl in compacted FEBEX bentonite. Applied Clay Science. 26, 65-73.
    24. García-Gutiérrez, M., Cormenzana J. L., Missana1, T., Mingarro, M., Molinero, J. (2006). Overview of laboratory methods employed for obtaining diffusion coefficients in FEBEX compacted bentonite, Journal of Iberian Geology, 32: 37-53.
    25. Ghanbarian, B., Hunt, A, G., Ewing R, P., Sahimi, M. (2013). Tortuosity in Porous Media: A Critical Review. Soil Science Society of America Journal, 77, 1461-1477.
    26. Gilbert, M. (1996). Introduction to Environment Engineering and Science. Prentice Gall, New Jersey.
    27. Glaus M. A., Baeyens B., Bradbury M. H., Jakob A., Van Loon L. R., Yaroshchuk A. (2007). Diffusion of 22Na and 85Sr in montmorillonite: evidence of interlayer diffusion being the dominant pathway at high compaction. Environmental Science & Technology. 41, 478–485.
    28. Glaus, M. A., Rossé, R., Van Loon, L. R., & Yaroshchuk, A. E. (2008). Tracer diffusion in sintered stainless steel filters: Measurement of effective diffusion coefficients and implications for diffusion studies with compacted clays. Clays and Clay Minerals, 56(6), 677–685
    29. Glaus, M.A., Frick, S., Rosse, R., Van Loon, L.R. (2010). Comparative study of tracer diffusion of HTO, 22Na+ and 36Cl− in compacted kaolinite, illite and montmorillonite. Geochimica et Cosmochimica Acta, 74, 1999–2010.
    30. Ghanbarian, B., Hunt, A, G., Ewing R, P., Sahimi, M. (2013). Tortuosity in Porous Media: A Critical Review. Soil Science Society of America Journal, 77, 1461-1477.
    31. González Sánchez, F., Van Loon, L.R., Gimmi, T., Jakob, A., Glaus, M.A., Diamond, L.W. (2008). Self-diffusion of water and its dependence on temperature and ionic strength in highly compacted montmorillonite, illite and kaolinite. Applied Geochemistry, 23, 3840–3851.
    32. Greaves, G. N. (1995). New X-ray techniques and approaches to surface mineralogy. p. 87–128. In D.J. Vaughan and R.A.D. Pattrick (ed.) Mineral surfaces. Mineralogical Society Series 5. Chapman & Hill, New York.
    33. Higashihara, T., Shibuya, H., Sato, S., Kozaki, T. (2005). Activation energy for diffusion of helium in water-saturated, compacted Na-montmorillonite. Engineering Geology, 81, 365–370.
    34. Holmboe, M., Wold, S., Jonsson, M. (2012). Porosity investigation of compacted bentonite using XRD profile modeling, Journal of Contaminant Hydrology, 128(1-4):19-32.
    35. International Atomic Energy Agency (2002). Heavy Water Reactors: Status and Projected Development, Technical Reports Series No. 407
    36. International Panel on Fissile Materials (2010). The Uncertain Future of Nuclear Energy. Research Report. USA, Princeton University
    37. International Energy Agency (2019). Key World Energy Statistics 2019. Paris, France.
    38. Japan Nuclear Cycle Development Institute. (2000). H12: Project to establish the Scientific and Technical Basis for HLW Disposal in Japan, JNC, Japan.
    39. Jedinakova-Krizova, V. (1998). Migration of radionuclides in environment, Journal of Radioanalytical and Nuclear Chemistry, 229.
    40. Johanna, H. (2011). Backfilling of deposition tunnels: Use of bentonite pellets, SKB technical report, SKB-P-11-44
    41. Joseph, C., Van Loon, L.R., Jakob, A., Steudtner, R., Schmeide, K., Sachs, S., Bernhard, G. (2013). Diffusion of U(VI) in Opalinus Clay: influence of temperature and humic acid. Geochimica et Cosmochimica Acta, 109, 74–89.
    42. Kato, H., Muroi, M., Yamada, N., Ishida, H., Sato, H. (1995). Estimation of effective diffusivity in compacted bentonite. Scientific Basis for Nuclear Waste Management XXIII. Mater. Res. Soc. Symp. Proc. 353, 277–284.
    43. Kamil, S., Patrycja, B., Zofia, S. (2016) Analysis of the sorption properties of different soils using vapour adsorption and potentiometric titration methods. International Agrophysics, 369-374.
    44. Karnland, O., Pusch, R., Sandén, T. (1992). The importance of electrolyte on the physical properties of MX-80 bentonite. SKB Report AR 92-35. Stockholm, Swedish.
    45. Koretsky, C. (2000). The significance of surface complexation reactions in hydrologic systems: A geochemist’s perspective. Journal of Hydrology, 230:127–171.
    46. Kozaki, T., Liu, J., Sato, S. (2008). Diffusion mechanism of sodium ions in compacted montmorillonite under different NaCl concentration. Physics and Chemistry of the Earth 33, 957–961.
    47. Lee, C. P., Tsai, S. C., Jan, Y. L., Wei, Y. Y., Teng, S. P., Hsu, C. N. (2008). Sorption and diffusion of HTO and cesium in crushed granite compacted to different lengths. Journal of Radioanalytical and Nuclear Chemistry, 275(2), 371-378.
    48. Lee, C. P., Wu, M. C., Tsai, T. L., Wei, H. J., Men, L. C., Lin, T. Y. (2012). Comparative study on retardation behavior of Cs in crushed and intact rocks: two potential repository host rocks in the Taiwan area. Journal of Radioanalytical and Nuclear Chemistry, 293, 579-586.
    49. Lehikoinen J., Muurinen A., Valkiainen M. (1999). A consistent model for anion exclusion and surface diffusion. In: Scientific Basis for Nuclear Waste Management XXII. Mater. Res. Soc. Symp. Proc. 556, 663–670.
    50. Leroy P., Revil A., Coelho D. (2006). Diffusion of ionic species in bentonite. Journal of Colloid and Interface Science. 296, 248–255.
    51. Lichter, P. C., Tartakovsky, D, M. (2003). Stochastic analysis of effective rate constant for heterogeneous reactions, Stochastic Environmental Research and Risk Assessment, 17, 419-429.
    52. Li, M.H., Wang, TH., Teng, S.P., (2009). Experimental and numerical investigations of effect of column length on retardation factor determination: A case study of cesium transport in crushed granite. J. Hazard. Mater. 162, 530-535.
    53. Liu, W, T., Tsai, S, C., Tsai, T, L., Lee, C, P., Lee, C, H. (2017). Characteristic study for the uranium and cesium sorption on bentonite by using XPS and XANES, Journal of Radioanalytical and Nuclear Chemistry, 314(3).
    54. Liu, W, T., Tsai, S, C., Tsai, T, L., Lee, C, P., Lee, C, H. (2019). An EXAFS study for characterizing the time-dependent adsorption of cesium on bentonite, Environmental Science: Processes and Impacts, 21, 930-937.
    55. Madsen, F. T., (1998). Clay mineralogical investigations related to nuclear waste disposal. Clay Minerals, 33, 109-129.
    56. Matheron, G., (1967). Eléments pour une Théorie des Milieux Poreux. Masson, Paris.
    57. Mohamed A. H., Becker, T. (2010). An Innovative Micro-Modelling of Simultaneous Heat and Moisture Transfer during Bread Baking Using the Lattice Boltzmann Method. Food Biophysics, 5, 161-176
    58. Molera, M., Eriksen, T. (2002). Diffusion of 22Na+, 85Sr2+, 134Cs+ and 57Co2+ in bentonite clay compacted to different densities: experiments and modeling, Radiochim. Acta 90, 753–760.
    59. Molera, M., Eriksen, T. Jansson, M. (2003). Anion diffusion pathways in bentonite clay compacted to different dry densities, Applied Clay Science, 23, 69-76.
    60. Müller-Vonmoss, M., Kahr, G. (1983). Mineralogische untersuchungen von Wyoming bentonite MX-80 und Montigel. Technical Report NTB 83-13. NAGRA, Wettingen, Switzerland.
    61. Muurinen, A., Lehikoinen, J. (1995). Evaluation of phenomena affecting diffusion of cations in compacted bentonite. Nuclear Waste Commission of Finnish Power Companies, Report YJT-95-05.
    62. Muurinen A., Karnland O. and Lehikoinen J. (2007). Effect of homogenization on the microstructure and exclusion of chloride in compacted bentonite. Physics and Chemistry of the Earth, 32, 485–490.
    63. Neuweiler, I. (2006) Scale Dependence of Flow and Transport Parameters in Porous Media. Institute of Hydraulic Engineering Stuttgart.
    64. Ochs, M., Lothenbach, B., Wanner, H., Sato, H. and Yui, M. (2001). An integrated sorption-diffusion model for the calculation of consistent distribution and diffusion coefficients in compacted bentonite. Journal of Contaminant Hydrology. 47, 283–296.
    65. Oliver, S., Howard, G., Chilton, J., Chorus, I. (2006). Protecting Groundwater for Health, World Health Organization, London, UK.
    66. Osacký, M., Geramian, M., Uhlík, P., Čaplovičová, M., Danková, Z., Pálková, H., Vítková, M., Kováčová, M., Ivey, D., Liu, Q., Etsell, H. (2017). Mineralogy and Surface Chemistry of Alberta Oil Sands: Relevance to Nonaqueous Solvent Bitumen Extraction. Energy & Fuels, 31, 8910-8924.
    67. Peters, M, G., Maltman, A, J. (1999). Insights into the hydraulic performance of landfill-lining clays during deformation. Geological Society, London, Special Publications, 158, 97-106.
    68. Popp, J., Lakner, Z., Harangi-Rakos, M., Fari, M. (2014). The effect of bioenergy expansion: Food, energy, and environment. Renewable and Sustainable Energy Reviews, 32, 559-578.
    69. Pusch, R., Karnland, O., Hökmark, H. (1990). GMM — a general microstructural model for qualitative and quantitative studies on smectite clays. SKB Technical Report 90–43, Stockholm.
    70. Pusch, R., Muurinen, A., Lehikoinen,J., Bors, J., Eriksen, T. (1999). Microstructural and Chemical Parameters of Bentonite as Determinants of Waste Isolation Efficiency. European Commission, Nuclear Science and Technology, Final Report, Contract No FI4WCT95- 0012, EUR 18950 EN.
    71. Radhakrishna, H. S., Chan, H. T., Crawford, A. M., Lau, K. C. (1989). Thermal and physical properties of candidate buffer–backfill materials for a nuclear fuel waste disposal vault. Canadian Geotechnical Journal, 26(4), 629-639.
    72. Rajaram, H. (1997). Time and scale dependent effective retardation factors in heterogeneous aquifers. Advances in Water Resources, 20, 217-230.
    73. Rajaram, H. and Gelhar, L. W. (1995). Plume-scale dependent dispersion dispersion in aquifers with a wide range of scales of heterogeneity, Water Resources Research, 32, 2469-2482.
    74. Roger, S, F. (2018). Understanding Sorption Behavior and Properties of Radionuclides in the Environment.
    75. Sabine, G., Louise, J. C., David, R. T., James, A. D., Kirk, J. C. (2007). Adsorption and desorption processes in subsurface reactive transport modeling. Vadose Zone Journal, 407-435.
    76. Sato, H., Yui, M., Yoshikawa H. (1995). Diffusion behavior for Se and Zr in sodium-bentonite. In: Scientific Basis for Nuclear Waste Management XXIII. Mater. Res. Soc. Symp. Proc. 353, 269–276.
    77. Sato, H., (1999). Diffusivity database (DDB) for major rocks: database for the second progress report. JNC Tech. Rep. JNC TN8400 99-065. JNC, Tokai.
    78. Sato, H., (2000). Effect of ionic charge on effective diffusion coefficient in compacted sodium bentonite. Scientific Basis for Nuclear Waste Management XXIII. Materials Research Society Symp. Proc., 608, 267–274.
    79. Sato, H., Suzuki, S., (2003). Fundamental study on the effect of an orientation of clay particles on diffusion pathway in compacted bentonite. Applied Clay Science, 23, 51-60.
    80. Sato, H., (2005). Effects of the orientation of smectite particles and ionic strength on diffusion and activation enthalpies of I− and Cs+ ions in compacted smectite. Applied Clay Science, 29, 267–281.
    81. Shih, Y. H., T. L. Tsai, L. C. Chen, T. Y. Su, C. P. Lee, and S. C. Tsai. (2017). Determination of sorption and diffusion parameters of 99Tc in crushed granite using through-diffusion experiments. Journal of Radioanalytical and Nuclear Chemistry, 311, 1111-1116.
    82. Simonoff, M., Sergeant, C., Poulain, S., Pravikoff, M. S. (2007). Microorganisms and migration of radionuclides in environment. Comptes Rendus Chimie, 10, 1092-1107.
    83. Sun, Y., Zhang, R., Ding, C., Wang, X., Cheng, W., Chen, C., Wang, X., (2016). Adsorption of U(VI) on sericite in the presence of Bacillus subtilis: a combined batch, EXAFS and modeling techniques. Geochimica et Cosmochimica Acta, 180, 51–65.
    84. Tabak, A. Afsin, B., Aygun, S.F., Koksal E. (2007). Structural characteristics of organo-modified bentonites of different origin. J. Journal of Thermal Analysis and Calorimetry. 87, 375–381.
    85. Tachi, Y., Yotsuji, K., Seida, Y., Yui, M. (2009). Diffusion of cesium and iodine in compacted sodium montmorillonite under different saline conditions. In: Scientific Basis for Nuclear Waste Management XXXIII. Mater. Res. Soc. Symp. Proc. 1193, 545–552.
    86. Tachi Y., Nakazawa T., Ochs M., Yotsuji K., Suyama T., Seida Y., Yamada N. and Yui M. (2010). Diffusion and sorption of neptunium(V) in compacted montmorillonite: effects of carbonate and salinity. Radiochim. Acta 98, 711–718.
    87. Tachi, Y., Yotsuji, K. (2014). Diffusion and sorption of Cs+, Na+, I- and HTO in compacted sodium montmorillonite as a function of porewater salinity: Integrated sorption and diffusion model. Geochimica et Cosmochimica Acta, 132, 75-93.
    88. Takahashi, K., Charles, C., Boswell, R. W., Cox, W., Hatakeyama R. (2009). Transport of energetic electrons in a magnetically expanding helicon double layer plasma. Journal of Applied Physics, 94(19).
    89. Tambach, T., Hensen, E, M., Smit, B. (2004). Molecular Simulations of Swelling Clay Minerals. The Journal of Physical Chemistry, 108 (23), 7586-7596
    90. Taiwan Power Company. (2009). Preliminary Technical Feasibility Study for Final Disposal of Spent Nuclear Fuel - 2009 Progress Report. Taiwan.
    91. Tournassat, C., Appelo, C. (2011). Modelling approaches for anion-exclusion in compacted Na-bentonite. Geochimica et Cosmochimica Acta, 75, 3698–3710.
    92. Tsai, T. L., Lee, C. P., Lin, T. Y., Wei, H. J., Men, L. C. (2010). Evaluation of sorption and diffusion behavior of selenium in crushed granite by through-diffusion column tests. Journal of Radioanalytical and Nuclear Chemistry, 285(3), 733-739.
    93. Tsai, T. L., Tsai, S. C., Shih, Y. H., Chen, L. C., Lee, C. P., Su, T. Y. (2017). Diffusion characteristics of HTO and 99TcO4− in compacted Gaomiaozi (GMZ) bentonite. Journal of Radioanalytical and Nuclear Chemistry, 28:67.
    94. Van Brakel, J., Heertjes, P.M., (1974). Analysis of diffusion in macroporous media in terms of a porosity, a tortuosity and a constrictivity factor. International Journal of Heat and Mass Transfer, 17, 1093-1103
    95. Van Loon, L.R., Soler, J.M., Bradbury, M.H. (2003). Diffusion of HTO, 36Cl− and 125I− in Opalinus Clay samples from Mont Terri: effect of confining pressure. Journal of Contaminant Hydrology. 61, 73–83.
    96. Van Loon, L. R., Soler, J. M., Müller, W., Bradbury, M. H. (2004). Anisotropic diffusion in layered argillaceous rocks: a case study with Opalinus clay. Environmental Science & Technology, 38, 5721−5728.
    97. Van Loon, L.R., B. Baeyens, M.H. Bradbury. (2005). Diffusion and retention of sodium and strontium in Opalinus clay: Comparison of sorption data from diffusion and batch sorption measurements, and geochemical calculations. Applied Geochemistry, 20, 2351-2363.
    98. Van Loon, L.R., Glaus, M.A., Muller, W. (2007). Anion exclusion effects in compacted bentonites: Towards a better understanding of anion diffusion. Applied Geochemistry, 22, 2536–2552.
    99. Van Loon, L. R., Mibus, J. (2015). A modified version of Archie's law to estimate effective diffusion coefficients of radionuclides in argillaceous rocks and its application in safety analysis studies. Applied Geochemistry, 59, 85–94.
    100. Villar, M.V., Lloret, A. (2004). Influence of temperature on the hydro-mechanical behaviour of a compacted bentonite. Applied Clay Science, 26: 337-350.
    101. Villar, M. V., (2005). MX-80 bentonite, thermo-hydro-mechanical characterization performed at CIEMAT in the context of the prototype project. CIEMAT Technical Report: CIEMAT/DIAE/54540/2/04.
    102. Wang, B. T., Lee, C. P., Wu, M. C., Tsai, T. L., Tsai, S. C., Hsu, K. C. (2019). Novel Method for Analyzing Transport Parameters in Through-Diffusion Tests, Journal of Environmental Radioactivity, 196, 125-132.
    103. Wang, Z. F., Wang, H., Li, Q. M., Xu, M. H., Guo, Y. H., Li, J. Y., Wu, T. (2016). pH effect on Re(VII) and Se(IV) diffusion in compacted GMZ bentonite, Applied Geochemistry, 73.
    104. Wanner, H., Wersin, P., Sierro, N., (1992). Thermodynamic modelling of bentonite groundwater interaction and implications for near field chemistry in a repository for spent fuel. SKB Technical Report 92-37. Swedish Nuclear Fuel and Waste Management, Stockholm, Sweden. pp. 28.
    105. Walstra,P., (2003). Transport phenomena. In: Physical chemistry of foods. Marcel Dekker, New York, 87-136.
    106. Wheatcraft, S. W. and Tyler S. W., (1988). An explanation of scale-dependent dispersivity in heterogeneous aquifers using concepts of fractal geometry, Water Resources Research, 24(4), 566-578.
    107. Wieland, E., Wanner, H., Albinsson, Y., Wersin, P., Karnland, O. (1994). A surface chemical model of the bentonite/water interface and its implications for modelling the near field chemistry in a repository for spent fuel, SKB TR 94-26.
    108. Wu, M. C., Lee, C. P., Tsai, S. C., Liu, C. Y., Pan, C. H., Tsai, T. L., Wei, H. J., Men, L. C. (2015). Study on sorption and diffusion of Sr in crushed and intact basalt and granite investigated in through-diffusion experiments. Journal of Radioanalytical and Nuclear Chemistry, 304, 435-441.
    109. Wu, T., Dai, W., Xiao, G., Shu, F., Yao, J., Li, J., (2012). Influence of dry density on HTO diffusion in GMZ bentonite. Journal of Radioanalytical and Nuclear Chemistry. 292, 853–857.
    110. Wu, T., Wang, Z., Wang, H., Zhang, Z., Van Loon, L. (2017). Salt effects on Re(VII) and Se(IV) diffusion in bentonite, Applied Clay Science, 141, 104-110.
    111. Wu, T., Wang, Z., Tong, Y., Wang, Y., Van Loon, L. (2018). Investigation of Re (VII) diffusion in bentonite by through-diffusion and modeling techniques, Applied Clay Science, 166, 223-229.
    112. Wu, T., Yang, Y., Wang, Z., Shen, Q., Tong, Y., Wang, M. (2020). Anion Diffusion in Compacted Clays by Pore‐Scale Simulation and Experiments. Water Resources Research, 56.
    113. Zhou, R., Zhan, H., Chen, K., Peng, X. (2018). Transport in a fully coupled asymmetric stratified system: Comparison of scale dependent and independent dispersion schemes. Journal of Hydrology X, 1

    無法下載圖示 校內:2026-12-31公開
    校外:2026-12-31公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE