| 研究生: |
黃緯帆 Huang, Wei-Fan |
|---|---|
| 論文名稱: |
以旋轉套管電極合成己二腈之研究 A Study on Electrosynthesis of Adiponitrile with a Rotating Cylindrical Electrode |
| 指導教授: |
楊明長
Yang, Ming-Chang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 168 |
| 中文關鍵詞: | 丙烯腈 、己二腈 、旋轉套管電極 、電解合成 、電極幾何形狀 、紊流 |
| 外文關鍵詞: | Acrylonitrile, Adiponitrile, Rotating cylindrical electrode, Electrosynthesis, Electrode geometry, Turbulence |
| 相關次數: | 點閱:124 下載:16 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
己二腈 (Adiponitrile, ADN)是製造尼龍66的重要原料,可由丙烯腈 (Acrylonitrile, AN)透過電解二聚法 (Electrodimerization)獲得,此方法反應步驟簡單且生產成本低,是目前業界主流的生產方法。隨著全球生活用品需求大增及尼龍市場快速擴張,對其上游原料己二腈的需求也隨之增加。台灣目前仍透過進口方式取得己二腈,因為此生產技術被國際大廠壟斷,若他國刻意哄抬價格或切斷原料供應鏈,會嚴重影響本土輕重工業的生計,而台灣自行發展此技術就有其必要性了。
本研究是旋轉套管電極 (Rotating cylindrical electrode, RCE)第一次應用於己二腈電化學合成,操作簡單,易於擬合出高流速的生產條件,在陰極半徑為4 mm且轉速為3000 rpm時,電極表面流速即可達1.25 m/s,且在套管對電極的幫助下,更可提供劇烈的紊流 (Turbulence)以增加AN質傳效果,促使反應生成更多ADN。本研究在電解液加入個別四級銨鹽 (Quaternary ammonium salt, QAS),Tetraethylammonium hydroxide (TEAH)、Tetrapropylammonium hydroxide (TPAH)、Tetrabutylammonium phosphate (TBAP)、Tetrapentylammonium bromide (TB)、Methyl tributylammonium phosphate (MBAP)、Benzyltributylammonium bromide (BB)和Hexadecyltrimethylammonium hydroxide (HH),透過定電流合成法研究QAS對己二腈電解合成的影響。結果顯示,加入QAS可大幅提升ADN選擇率及電流效率,長碳鏈QAS更可促使聚合反應發生,抑制氫氣及Propionitrile (PN)生成。其中,若純粹要追求最高的產率,應選TBAP;若還要考慮低分離成本,則可選MBAP;若要追求最大比例的寡聚物 (oligomer),應選BB;若要追求最高的主產物電流效率及AN利用效率 (AN utilization),應選HH。
本研究也探討各種操作條件對己二腈電解合成的影響,如丙烯腈初始濃度、電流密度、反應時間、陰極轉速及電極幾何形狀對選擇率、電流效率、AN utilization、轉化率及產率的影響。透過凝膠滲透色譜儀得知,電解後的有機相溶液中含有六聚物及九聚物,水相溶液中含有分子量約650之十二聚物,代表反應能聚合出大分子,但透過氣相層析儀得知大分子的含量極少。另外透過感應耦合電漿光學發射光譜儀得知,工作電極和對電極會因操作電流過大而溶解出鉛及鐵元素,須加入螯合劑Ethylenediaminetetraacetic acid (EDTA)。也觀察到AN會在陽極氧化,降低AN利用效率,使用適當AN濃度、低電流密度、高陰極轉速及大面積之對電極可降低此問題。反應初期AN濃度較高,容易發生氧化,且消耗較多AN,傾向生成ADN及trimer;反應中後期由於AN降低,傾向生成PN。
AN反應為質傳控制,非產氫反應。高AN初始濃度及低電流密度有利於聚合反應;反之有利於質子化。高陰極轉速可使擴散層厚度變薄,降低阻力,提升AN質傳速率,有利聚合產生更多ADN及trimer,同時抑制氫氣及副反應;反之則無法有效質傳,傾向生成PN。
電極幾何形狀對己二腈電解合成的影響從大到小為陰極半徑,電極長度,電極間距。同時選用大陰極半徑、小陽極半徑及長電極長度,並操作在高陰極轉速,可達最劇烈的紊流狀態,具有最好的ADN選擇率及電流效率,同時抑制副反應及氫氣的生成。當陰極及陽極半徑分別為4及8 mm,兩者長度均為40 mm,dimensionless time為0.25且陰極轉速為3000 rpm時,產率為0.34 g/cm2⸱hr且ADN電流效率為84 %。
Adiponitrile (ADN) is an important raw material to produce nylon 66, which can be produced from Acrylonitrile (AN) through electrodimerization. A rotating cylindrical electrode (RCE) was used in the electrosynthesis of ADN for the first time. The RCE provides turbulence to promote mass transfer of AN for ADN formation. This study explored the influence of various variables on the electrosynthesis of ADN, such as Quaternary ammonium salt (QAS), initial concentration of AN, current density, reaction time, electrode rotation rate and electrode geometry on the conversion, selectivity, current efficiency, AN utilization and yield.
The results showed that adding QAS could greatly improve ADN performance. QAS with the long carbon chain could promote the polymerization and inhibit the generation of hydrogen and Propionitrile (PN). Among them, Tetrabutylammonium phosphate (TBAP) had the highest yield, Methyl tributylammonium phosphate (MBAP) had the low separation cost and high yield, Benzyltributylammonium bromide (BB) had the largest proportion of oligomers, Hexadecyltrimethylammonium hydroxide (HH) had the highest current efficiency and AN utilization of total. Higher AN concentration and lower current density were beneficial to the polymerization. On the contrary, it was suitable for protonation. Higher rotation rate could decrease the diffusion layer thickness and increase the mass transfer of AN, produce more ADN and trimer, and inhibit hydrogen and side reactions. Conversely, AN could not mass transfer well at low rotation rate, the reaction tended to generate PN. Total conversion of AN, including consumption of AN on the anode, was reduced at a high rotation rate and dimensionless time larger than 0.25 when the AN concentration was low. The effects of electrode geometry from large to small were cathode radius, electrode length and electrode spacing. Higher turbulence, due to a larger cathode radius, longer electrode length and smaller electrode spacing, produced ADN more efficiently. The highest yield among the results was 0.34 g/cm2⸱hr with the highest ADN current efficiency of 84 % at a dimensionless time of 0.25 and cathode rotation rate of 3000 rpm.
1. Firouzi, E., et al., An Overview of Acrylonitrile Production Methods: Comparison of Carbon Fiber Precursors and Marketing. Mini-Reviews in Organic Chemistry, 2020. 17(5): p. 570-588.
2. Zhu, Y., et al., A review of adiponitrile industrial production processes and associated atom economies. Chinese Science Bulletin, 2015. 60(16): p. 1488-1501.
3. Karimi, F., S.N. Ashrafizadeh, and F. Mohammadi, Process parameter impacts on adiponitrile current efficiency and cell voltage of an electromembrane reactor using emulsion-type catholyte. Chemical Engineering Journal, 2012. 183: p. 402-407.
4. Brazdil, J.F., Strategies for the selective catalytic oxidation of alkanes. Topics in Catalysis, 2006. 38(4): p. 289-294.
5. Acrylonitrile (ACN): 2020 World Market Outlook and Forecast up to 2029(Coronavirus Impact Assessment - Special Edition). Merchant Research & Consulting Itd, 2020: p. 178.
6. Market, I., Acrylonitrile. Chemical Economics Handbook, 2019: p. 6-110.
7. Danly, D.E., Development and Commercialization of the Monsanto ElectrochemicalA diponitrile Process. Journal of The Electrochemical Society, 1984. 131: p. 435-442.
8. Lee, Y., et al., Hydrogenation of Adiponitrile to Hexamethylenediamine over Raney Ni and Co Catalysts. Applied Sciences, 2020. 10(21).
9. Ding, X., C. Wu, and Y. Wang, New reaction route for bio-based adiponitrile production: Towards the rational design of the reactants and reaction pathways. Chinese Science Bulletin, 2019. 65(5): p. 401-409.
10. 马淳安, 有机电化学合成导论. 2002, 北京: 科學出版社.
11. 张龙,贡长生,代斌, 绿色化学. 2014: 华中科技大学出版社.
12. 李进军,吴峰, 绿色化学导论. 2015, 武汉: 武汉大学出版社.
13. Allen J. Bard, L.R., Electrochemical methods : fundamentals and applications. 1980: John Wiley & Sons, Inc.
14. BAIZER, M.M., Prospects for further industrial applications of organic electrosynthesis. JOURNAL OF APPLIED ELECTROCHEMISTRY, 1980. 10: p. 285-290.
15. 王歡, 陸., 有机电化学合成简谈. 電化學, 2011. 17(4): p. 1-7.
16. Toshio Fuchigami, M.A., Shinsuke Inagi, Fundamentals and Applications of Organic Electrochemistry: Synthesis, Materials, Devices. 2014: John Wiley & Sons, Ltd.
17. 郑俊生, 张., 王明霞, 袁渭康, 一种用于有机电化学合成过程的纳米碳纤维电催化电极的制备, 中華人民共和國國家知識產權局, Editor. 2006: 中國.
18. Blanco, D.E.L., B. Modestino, M. A., Optimizing organic electrosynthesis through controlled voltage dosing and artificial intelligence. Proc Natl Acad Sci U S A, 2019. 116(36): p. 17683-17689.
19. Blanco, D.E., A.Z. Dookhith, and M.A. Modestino, Controlling Selectivity in the Electrocatalytic Hydrogenation of Adiponitrile through Electrolyte Design. ACS Sustainable Chemistry & Engineering, 2020. 8(24): p. 9027-9034.
20. Blanco, D.E., et al., Insights into membrane-separated organic electrosynthesis: the case of adiponitrile electrochemical production. Reaction Chemistry & Engineering, 2020. 5(1): p. 136-144.
21. Belhaj, A.F., et al., The effect of surfactant concentration, salinity, temperature, and pH on surfactant adsorption for chemical enhanced oil recovery: a review. Journal of Petroleum Exploration and Production Technology, 2019. 10(1): p. 125-137.
22. Kert, M. and B. Simončič, The influence of nonionic surfactant structure on the thermodynamics of anionic dye–cationic surfactant interactions in ternary mixtures. Dyes and Pigments, 2008. 79(1): p. 59-68.
23. G. Kume, M.G., George Italo Pitombeira Nunes, Review on Anionic/Cationic Surfactant Mixtures. Journal of Surfactants and Detergents, 2008. 11: p. 1–11.
24. 闫鹏飞, 精细化学品化学精细化学品化学. 2004: 化学工业出版社.
25. 尹卫平,吕本莲, 精细化工产品及工艺. 2009: 华东理工大学出版社.
26. 董国君,苏玉, 表面活性剂化学. 2009: 北京理工大学出版社.
27. Gadhave, A., Determination of Hydrophilic-Lipophilic Balance Value International Journal of Science and Research, 2014. 3: p. 573-575.
28. DAVIES, J.T., A quantitative kinetic theory of emulsion type, I. Physical chemistry of the emulsifying agent. Gas/Liquid and Liquid/Liquid Interface, 1957: p. 426–38.
29. Daniela E. Blanco, Aaliyah Z. Dookhith, and M.A. Modestino, Enhancing selectivity and efficiency in the electrochemical synthesis of adiponitrile. Reaction Chemistry & Engineering, 2019. 4(1): p. 8-16.
30. Seko M, M.K., Yokohama Y M, et al, Adiponitrile production by the electrolytic of hydrodimerization of acrylonitrile. US Patent, 1971-07-27.
31. Baizer, M.M., Electrolytic Reductive Coupling: I . Acrylonitrile. Journal of the Electrochemical Society, 1964. 111: p. 215-22.
32. Beck, F., Electrosynthesis of adiponitrile in undivided cells. Journal of Applied Electrochemistry, 1972. 2: p. 59-69.
33. Karimi, P.F., F. Mohammadi, and S.N. Ashrafizadeh, An Experimental Study of the Competing Cathodic Reactions in Electrohydrodimerization of Acrylonitrile. Journal of The Electrochemical Society, 2011. 158(12).
34. Blanco, D.E., et al., Effect of Electrolyte Cations on Organic Electrosynthesis: The Case of Adiponitrile Electrochemical Production. Journal of The Electrochemical Society, 2020. 167(15).
35. Mahito Atobe, M.S., Tsutomu Nonaka, Ultrasonic effects on electroorganic processes: Part 17. Product selectivity control in cathodic reduction of acrylonitrile. Ultrasonics Sonochemistry, 2000. 7(3): p. 103–107.
36. K. Scott, B.H., The influence of mass transfer on the electrochemical synthesis of adiponitrile. Chemical Engineering and Processing: Process Intensification, 1993. 32(4): p. 253-260.
37. Suwanvaipattana, P., et al., Modeling of electro-organic synthesis to facilitate cleaner chemical manufacturing: Adiponitrile production. Journal of Cleaner Production, 2017. 142: p. 1296-1308.
38. Patrick J. Kinlen and C.J.H. King, Mechanistic studies of the electrohydrodimerization of acrylonitrile. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1991. 304(1-2): p. 133-151.
39. Scott, K., et al., A Reaction Model for the Electrochemical Synthesis of Adiponitrile. Chemical Engineering & Technology, 1990. 13(1): p. 376-383.
40. Beck, F., Cathodic Dimerization. Angewandte Chemie International Edition, 1972. 11(9): p. 760-781.
41. Li, B.-Y., W.-F. Huang, and M.-C. Yang, Electrodimerization of acrylonitrile with a rotating rod electrode. Journal of the Taiwan Institute of Chemical Engineers, 2020. 115: p. 13-19.
42. Matthew Watson, D.P., and David W. Sopher, A Microelectrode Study of Competing Electrode Reactions in the Commercial Process for the Hydrodimerization of Acrylonitrile to Adiponitrile. Journal of The Electrochemical Society, 2000. 147: p. 3751-3758.
43. Costentin, C. and J.-M. Savéant, Dimerization of electrochemically generated ion radicals: mechanisms and reactivity factors. Journal of Electroanalytical Chemistry, 2004. 564: p. 99-113.
44. Haines, A.N., The mathematical modelling of industrial electrolytic reactions, in Department of Chemical Engineering. 1987, Teesside Polytechnic: Middlesbrough, Cleveland.
45. Li, B.-Y., A study on the influence of electrosynthesis condition for adiponitrile in a rotating rod electrode system, in Department of Chemical Engineering. 2019, National Cheng Kung University: Tainan, Taiwan.
46. Couper, A.M., D. Pletcher, and F.C. Walsh, Electrode materials for electrosynthesis. Chemical Reviews, 1990. 90(5): p. 837-865.
47. G. Piccardi, L.N., F. Pergola, R. Guidelli, Mechanism of electrohydrodimerization of acrylonitrile on mercury from aqueous solutions. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 10 April 1984. 164(1): p. 145-166.
48. Pletcher, D., Walsh, F.C., Industrial Electrochemistry. 2 ed. 1990, Heidelberg: Springer Netherlands.
49. Pintauro, Y.S.P.N., The electrochemical synthesis of aminonitriles I. H-cell studies with adiponitrile and azelanitrile. Journal of Applied Electrochemistry 1991. 21: p. 21–27.
50. Chiang, H.-J., The Manifold Shape and Flow Channel Design of an Electrolytic Cell, in Department of Mechanical Engineering. 2017, National Cheng Kung University: Tainan, Taiwan. p. 119.
51. F.C. Walsh, G.K., A.H. Nahlé, J.A. Wharton, L.F.Arenas, The rotating cylinder electrode for studies of corrosion engineering and protection of metals—An illustrated review. Corrosion Science, 2017. 123: p. 1-20.
52. GABE, D.R., The rotating cylinder electrode. JOURNAL OF APPLIED ELECTROCHEMISTRY, 1974. 4: p. 91-108.
53. Gabe, D.R., et al., The rotating cylinder electrode: its continued development and application. Journal of Applied Electrochemistry, 1998. 28(8): p. 759-780.
54. Llongueras, R.G.-M.J.M.-F.R.D.-R.J.G., Rotating Cylinder Electrode Study on the Influence of Turbulent Flow, on the Anodic and Cathodic Kinetics of X52 Steel Corrosion, in H2S Containing Solutions, in NACE International. 2004: New Orleans.
55. Shen, C., et al., Mass transfer of dissolved oxygen using rotating cylinder electrode under bulk boiling conditions. International Journal of Heat and Mass Transfer, 2014. 70: p. 162-168.
56. Jang, J.-Y.G., Yu-Feng, Numerical Simulation of a Two-Phase Flow for the Acrylonitrile Electrolytic Adiponitrile Process in a Vertical/Horizontal Electrolysis Cell. Energies, 2018. 11(10).
57. Xun Huang, L.T., Ling Zhang, Cunpu Li, Zidong Wei, Coverage-dependent acrylonitrile adsorption and electrochemical reduction kinetics on Pb electrode. Chemical Engineering Journal, 2020. 382.
58. Jang, J.-Y.H., Yu-Xian Cheng, Chin-Hsiang, The effects of geometric and operating conditions on the hydrogen production performance of a micro-methanol steam reformer. Chemical Engineering Science, 2010. 65(20): p. 5495-5506.
59. Tae, B.S., J. Lee, and Y.W. Park, A study on synthesis of adiponitrile by electrohydrodimerization. Journal of the Korean Industrial and Engineering Chemistry, 1995. 6: p. 834–841.
60. Allen J. Bard, L.R.F., Electrochemical Methods: Fundamentals and Applications. 2001, New York: John Wiley and Sons.
61. Xia, W., et al., Earth-Abundant Nanomaterials for Oxygen Reduction. Angew Chem Int Ed Engl, 2016. 55(8): p. 2650-76.
62. Helmholtz, H., Studien über elektrische Grenzschichten. 1879: Annalen der Physik.
63. Gouy, G., Sur la constitution de la charge ´electrique `a la surface d’un ´electrolyte. Journal of Physics, 1910. 9: p. 457-468.
64. Chapman, D.L., A contribution to the theory of electrocapillarity. Philosophical Magazine, Series 6, 1913. 25(148): p. 475-481.
65. Bhattacharjee, J.H.M., Electrokinetic and Colloid Transport Phenomena. 2006, Hoboken, NJ: John Wiley & Sons.
66. Stern, H.O., Zur theorie der elektrolytischen doppelschicht. Zeitschrift für Elektrochemie und angewandte physikalische Chemie, 1924. 30(21-22): p. 508-516.
67. Grahame, D.C., The Electrical Double Layer and the Theory of Electrocapillarity. Chemical Reviews, 1947: p. 441–501.
68. Pilon, L., H. Wang, and A. d’Entremont, Recent Advances in Continuum Modeling of Interfacial and Transport Phenomena in Electric Double Layer Capacitors. Journal of The Electrochemical Society, 2015. 162(5): p. A5158-A5178.
69. Asahara Teruzo, S.M., Arai Takeshi, A Mechanistic Approach to the Electrolytic Reductive Dimerization. Bulletin of the Chemical Society of Japan, 1969. 42(5): p. 1316-1321.
70. Prentice, G.A., Electrochemical Engineering Principles. 1990: Prentice Hall.
71. Newman, J.S., Electrochemical Systems. 1991, Englewood Cliffs, New Jersey: Prentice Hall, Inc.
72. Braun, R.D., Introduction to instrumental analysis. 1987: McGraw-Hill College.
73. Turner, D., Gas Chromatography – How a Gas Chromatography Machine Works, How To Read a Chromatograph and GCxGC. Analysis & Separations from Technology Networks 2021.
74. Kolapkar, S., Pyrolysis of Fiber-Plastic Waste Blends, in Mechanical Engineering. 2018, MICHIGAN TECHNOLOGICAL UNIVERSITY.
75. 王平, 高效液相色谱在中药研究中的应用. 2010: 冶金工业出版社.
76. Aryal, S., Gel Permeation Chromatography. 2019, Microbe Notes.
77. C.M. Starks, M.H., Phase-transfer catalysis: fundamentals, applications, and industrial perspectives. 2012: Springer Netherlands.
78. 张明森, 精细有机化工中间体全书. 2008: 化学工业出版社.