研究生: |
李芸珊 Li, Yun-Shan |
---|---|
論文名稱: |
氧化錳電極於N-丁基-N-甲基吡咯啶二氨腈離子液體中的超高電容特性 Supercapacitive Behavior of Manganese Oxide Electrodes in N-butyl-N-methylpyrrolidine dicyanamide Ionic Liquid Electrolytes |
指導教授: |
孫亦文
Sun, I-Wen |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 109 |
中文關鍵詞: | 離子液體 、BMP-DCA 、氧化錳 、超高電容器 |
外文關鍵詞: | ionic liquid, BMP-DCA, manganese oxide, supercapacitor |
相關次數: | 點閱:107 下載:2 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要探討氧化錳電極於水溶液與離子液體下之擬電容行為,並進一步改變離子液體電解液之組成成份以及氧化錳電極的表面形貌,藉由電化學分析之循環伏安法(Cyclic Voltammetry),量測氧化錳電極之擬電容特性。
本研究以陽極沉積法製備而得之氧化錳電極,於硫酸鈉水溶液與BMP-DCA(N-butyl-N-methylpyrrolidine dicyanamide)離子液體中進行擬電容行為測試。結果顯示,以BMP-DCA作為電解液可提供高能量密度及功率密度,且由循環壽命穩定度及SEM觀察氧化錳電極經CV掃描前後的表面形貌,發現離子液體BMP-DCA為一相當適合作為氧化錳超高電容器的電解液。
而於離子液體BMP-DCA中添加入不同的離子,發現NaDCA及Li-TFSI對於提升氧化錳電極之比電容值皆有不錯之表現。本研究亦利用in situ X 光吸收光譜探討錳氧化物於BMP-DCA+Li-TFSI電解液中,錳氧化價數在外加電位範圍內(-2.2至0.8 VFc/Fc+)的臨場變化,與電容值做進一步比較。分析結果顯示Li-TFSI的添加可提高錳的價數變化量,因此在適當Li-TFSI比例的條件下錳氧化物電極的電容值會高於單純離子液體之氧化錳電極。
從水溶液中以電化學合金去合金法製備多孔性鎳電極材料並將其應用於錳氧化物型超高電容器。本研究比較此具高表面積之多孔氧化錳電極與平板氧化錳電極,在硫酸鈉水溶液及離子液體BMP-DCA中之擬電容特性。結果顯示,氧化錳電極表面積的提升對於水溶液及離子液體電解液中皆可有效提高能量密度及功率密度。
Pseudo-capacitive performance of Mn oxide electrodes was determined by cyclic voltammetry (CV) in Na2SO4 aqueous solution and butylmethylpyrrolidinium-dicyanamide (BMP-DCA) ionic liquid (IL) in this study. It was found that BMP-DCA electrolyte can afford high energy density and high power density compared with aqueous electrolyte. The experimental results also show the excellent electrochemical stability of Mn oxide in BMP-DCA. BMP-DCA IL is a suitable electrolyte for manganese oxide capacitors.
Adding various ions in BMP-DCA ILs were investigated in this study. The data indicated that the addition of NaDCA and Li-TFSI in BMP-DCA significantly increased specific capacitance of the oxide electrode. In order to explore the electron storage mechanism, the Mn oxides were studied by in situ X-ray absorption spectroscopy (XAS) in BMP-DCA+Li-TFSI eletrolyte during the charging–discharging process. The experimental results clearly confirmed that the oxidation state of Mn changed forth and back with adjusting the applied potential, contributing to the pseudocapacitive characteristics of the Mn oxides. It was also found that, within a potential range of 3 V, Li-TFSI addition would increase the variation in Mn oxidation state from 0.42 to 0.50.
A high-porosity Mn oxide electrode was facilely fabricated by the simple yet efficiently electrochemical procedure. In this study, we use BMP-DCA IL and aqueous solution to compare the capacitive behavior of the nano-porous and the non-porous Mn oxide electrode. The nano-structured electrode as an application of supercapacitors can improve not only the specific energy density but also the specific power density in IL and aqueous electrolytes.
(1)Simon, P.; Gogotsi, Y. Nat. Mater. 2008, 7, 845-854.
(2)Kotz, R.; Carlen, M. Electrochim. Acta 2000, 45, 2483.
(3)Burke, A. J. Power Sources 2000, 91, 37.
(4)Conway, B. E. J. Electrochem. Soc. 1991, 138, 1539.
(5)Sarangapani, S.; Tilak, B. V.; Chen, C. P. J. Electrochem. Soc. 1996, 143, 379.
(6)Zheng, J. P.; Huang, J.; Jow, T. R. J. Electrochem. Soc. 1997, 144, 2026.
(7)Zheng, J. P.; Cygan, P. J.; Jow, T. R. J. Electrochem. Soc. 1995, 142, 2699-2703.
(8)Hu, C. C.; Chang, K. H.; Lin, M. C.; Wu, Y. T. Nano Lett. 2006, 6, 2690.
(9)Hu, C. C.; Tsou, T. W. Electrochem. Commun. 2002, 4, 105-109.
(10)Kuo, S. L.; Wu, N. L. J. Electrochem. Soc. 2006, 153, A1317.
(11)Nam, K. W.; Kim, M. G.; K. B. Kim J. Phys. Chem. C 2007, 111, 749.
(12)Balducci, A.; Bardi, U.; Caporali, S.; Mastragostino, M.; Soavi, F. Electrochem. Commun. 2004, 6, 566.
(13)Chang, J. K.; Lee, M. T.; Tsai, W. T.; Deng, M. J.; Cheng, H. F.; Sun, I. W. Langmuir 2009, 25, 11955-11960.
(14)Chang, J. K.; Lee, M. T.; Cheng, C. W.; Tsai, W. T.; Deng, M. J.; Hsieh, Y. C.; Sun, I. W. Journal of Materials Chemistry 2009, 19, 3732-3738.
(15)Chang, J.-K.; Lee, M.-T.; Tsai, W.-T.; Deng, M.-J.; Sun, I.-W. Chem. Mater. 2009, 21, 2688–2695.
(16)Chang, J. K.; Chen, S. Y.; Tsai, W. T.; Deng, M. J.; Sun, I. W. Electrochem. Commun. 2007, 9, 1602.
(17)Lee, M. T.; Tsai, W. T.; Deng, M. J.; Cheng, H. F.; Sun, I. W.; Chang, J. K. Journal of Power Sources 2010, 195, 919-922.
(18)Xu, C. J.; Du, H. D.; Li, B. H.; Kang, F. Y.; Zeng, Y. Q. Journal of the Electrochemical Society 2009, 156, A73-A78.
(19)Hu, C. C.; Hung, C. Y.; Chang, K. H.; Yang, Y. L. Journal of Power Sources 2011, 196, 847-850.
(20)Xiang, H. F.; Yin, B.; Wang, H.; Lin, H. W.; Ge, X. W.; Xie, S.; Chen, C. H. Electrochimica Acta 2010, 55, 5204-5209.
(21)Chang, J.-K.; Hsun, S.-H.; Sun, I.-W.; Tsai, W.-T. J. Phys. Chem. C 2008, 112, 1371-1376.
(22)Chang, J.-K.; Hsu, S.-H.; Tsai, W.-T.; Sun, I.-W. Journal of Power Sources 2008, 177, 676-680.
(23)Electrochemical Super capacitors; Conway, B. E., Ed.; Kluwer-Plenum: New York, 1999.
(24)Pitner, W. R. In QUILL: The Queen’s University of Belfast, unpublished results 2000.
(25)Huang, J. F.; Luo, H.; Liang, C.; Sun, I. W.; Baker, G. A.; Dai, S. J. Am. Chem. Soc. 2005, 127, 12784.
(26)Enders, F.; Abedin, S. Z. E. Phys. Chem. 2006, 8, 2101.
(27)Earle, M. J.; Esperanca, J.; Gilea, M. A.; Lopes, J. N. C.; Rebelo, L. P. N.; Magee, J. W.; Seddon, K. R.; Widegren, J. A. Nature Mater. 2006, 439, 831.
(28)Wasserchied, P. Nature 2006, 439, 797.
(29)Deng, M. J.; Chen, P. Y.; Leong, T. I.; Sun, I. W.; Chang, J. K.; Tsai, W. T. Electrochem. Commun. 2008, 10, 213.
(30)H .Y. Lee; V. Manivannan; J. B. Goodenough Comptes Rendus Chimie 1999, 2, 565-573.
(31)R. N. Reddy; R. G. Reddy Electrochemical Society Proceeding 2002, 7, 197.
(32)Lee, H. Y.; Goodenough, J. B. Journal of Solid State Chemistry 1999, 144, 220-223.
(33)H. Kim; B.N. Popov J. Electrochem. Soc. 2003, 150, D56-D62.
(34)H. Y. Lee; S. W. Kim; H. Y. Lee Electrochem. Solid State Letters 2001, 4, A19-A22.
(35)J. P. Zheng; T. R. Jow J. Electrochem. Soc. 1995, 142, L6-L8.
(36)R. N. Reddy; R. G. Reddy J. Power Sources, 2003, 124, 330-337.
(37)R. N. Reddy; R. G. Reddy J. Power
Sources 2004, 132, 315-320.
(38)S. F. Chin; S. C. Pang; M. A. Anderson J. Electrochem. Soc. 2002, 149, A379-A384.
(39)S. C. Pang; M. A. Anderson; T. W. Chapman J. Electrochem. Soc. 2000, 147, 444-450.
(40)S. C. Pang; M. A. Anderson J. Mater. Res. 2000, 15, 2096-2106.
(41)J. N. Broughton; M. J. Brett Electrochem. Solid-State Lett. 2002, 5, A279-A282.
(42)B. Djurfors; J. N. Broughton; M. J. Brett; D. G. Ivey J. Mater. Sci. 2003, 38, 4817-4830.
(43)J. N. Broughton; M. J. Brett Electrochim. Acta 2004, 49, 4439-4446.
(44)K. R. Prasad; N. Miura Electrochem. Comm. 2004, 6, 1004-1008.
(45)K. R. Prasad; N. Miura J. Power Sources 2004, 135, 354-360.
(46)Chang, J. K.; Tsai, W. T. Journal of the Electrochemical Society 2003, 150, A1333-A1338.
(47)RODRIGUES, S.; MUNICHANDRAIAH, N.; SHUKLA, A. K. JOURNAL OF APPLIED ELECTROCHEMISTRY 1998, 28, 1235-1241.
(48)Toupin, M.; Brousse, T.; Belanger, D. Chemistry of Materials 2004, 16, 3184-3190.
(49)Brousse, T.; Toupin, M.; Dugas, R.; Athouel, L.; Crosnier, O.; Belanger, D. Journal of the Electrochemical Society 2006, 153, A2171-A2180.
(50)Cottineau, T.; Toupin, M.; Delahaye, T.; Brousse, T.; Belanger, D. Applied Physics a-Materials Science & Processing 2006, 82, 599-606.
(51)Brousse, T.; Toupin, M.; Belanger, D. Journal of the Electrochemical Society 2004, 151, A614-A622.
(52)Toupin, M.; Brousse, T.; Belanger, D. Chemistry of Materials 2002, 14, 3946-3952.
(53)Toupin, M.; Brousse, T.; Belanger, D. Chemistry of Materials 2004, 16, 3184-3190.
(54)Chang, J. K.; Tsai, W. T. Journal of the Electrochemical Society 2005, 152, A2063-A2068.
(55)Chang, J. K.; Chen, Y. L.; Tsai, W. T. Journal of Power Sources 2004, 135, 344-353.
(56)Chang, J.-K.; Lin, C.-T.; Tsai, W.-T. Electrochemistry Communications 2004, 6, 666–671.
(57)Liu, X. H.; Wang, J. Q.; Zhang, J. Y.; Yang, S. R. Journal of Materials Science-Materials in Electronics 2006, 17, 865-870.
(58)Zhou, Y. K.; Huang, J.; Li, H. L. Applied Physics a-Materials Science & Processing 2003, 76, 53-57.
(59)Zhou, Y. K.; Huang, J.; Li, H. L. Applied Physics B-Lasers and Optics 2003, 76, 53-57.
(60)Oskam, G.; Searson, P. C.; Jow, T. R. Electrochemical and Solid State Letters 1999, 2, 610-612.
(61)Ahn, H. J.; Sohn, J. I.; Kim, Y. S.; Shim, H. S.; Kim, W. B.; Seong, T. Y. Electrochemistry Communications 2006, 8, 513-516.
(62)Chen, Q. L.; Xue, K. H.; Shen, W.; Tao, F. F.; Yin, S. Y.; Xu, W. Electrochimica Acta 2004, 49, 4157-4161.
(63)Wang, X. Y.; Wang, X. Y.; Huang, W. G.; Sebastian, P. J.; Gamboa, S. Journal of Power Sources 2005, 140, 211-215.
(64)Zhou, Y. K.; Li, H. L. Journal of Materials Chemistry 2002, 12, 681-686.
(65)Erlebacher, J.; Sieradzki, K. Scripta Materialia 2003, 49, 991-996.
(66)Erlebacher, J.; Aziz, M. J.; Karma, A.; Dimitrov, N.; Sieradzki, K. Nature 2001, 410, 450-453.
(67)Erlebacher, J. Journal of the Electrochemical Society 2004, 151, C614-C626.
(68)Sieradzki, K.; Dimitrov, N.; Movrin, D.; McCall, C.; Vasiljevic, N.; Erlebacher, J. Journal of the Electrochemical Society 2002, 149, B370-B377.
(69)Zhou, M.; Myung, N.; Chen, X.; Rajeshwar, K. J. Electroanal. Chem. 1995, 398, 5-12.
(70)Sun, L.; Chien, C. L.; Searson, P. C. Chemistry of Materials 2004, 16, 3125-3129.
(71)Bard, A. J.; Faulkner, L. R. Electrochemical Method-Fundamentals and Applications; John Wiley & Sons, 1980.
(72)李明宗, 國立成功大學材料科學與工程學系博士論文, 2010.
(73)Chang, J.-K.; Lee, M.-T.; Huang, C.-H.; Tsai, W.-T. Materials Chemistry and Physics 2008, 108, 124–131.
(74)Stracke, M. P.; Migliorini, M. V.; Lissner, E.; Schrekker, H. S.; Back, D.; Lang, E. S.; Dupont, J.; alves, R. S. G. New Journal of Chemistry 2009, 33, 82–87.
(75)Fletcher, S. I.; Sillars, F. B.; Carter, R. C.; Cruden, A. J.; Mirzaeian, M.; Hudson, N. E.; Parkinson, J. A.; Hall, P. J. Journal of Power Sources 2010, 195, 7484–7488.
(76)Lee, M.-T.; Tsai, W.-T.; Deng, M.-J.; Cheng, H.-F.; Sun, I. W.; Chang, J.-K. Journal of Power Sources 2010, 195, 919-922.
(77)Ghigna, P.; Flor, G.; Spinolo, G. Journal of Solid State Chemistry 2000, 149, 252-255.
(78)Shiraishi, Y.; Nakai, I.; Tsubata, T.; Himeda, T.; Nishikawa, F. Journal of Solid State Chemistry 1997, 133, 587-590.
(79)Shannon, R. D. Acta Crystallogr. 1976, 32, 751.