簡易檢索 / 詳目顯示

研究生: 黃緯帆
Huang, Wei-Fan
論文名稱: 以旋轉套管電極合成己二腈之研究
A Study on Electrosynthesis of Adiponitrile with a Rotating Cylindrical Electrode
指導教授: 楊明長
Yang, Ming-Chang
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 168
中文關鍵詞: 丙烯腈己二腈旋轉套管電極電解合成電極幾何形狀紊流
外文關鍵詞: Acrylonitrile, Adiponitrile, Rotating cylindrical electrode, Electrosynthesis, Electrode geometry, Turbulence
相關次數: 點閱:124下載:16
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 己二腈 (Adiponitrile, ADN)是製造尼龍66的重要原料,可由丙烯腈 (Acrylonitrile, AN)透過電解二聚法 (Electrodimerization)獲得,此方法反應步驟簡單且生產成本低,是目前業界主流的生產方法。隨著全球生活用品需求大增及尼龍市場快速擴張,對其上游原料己二腈的需求也隨之增加。台灣目前仍透過進口方式取得己二腈,因為此生產技術被國際大廠壟斷,若他國刻意哄抬價格或切斷原料供應鏈,會嚴重影響本土輕重工業的生計,而台灣自行發展此技術就有其必要性了。
    本研究是旋轉套管電極 (Rotating cylindrical electrode, RCE)第一次應用於己二腈電化學合成,操作簡單,易於擬合出高流速的生產條件,在陰極半徑為4 mm且轉速為3000 rpm時,電極表面流速即可達1.25 m/s,且在套管對電極的幫助下,更可提供劇烈的紊流 (Turbulence)以增加AN質傳效果,促使反應生成更多ADN。本研究在電解液加入個別四級銨鹽 (Quaternary ammonium salt, QAS),Tetraethylammonium hydroxide (TEAH)、Tetrapropylammonium hydroxide (TPAH)、Tetrabutylammonium phosphate (TBAP)、Tetrapentylammonium bromide (TB)、Methyl tributylammonium phosphate (MBAP)、Benzyltributylammonium bromide (BB)和Hexadecyltrimethylammonium hydroxide (HH),透過定電流合成法研究QAS對己二腈電解合成的影響。結果顯示,加入QAS可大幅提升ADN選擇率及電流效率,長碳鏈QAS更可促使聚合反應發生,抑制氫氣及Propionitrile (PN)生成。其中,若純粹要追求最高的產率,應選TBAP;若還要考慮低分離成本,則可選MBAP;若要追求最大比例的寡聚物 (oligomer),應選BB;若要追求最高的主產物電流效率及AN利用效率 (AN utilization),應選HH。
    本研究也探討各種操作條件對己二腈電解合成的影響,如丙烯腈初始濃度、電流密度、反應時間、陰極轉速及電極幾何形狀對選擇率、電流效率、AN utilization、轉化率及產率的影響。透過凝膠滲透色譜儀得知,電解後的有機相溶液中含有六聚物及九聚物,水相溶液中含有分子量約650之十二聚物,代表反應能聚合出大分子,但透過氣相層析儀得知大分子的含量極少。另外透過感應耦合電漿光學發射光譜儀得知,工作電極和對電極會因操作電流過大而溶解出鉛及鐵元素,須加入螯合劑Ethylenediaminetetraacetic acid (EDTA)。也觀察到AN會在陽極氧化,降低AN利用效率,使用適當AN濃度、低電流密度、高陰極轉速及大面積之對電極可降低此問題。反應初期AN濃度較高,容易發生氧化,且消耗較多AN,傾向生成ADN及trimer;反應中後期由於AN降低,傾向生成PN。
    AN反應為質傳控制,非產氫反應。高AN初始濃度及低電流密度有利於聚合反應;反之有利於質子化。高陰極轉速可使擴散層厚度變薄,降低阻力,提升AN質傳速率,有利聚合產生更多ADN及trimer,同時抑制氫氣及副反應;反之則無法有效質傳,傾向生成PN。
    電極幾何形狀對己二腈電解合成的影響從大到小為陰極半徑,電極長度,電極間距。同時選用大陰極半徑、小陽極半徑及長電極長度,並操作在高陰極轉速,可達最劇烈的紊流狀態,具有最好的ADN選擇率及電流效率,同時抑制副反應及氫氣的生成。當陰極及陽極半徑分別為4及8 mm,兩者長度均為40 mm,dimensionless time為0.25且陰極轉速為3000 rpm時,產率為0.34 g/cm2⸱hr且ADN電流效率為84 %。

    Adiponitrile (ADN) is an important raw material to produce nylon 66, which can be produced from Acrylonitrile (AN) through electrodimerization. A rotating cylindrical electrode (RCE) was used in the electrosynthesis of ADN for the first time. The RCE provides turbulence to promote mass transfer of AN for ADN formation. This study explored the influence of various variables on the electrosynthesis of ADN, such as Quaternary ammonium salt (QAS), initial concentration of AN, current density, reaction time, electrode rotation rate and electrode geometry on the conversion, selectivity, current efficiency, AN utilization and yield.
    The results showed that adding QAS could greatly improve ADN performance. QAS with the long carbon chain could promote the polymerization and inhibit the generation of hydrogen and Propionitrile (PN). Among them, Tetrabutylammonium phosphate (TBAP) had the highest yield, Methyl tributylammonium phosphate (MBAP) had the low separation cost and high yield, Benzyltributylammonium bromide (BB) had the largest proportion of oligomers, Hexadecyltrimethylammonium hydroxide (HH) had the highest current efficiency and AN utilization of total. Higher AN concentration and lower current density were beneficial to the polymerization. On the contrary, it was suitable for protonation. Higher rotation rate could decrease the diffusion layer thickness and increase the mass transfer of AN, produce more ADN and trimer, and inhibit hydrogen and side reactions. Conversely, AN could not mass transfer well at low rotation rate, the reaction tended to generate PN. Total conversion of AN, including consumption of AN on the anode, was reduced at a high rotation rate and dimensionless time larger than 0.25 when the AN concentration was low. The effects of electrode geometry from large to small were cathode radius, electrode length and electrode spacing. Higher turbulence, due to a larger cathode radius, longer electrode length and smaller electrode spacing, produced ADN more efficiently. The highest yield among the results was 0.34 g/cm2⸱hr with the highest ADN current efficiency of 84 % at a dimensionless time of 0.25 and cathode rotation rate of 3000 rpm.

    摘要 I 誌謝 XI 目錄 XIII 圖目錄 XVI 表目錄 XXV 第一章 緒論 1 1.1 丙烯腈介紹 1 1.1.1 歷史 1 1.1.2 特性與應用 1 1.2 己二腈介紹 3 1.2.1 特性與應用 3 1.2.2 市場現狀 3 1.3 有機電化學合成 4 1.3.1 原理 4 1.3.2 展望 6 1.3.3 電化學系統 7 1.3.3.1 電源控制 7 1.3.3.2 電解槽 7 1.3.3.3 電極材料 8 1.3.4 隔離膜(離子交換膜) 8 1.3.5 電解質 8 1.4 界面活性劑 9 1.4.1 陽離子界面活性劑 9 1.4.2 陰離子界面活性劑 9 1.4.3 兩性離子界面活性劑 9 1.4.4 非離子界面活性劑 10 1.4.5 親水親油平衡值 (HLB值) 10 第二章 原理與文獻回顧 12 2.1 己二腈主要合成方法 12 2.1.1 己二酸氨化脫水法 (Adipic acid ammoniation dehydration method) 12 2.1.2 丁二烯氫氰化法 (Butadiene Hydrocyanation method) 14 2.1.3 5-羥甲基糠醛法 (5-Hydroxymethylfurfural method) 15 2.1.4 丙烯腈電解二聚法 (Acrylonitrile electrodimerization method) 16 2.1.4.1 反應機制 17 2.1.4.2 合成條件的影響 22 2.1.5 各種己二腈合成方法比較 30 2.2 電化學原理 31 2.2.1 電化學反應過程 31 2.2.2 電子轉移控制與質傳控制之關係 34 2.2.3 電雙層 35 2.2.4 循環伏安法 (Cyclic Voltammetry, CV) 37 2.2.5 線性掃描法 (Linear Sweep Voltammetry, LSV) 37 2.2.6 電化學阻抗圖譜 (Electrochemical Impedance Spectroscopy, EIS) 38 2.3 旋轉電極裝置 40 2.4 氣相層析法 (Gas Chromatography, GC) 43 2.5 氣相層析質譜儀 (Gas Chromatography-Mass Spectrophotometer, GC-MS) 45 2.6 凝膠滲透色譜 (Gel Permeation Chromatography, GPC) 45 2.7 感應耦合電漿光學發射光譜儀 (Inductively Coupled Plasma Optical Emission Spectroscopy, ICP-OES) 47 2.8 研究動機與目的 48 第三章 實驗方法 49 3.1 實驗藥品 49 3.2 實驗儀器設備 51 3.3 實驗溶液配置 52 3.4 電化學實驗 53 3.4.1 電化學裝置 53 3.4.2 電極前處理 55 3.4.3 電化學特性分析 55 3.4.4 定電流合成己二腈 56 3.5 氣相層析法 57 3.5.1 氣相層析儀儀器參數及條件 57 3.5.2 定性分析 58 3.5.3 定量分析 60 3.6 數據分析 63 3.6.1 選擇率 (Selectivity) 63 3.6.2 電流效率 (Current efficiency) 64 3.6.3 AN利用效率 (AN utilization) 65 3.6.4 轉化率 (Conversion) 66 3.6.5 莫耳比值 (Mole ratio) 66 3.6.6 產率 (Yield) 67 第四章 實驗結果與討論 68 4.1 基本電化學性質分析 68 4.1.1 線性掃描曲線 68 4.1.2 吸附行為 70 4.1.3 己二胺電化學合成之可行性 72 4.2 化學定性及定量分析 74 4.2.1 GC-MS 74 4.2.2 GPC 74 4.2.3 ICP-OES 76 4.2.4 GC分析時間延長 78 4.2.5 陽極反應 79 4.2.6 電解質穩定性 80 4.3 四級銨鹽的效應 81 4.3.1 有無添加四級銨鹽的效應 81 4.3.2 四級銨鹽濃度的效應 87 4.3.3 完全對稱之四級銨鹽的效應 92 4.3.4 總碳數相似之四級銨鹽結果比較 96 4.3.5 單一不同取代基之四級銨鹽結果比較 100 4.3.6 雙成份四級銨鹽 106 4.4 丙烯腈初始濃度的效應 108 4.5 電流密度的效應 111 4.6 反應時間的效應 114 4.6.1 電流密度 114 4.6.2 陰極轉速 118 4.7 陰極半徑的效應 122 4.7.1 相同陰極轉速 122 4.7.2 相同陰極表面流速 126 4.8 電極間距的效應 129 4.8.1 固定內徑,改變外徑 129 4.8.2 固定外徑,改變內徑 133 4.8.3 固定內徑與外徑之間的距離 138 4.9 電極之間長度的效應 142 4.9.1 固定內徑長度,改變外徑長度 143 4.9.2 同步改變內徑與外徑長度 145 4.10 綜合結果與討論 152 4.11 代表性數據比較 152 第五章 結論 156 參考文獻 157 附錄 162 1. 3D列印反應槽 162 2. EIS數據 166 3. 簡歷 168

    1. Firouzi, E., et al., An Overview of Acrylonitrile Production Methods: Comparison of Carbon Fiber Precursors and Marketing. Mini-Reviews in Organic Chemistry, 2020. 17(5): p. 570-588.
    2. Zhu, Y., et al., A review of adiponitrile industrial production processes and associated atom economies. Chinese Science Bulletin, 2015. 60(16): p. 1488-1501.
    3. Karimi, F., S.N. Ashrafizadeh, and F. Mohammadi, Process parameter impacts on adiponitrile current efficiency and cell voltage of an electromembrane reactor using emulsion-type catholyte. Chemical Engineering Journal, 2012. 183: p. 402-407.
    4. Brazdil, J.F., Strategies for the selective catalytic oxidation of alkanes. Topics in Catalysis, 2006. 38(4): p. 289-294.
    5. Acrylonitrile (ACN): 2020 World Market Outlook and Forecast up to 2029(Coronavirus Impact Assessment - Special Edition). Merchant Research & Consulting Itd, 2020: p. 178.
    6. Market, I., Acrylonitrile. Chemical Economics Handbook, 2019: p. 6-110.
    7. Danly, D.E., Development and Commercialization of the Monsanto ElectrochemicalA diponitrile Process. Journal of The Electrochemical Society, 1984. 131: p. 435-442.
    8. Lee, Y., et al., Hydrogenation of Adiponitrile to Hexamethylenediamine over Raney Ni and Co Catalysts. Applied Sciences, 2020. 10(21).
    9. Ding, X., C. Wu, and Y. Wang, New reaction route for bio-based adiponitrile production: Towards the rational design of the reactants and reaction pathways. Chinese Science Bulletin, 2019. 65(5): p. 401-409.
    10. 马淳安, 有机电化学合成导论. 2002, 北京: 科學出版社.
    11. 张龙,贡长生,代斌, 绿色化学. 2014: 华中科技大学出版社.
    12. 李进军,吴峰, 绿色化学导论. 2015, 武汉: 武汉大学出版社.
    13. Allen J. Bard, L.R., Electrochemical methods : fundamentals and applications. 1980: John Wiley & Sons, Inc.
    14. BAIZER, M.M., Prospects for further industrial applications of organic electrosynthesis. JOURNAL OF APPLIED ELECTROCHEMISTRY, 1980. 10: p. 285-290.
    15. 王歡, 陸., 有机电化学合成简谈. 電化學, 2011. 17(4): p. 1-7.
    16. Toshio Fuchigami, M.A., Shinsuke Inagi, Fundamentals and Applications of Organic Electrochemistry: Synthesis, Materials, Devices. 2014: John Wiley & Sons, Ltd.
    17. 郑俊生, 张., 王明霞, 袁渭康, 一种用于有机电化学合成过程的纳米碳纤维电催化电极的制备, 中華人民共和國國家知識產權局, Editor. 2006: 中國.
    18. Blanco, D.E.L., B. Modestino, M. A., Optimizing organic electrosynthesis through controlled voltage dosing and artificial intelligence. Proc Natl Acad Sci U S A, 2019. 116(36): p. 17683-17689.
    19. Blanco, D.E., A.Z. Dookhith, and M.A. Modestino, Controlling Selectivity in the Electrocatalytic Hydrogenation of Adiponitrile through Electrolyte Design. ACS Sustainable Chemistry & Engineering, 2020. 8(24): p. 9027-9034.
    20. Blanco, D.E., et al., Insights into membrane-separated organic electrosynthesis: the case of adiponitrile electrochemical production. Reaction Chemistry & Engineering, 2020. 5(1): p. 136-144.
    21. Belhaj, A.F., et al., The effect of surfactant concentration, salinity, temperature, and pH on surfactant adsorption for chemical enhanced oil recovery: a review. Journal of Petroleum Exploration and Production Technology, 2019. 10(1): p. 125-137.
    22. Kert, M. and B. Simončič, The influence of nonionic surfactant structure on the thermodynamics of anionic dye–cationic surfactant interactions in ternary mixtures. Dyes and Pigments, 2008. 79(1): p. 59-68.
    23. G. Kume, M.G., George Italo Pitombeira Nunes, Review on Anionic/Cationic Surfactant Mixtures. Journal of Surfactants and Detergents, 2008. 11: p. 1–11.
    24. 闫鹏飞, 精细化学品化学精细化学品化学. 2004: 化学工业出版社.
    25. 尹卫平,吕本莲, 精细化工产品及工艺. 2009: 华东理工大学出版社.
    26. 董国君,苏玉, 表面活性剂化学. 2009: 北京理工大学出版社.
    27. Gadhave, A., Determination of Hydrophilic-Lipophilic Balance Value International Journal of Science and Research, 2014. 3: p. 573-575.
    28. DAVIES, J.T., A quantitative kinetic theory of emulsion type, I. Physical chemistry of the emulsifying agent. Gas/Liquid and Liquid/Liquid Interface, 1957: p. 426–38.
    29. Daniela E. Blanco, Aaliyah Z. Dookhith, and M.A. Modestino, Enhancing selectivity and efficiency in the electrochemical synthesis of adiponitrile. Reaction Chemistry & Engineering, 2019. 4(1): p. 8-16.
    30. Seko M, M.K., Yokohama Y M, et al, Adiponitrile production by the electrolytic of hydrodimerization of acrylonitrile. US Patent, 1971-07-27.
    31. Baizer, M.M., Electrolytic Reductive Coupling: I . Acrylonitrile. Journal of the Electrochemical Society, 1964. 111: p. 215-22.
    32. Beck, F., Electrosynthesis of adiponitrile in undivided cells. Journal of Applied Electrochemistry, 1972. 2: p. 59-69.
    33. Karimi, P.F., F. Mohammadi, and S.N. Ashrafizadeh, An Experimental Study of the Competing Cathodic Reactions in Electrohydrodimerization of Acrylonitrile. Journal of The Electrochemical Society, 2011. 158(12).
    34. Blanco, D.E., et al., Effect of Electrolyte Cations on Organic Electrosynthesis: The Case of Adiponitrile Electrochemical Production. Journal of The Electrochemical Society, 2020. 167(15).
    35. Mahito Atobe, M.S., Tsutomu Nonaka, Ultrasonic effects on electroorganic processes: Part 17. Product selectivity control in cathodic reduction of acrylonitrile. Ultrasonics Sonochemistry, 2000. 7(3): p. 103–107.
    36. K. Scott, B.H., The influence of mass transfer on the electrochemical synthesis of adiponitrile. Chemical Engineering and Processing: Process Intensification, 1993. 32(4): p. 253-260.
    37. Suwanvaipattana, P., et al., Modeling of electro-organic synthesis to facilitate cleaner chemical manufacturing: Adiponitrile production. Journal of Cleaner Production, 2017. 142: p. 1296-1308.
    38. Patrick J. Kinlen and C.J.H. King, Mechanistic studies of the electrohydrodimerization of acrylonitrile. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1991. 304(1-2): p. 133-151.
    39. Scott, K., et al., A Reaction Model for the Electrochemical Synthesis of Adiponitrile. Chemical Engineering & Technology, 1990. 13(1): p. 376-383.
    40. Beck, F., Cathodic Dimerization. Angewandte Chemie International Edition, 1972. 11(9): p. 760-781.
    41. Li, B.-Y., W.-F. Huang, and M.-C. Yang, Electrodimerization of acrylonitrile with a rotating rod electrode. Journal of the Taiwan Institute of Chemical Engineers, 2020. 115: p. 13-19.
    42. Matthew Watson, D.P., and David W. Sopher, A Microelectrode Study of Competing Electrode Reactions in the Commercial Process for the Hydrodimerization of Acrylonitrile to Adiponitrile. Journal of The Electrochemical Society, 2000. 147: p. 3751-3758.
    43. Costentin, C. and J.-M. Savéant, Dimerization of electrochemically generated ion radicals: mechanisms and reactivity factors. Journal of Electroanalytical Chemistry, 2004. 564: p. 99-113.
    44. Haines, A.N., The mathematical modelling of industrial electrolytic reactions, in Department of Chemical Engineering. 1987, Teesside Polytechnic: Middlesbrough, Cleveland.
    45. Li, B.-Y., A study on the influence of electrosynthesis condition for adiponitrile in a rotating rod electrode system, in Department of Chemical Engineering. 2019, National Cheng Kung University: Tainan, Taiwan.
    46. Couper, A.M., D. Pletcher, and F.C. Walsh, Electrode materials for electrosynthesis. Chemical Reviews, 1990. 90(5): p. 837-865.
    47. G. Piccardi, L.N., F. Pergola, R. Guidelli, Mechanism of electrohydrodimerization of acrylonitrile on mercury from aqueous solutions. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 10 April 1984. 164(1): p. 145-166.
    48. Pletcher, D., Walsh, F.C., Industrial Electrochemistry. 2 ed. 1990, Heidelberg: Springer Netherlands.
    49. Pintauro, Y.S.P.N., The electrochemical synthesis of aminonitriles I. H-cell studies with adiponitrile and azelanitrile. Journal of Applied Electrochemistry 1991. 21: p. 21–27.
    50. Chiang, H.-J., The Manifold Shape and Flow Channel Design of an Electrolytic Cell, in Department of Mechanical Engineering. 2017, National Cheng Kung University: Tainan, Taiwan. p. 119.
    51. F.C. Walsh, G.K., A.H. Nahlé, J.A. Wharton, L.F.Arenas, The rotating cylinder electrode for studies of corrosion engineering and protection of metals—An illustrated review. Corrosion Science, 2017. 123: p. 1-20.
    52. GABE, D.R., The rotating cylinder electrode. JOURNAL OF APPLIED ELECTROCHEMISTRY, 1974. 4: p. 91-108.
    53. Gabe, D.R., et al., The rotating cylinder electrode: its continued development and application. Journal of Applied Electrochemistry, 1998. 28(8): p. 759-780.
    54. Llongueras, R.G.-M.J.M.-F.R.D.-R.J.G., Rotating Cylinder Electrode Study on the Influence of Turbulent Flow, on the Anodic and Cathodic Kinetics of X52 Steel Corrosion, in H2S Containing Solutions, in NACE International. 2004: New Orleans.
    55. Shen, C., et al., Mass transfer of dissolved oxygen using rotating cylinder electrode under bulk boiling conditions. International Journal of Heat and Mass Transfer, 2014. 70: p. 162-168.
    56. Jang, J.-Y.G., Yu-Feng, Numerical Simulation of a Two-Phase Flow for the Acrylonitrile Electrolytic Adiponitrile Process in a Vertical/Horizontal Electrolysis Cell. Energies, 2018. 11(10).
    57. Xun Huang, L.T., Ling Zhang, Cunpu Li, Zidong Wei, Coverage-dependent acrylonitrile adsorption and electrochemical reduction kinetics on Pb electrode. Chemical Engineering Journal, 2020. 382.
    58. Jang, J.-Y.H., Yu-Xian Cheng, Chin-Hsiang, The effects of geometric and operating conditions on the hydrogen production performance of a micro-methanol steam reformer. Chemical Engineering Science, 2010. 65(20): p. 5495-5506.
    59. Tae, B.S., J. Lee, and Y.W. Park, A study on synthesis of adiponitrile by electrohydrodimerization. Journal of the Korean Industrial and Engineering Chemistry, 1995. 6: p. 834–841.
    60. Allen J. Bard, L.R.F., Electrochemical Methods: Fundamentals and Applications. 2001, New York: John Wiley and Sons.
    61. Xia, W., et al., Earth-Abundant Nanomaterials for Oxygen Reduction. Angew Chem Int Ed Engl, 2016. 55(8): p. 2650-76.
    62. Helmholtz, H., Studien über elektrische Grenzschichten. 1879: Annalen der Physik.
    63. Gouy, G., Sur la constitution de la charge ´electrique `a la surface d’un ´electrolyte. Journal of Physics, 1910. 9: p. 457-468.
    64. Chapman, D.L., A contribution to the theory of electrocapillarity. Philosophical Magazine, Series 6, 1913. 25(148): p. 475-481.
    65. Bhattacharjee, J.H.M., Electrokinetic and Colloid Transport Phenomena. 2006, Hoboken, NJ: John Wiley & Sons.
    66. Stern, H.O., Zur theorie der elektrolytischen doppelschicht. Zeitschrift für Elektrochemie und angewandte physikalische Chemie, 1924. 30(21-22): p. 508-516.
    67. Grahame, D.C., The Electrical Double Layer and the Theory of Electrocapillarity. Chemical Reviews, 1947: p. 441–501.
    68. Pilon, L., H. Wang, and A. d’Entremont, Recent Advances in Continuum Modeling of Interfacial and Transport Phenomena in Electric Double Layer Capacitors. Journal of The Electrochemical Society, 2015. 162(5): p. A5158-A5178.
    69. Asahara Teruzo, S.M., Arai Takeshi, A Mechanistic Approach to the Electrolytic Reductive Dimerization. Bulletin of the Chemical Society of Japan, 1969. 42(5): p. 1316-1321.
    70. Prentice, G.A., Electrochemical Engineering Principles. 1990: Prentice Hall.
    71. Newman, J.S., Electrochemical Systems. 1991, Englewood Cliffs, New Jersey: Prentice Hall, Inc.
    72. Braun, R.D., Introduction to instrumental analysis. 1987: McGraw-Hill College.
    73. Turner, D., Gas Chromatography – How a Gas Chromatography Machine Works, How To Read a Chromatograph and GCxGC. Analysis & Separations from Technology Networks 2021.
    74. Kolapkar, S., Pyrolysis of Fiber-Plastic Waste Blends, in Mechanical Engineering. 2018, MICHIGAN TECHNOLOGICAL UNIVERSITY.
    75. 王平, 高效液相色谱在中药研究中的应用. 2010: 冶金工业出版社.
    76. Aryal, S., Gel Permeation Chromatography. 2019, Microbe Notes.
    77. C.M. Starks, M.H., Phase-transfer catalysis: fundamentals, applications, and industrial perspectives. 2012: Springer Netherlands.
    78. 张明森, 精细有机化工中间体全书. 2008: 化学工业出版社.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE