簡易檢索 / 詳目顯示

研究生: 李芸珊
Li, Yun-Shan
論文名稱: 氧化錳電極於N-丁基-N-甲基吡咯啶二氨腈離子液體中的超高電容特性
Supercapacitive Behavior of Manganese Oxide Electrodes in N-butyl-N-methylpyrrolidine dicyanamide Ionic Liquid Electrolytes
指導教授: 孫亦文
Sun, I-Wen
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 109
中文關鍵詞: 離子液體BMP-DCA氧化錳超高電容器
外文關鍵詞: ionic liquid, BMP-DCA, manganese oxide, supercapacitor
相關次數: 點閱:107下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究主要探討氧化錳電極於水溶液與離子液體下之擬電容行為,並進一步改變離子液體電解液之組成成份以及氧化錳電極的表面形貌,藉由電化學分析之循環伏安法(Cyclic Voltammetry),量測氧化錳電極之擬電容特性。
      本研究以陽極沉積法製備而得之氧化錳電極,於硫酸鈉水溶液與BMP-DCA(N-butyl-N-methylpyrrolidine dicyanamide)離子液體中進行擬電容行為測試。結果顯示,以BMP-DCA作為電解液可提供高能量密度及功率密度,且由循環壽命穩定度及SEM觀察氧化錳電極經CV掃描前後的表面形貌,發現離子液體BMP-DCA為一相當適合作為氧化錳超高電容器的電解液。
      而於離子液體BMP-DCA中添加入不同的離子,發現NaDCA及Li-TFSI對於提升氧化錳電極之比電容值皆有不錯之表現。本研究亦利用in situ X 光吸收光譜探討錳氧化物於BMP-DCA+Li-TFSI電解液中,錳氧化價數在外加電位範圍內(-2.2至0.8 VFc/Fc+)的臨場變化,與電容值做進一步比較。分析結果顯示Li-TFSI的添加可提高錳的價數變化量,因此在適當Li-TFSI比例的條件下錳氧化物電極的電容值會高於單純離子液體之氧化錳電極。
      從水溶液中以電化學合金去合金法製備多孔性鎳電極材料並將其應用於錳氧化物型超高電容器。本研究比較此具高表面積之多孔氧化錳電極與平板氧化錳電極,在硫酸鈉水溶液及離子液體BMP-DCA中之擬電容特性。結果顯示,氧化錳電極表面積的提升對於水溶液及離子液體電解液中皆可有效提高能量密度及功率密度。

      Pseudo-capacitive performance of Mn oxide electrodes was determined by cyclic voltammetry (CV) in Na2SO4 aqueous solution and butylmethylpyrrolidinium-dicyanamide (BMP-DCA) ionic liquid (IL) in this study. It was found that BMP-DCA electrolyte can afford high energy density and high power density compared with aqueous electrolyte. The experimental results also show the excellent electrochemical stability of Mn oxide in BMP-DCA. BMP-DCA IL is a suitable electrolyte for manganese oxide capacitors.
      Adding various ions in BMP-DCA ILs were investigated in this study. The data indicated that the addition of NaDCA and Li-TFSI in BMP-DCA significantly increased specific capacitance of the oxide electrode. In order to explore the electron storage mechanism, the Mn oxides were studied by in situ X-ray absorption spectroscopy (XAS) in BMP-DCA+Li-TFSI eletrolyte during the charging–discharging process. The experimental results clearly confirmed that the oxidation state of Mn changed forth and back with adjusting the applied potential, contributing to the pseudocapacitive characteristics of the Mn oxides. It was also found that, within a potential range of 3 V, Li-TFSI addition would increase the variation in Mn oxidation state from 0.42 to 0.50.
      A high-porosity Mn oxide electrode was facilely fabricated by the simple yet efficiently electrochemical procedure. In this study, we use BMP-DCA IL and aqueous solution to compare the capacitive behavior of the nano-porous and the non-porous Mn oxide electrode. The nano-structured electrode as an application of supercapacitors can improve not only the specific energy density but also the specific power density in IL and aqueous electrolytes.

    中文摘要 I Abstract III 誌謝 V 總目錄 VII 表目錄 IX 圖目錄 X 第一章 緒論 1 第二章 背景資料與文獻回顧 4 2-1 儲能元件概述 4 2-2 超高電容器 6 2-3 電解液對於超高電容器的影響 9 2-4 室溫離子液體之性質與應用 12 2-5 陽極沉積錳氧化物的反應機構 15 2-6 錳氧化物於超高電容器的應用 17 2-7 奈米孔洞材料 20 2-7-1 去合金化的原理 21 2-7-2 電鍍銅鎳合金及其去合金化的原理 23 2-8 擬電容特性之評估方式 25 2-9 X光吸收光譜 31 2-9-1 同步輻射光之簡介 31 2-9-2 X光吸收光譜分析原理 31 第三章 實驗方法與步驟 37 3-1 實驗材料 37 3-2 實驗儀器與設備 40 3-2-1 手套箱 (Glove Box) 40 3-2-2 定電位/定電流儀 (Potentiostat/Galvanostat) 41 3-2-3 電磁攪拌加熱器 (Stirring Hot Plate) 41 3-2-4 掃描式電子顯微鏡 (Scanning Electron Microscope,SEM) 41 3-2-5 拋光機 (Polisher) 41 3-2-6 電子天平 (Electronic Balance) 42 3-2-7 超音波震盪洗淨器 (Ultrasonic Cleaner) 42 3-2-8 酸鹼測定儀 (pH meter) 42 3-2-9 導電度計 (conductivity meter) 42 3-2-10 X光吸收光譜儀 (X-ray absorption spectroscopy) 42 3-3 電極材料 44 3-3-1 玻璃碳電極 (GC) 44 3-3-2 氧化錳電極 44 3-3-3 多孔氧化錳電極 45 3-4 電解液的製備 46 3-4-1 添加各離子於離子液體BMP-DCA中 46 3-4-2 硫酸鈉水溶液 46 3-5 電極之電化學特性評估 47 3-6 離子液體BMP-DCA (N-butyl-N-methylpyrrolidium Dicyanamide)的合成 48 3-6-1 BMP-Cl的合成(N-butyl-N-methylpyrrolidine chloride) 48 3-6-2 BMP-DCA的合成(N-butyl-N-methylpyrrolidine 50 dicyanamide) 50 第四章 實驗結果與討論 52 4-1 錳氧化物於水溶液與離子液體之擬電容行為 52 4-2 添加各離子於離子液體BMP-DCA中 58 4-2-1 各離子液體之電位窗 58 4-2-2 於離子液體BMP-DCA中添加不同離子 62 4-2-3 添加Na-DCA於離子液體BMP-DCA 65 4-2-4 添加Li-TFSI於離子液體BMP-DCA 75 4-2-5 利用in situ X吸收光譜分析氧化錳電極於BMP-DCA + 0.01 M Li-TFSI電解液中的擬電容行為 81 4-3多孔氧化錳電極與平板氧化錳電極之電化學性質比較 90 4-3-1 多孔氧化錳電極的製備 90 4-3-2 氧化錳電極的表面形貌 92 4-3-3 多孔氧化錳電極與平板氧化錳電極於水溶液之擬電容特性 93 4-3-4 多孔氧化錳電極與平板氧化錳電極於離子液體BMP-DCA之擬電容特性 97 第五章 結論 103 第六章 參考文獻 106

    (1)Simon, P.; Gogotsi, Y. Nat. Mater. 2008, 7, 845-854.
    (2)Kotz, R.; Carlen, M. Electrochim. Acta 2000, 45, 2483.
    (3)Burke, A. J. Power Sources 2000, 91, 37.
    (4)Conway, B. E. J. Electrochem. Soc. 1991, 138, 1539.
    (5)Sarangapani, S.; Tilak, B. V.; Chen, C. P. J. Electrochem. Soc. 1996, 143, 379.
    (6)Zheng, J. P.; Huang, J.; Jow, T. R. J. Electrochem. Soc. 1997, 144, 2026.
    (7)Zheng, J. P.; Cygan, P. J.; Jow, T. R. J. Electrochem. Soc. 1995, 142, 2699-2703.
    (8)Hu, C. C.; Chang, K. H.; Lin, M. C.; Wu, Y. T. Nano Lett. 2006, 6, 2690.
    (9)Hu, C. C.; Tsou, T. W. Electrochem. Commun. 2002, 4, 105-109.
    (10)Kuo, S. L.; Wu, N. L. J. Electrochem. Soc. 2006, 153, A1317.
    (11)Nam, K. W.; Kim, M. G.; K. B. Kim J. Phys. Chem. C 2007, 111, 749.
    (12)Balducci, A.; Bardi, U.; Caporali, S.; Mastragostino, M.; Soavi, F. Electrochem. Commun. 2004, 6, 566.
    (13)Chang, J. K.; Lee, M. T.; Tsai, W. T.; Deng, M. J.; Cheng, H. F.; Sun, I. W. Langmuir 2009, 25, 11955-11960.
    (14)Chang, J. K.; Lee, M. T.; Cheng, C. W.; Tsai, W. T.; Deng, M. J.; Hsieh, Y. C.; Sun, I. W. Journal of Materials Chemistry 2009, 19, 3732-3738.
    (15)Chang, J.-K.; Lee, M.-T.; Tsai, W.-T.; Deng, M.-J.; Sun, I.-W. Chem. Mater. 2009, 21, 2688–2695.
    (16)Chang, J. K.; Chen, S. Y.; Tsai, W. T.; Deng, M. J.; Sun, I. W. Electrochem. Commun. 2007, 9, 1602.
    (17)Lee, M. T.; Tsai, W. T.; Deng, M. J.; Cheng, H. F.; Sun, I. W.; Chang, J. K. Journal of Power Sources 2010, 195, 919-922.
    (18)Xu, C. J.; Du, H. D.; Li, B. H.; Kang, F. Y.; Zeng, Y. Q. Journal of the Electrochemical Society 2009, 156, A73-A78.
    (19)Hu, C. C.; Hung, C. Y.; Chang, K. H.; Yang, Y. L. Journal of Power Sources 2011, 196, 847-850.
    (20)Xiang, H. F.; Yin, B.; Wang, H.; Lin, H. W.; Ge, X. W.; Xie, S.; Chen, C. H. Electrochimica Acta 2010, 55, 5204-5209.
    (21)Chang, J.-K.; Hsun, S.-H.; Sun, I.-W.; Tsai, W.-T. J. Phys. Chem. C 2008, 112, 1371-1376.
    (22)Chang, J.-K.; Hsu, S.-H.; Tsai, W.-T.; Sun, I.-W. Journal of Power Sources 2008, 177, 676-680.
    (23)Electrochemical Super capacitors; Conway, B. E., Ed.; Kluwer-Plenum: New York, 1999.
    (24)Pitner, W. R. In QUILL: The Queen’s University of Belfast, unpublished results 2000.
    (25)Huang, J. F.; Luo, H.; Liang, C.; Sun, I. W.; Baker, G. A.; Dai, S. J. Am. Chem. Soc. 2005, 127, 12784.
    (26)Enders, F.; Abedin, S. Z. E. Phys. Chem. 2006, 8, 2101.
    (27)Earle, M. J.; Esperanca, J.; Gilea, M. A.; Lopes, J. N. C.; Rebelo, L. P. N.; Magee, J. W.; Seddon, K. R.; Widegren, J. A. Nature Mater. 2006, 439, 831.
    (28)Wasserchied, P. Nature 2006, 439, 797.
    (29)Deng, M. J.; Chen, P. Y.; Leong, T. I.; Sun, I. W.; Chang, J. K.; Tsai, W. T. Electrochem. Commun. 2008, 10, 213.
    (30)H .Y. Lee; V. Manivannan; J. B. Goodenough Comptes Rendus Chimie 1999, 2, 565-573.
    (31)R. N. Reddy; R. G. Reddy Electrochemical Society Proceeding 2002, 7, 197.
    (32)Lee, H. Y.; Goodenough, J. B. Journal of Solid State Chemistry 1999, 144, 220-223.
    (33)H. Kim; B.N. Popov J. Electrochem. Soc. 2003, 150, D56-D62.
    (34)H. Y. Lee; S. W. Kim; H. Y. Lee Electrochem. Solid State Letters 2001, 4, A19-A22.
    (35)J. P. Zheng; T. R. Jow J. Electrochem. Soc. 1995, 142, L6-L8.
    (36)R. N. Reddy; R. G. Reddy J. Power Sources, 2003, 124, 330-337.
    (37)R. N. Reddy; R. G. Reddy J. Power
    Sources 2004, 132, 315-320.
    (38)S. F. Chin; S. C. Pang; M. A. Anderson J. Electrochem. Soc. 2002, 149, A379-A384.
    (39)S. C. Pang; M. A. Anderson; T. W. Chapman J. Electrochem. Soc. 2000, 147, 444-450.
    (40)S. C. Pang; M. A. Anderson J. Mater. Res. 2000, 15, 2096-2106.
    (41)J. N. Broughton; M. J. Brett Electrochem. Solid-State Lett. 2002, 5, A279-A282.
    (42)B. Djurfors; J. N. Broughton; M. J. Brett; D. G. Ivey J. Mater. Sci. 2003, 38, 4817-4830.
    (43)J. N. Broughton; M. J. Brett Electrochim. Acta 2004, 49, 4439-4446.
    (44)K. R. Prasad; N. Miura Electrochem. Comm. 2004, 6, 1004-1008.
    (45)K. R. Prasad; N. Miura J. Power Sources 2004, 135, 354-360.
    (46)Chang, J. K.; Tsai, W. T. Journal of the Electrochemical Society 2003, 150, A1333-A1338.
    (47)RODRIGUES, S.; MUNICHANDRAIAH, N.; SHUKLA, A. K. JOURNAL OF APPLIED ELECTROCHEMISTRY 1998, 28, 1235-1241.
    (48)Toupin, M.; Brousse, T.; Belanger, D. Chemistry of Materials 2004, 16, 3184-3190.
    (49)Brousse, T.; Toupin, M.; Dugas, R.; Athouel, L.; Crosnier, O.; Belanger, D. Journal of the Electrochemical Society 2006, 153, A2171-A2180.
    (50)Cottineau, T.; Toupin, M.; Delahaye, T.; Brousse, T.; Belanger, D. Applied Physics a-Materials Science & Processing 2006, 82, 599-606.
    (51)Brousse, T.; Toupin, M.; Belanger, D. Journal of the Electrochemical Society 2004, 151, A614-A622.
    (52)Toupin, M.; Brousse, T.; Belanger, D. Chemistry of Materials 2002, 14, 3946-3952.
    (53)Toupin, M.; Brousse, T.; Belanger, D. Chemistry of Materials 2004, 16, 3184-3190.
    (54)Chang, J. K.; Tsai, W. T. Journal of the Electrochemical Society 2005, 152, A2063-A2068.
    (55)Chang, J. K.; Chen, Y. L.; Tsai, W. T. Journal of Power Sources 2004, 135, 344-353.
    (56)Chang, J.-K.; Lin, C.-T.; Tsai, W.-T. Electrochemistry Communications 2004, 6, 666–671.
    (57)Liu, X. H.; Wang, J. Q.; Zhang, J. Y.; Yang, S. R. Journal of Materials Science-Materials in Electronics 2006, 17, 865-870.
    (58)Zhou, Y. K.; Huang, J.; Li, H. L. Applied Physics a-Materials Science & Processing 2003, 76, 53-57.
    (59)Zhou, Y. K.; Huang, J.; Li, H. L. Applied Physics B-Lasers and Optics 2003, 76, 53-57.
    (60)Oskam, G.; Searson, P. C.; Jow, T. R. Electrochemical and Solid State Letters 1999, 2, 610-612.
    (61)Ahn, H. J.; Sohn, J. I.; Kim, Y. S.; Shim, H. S.; Kim, W. B.; Seong, T. Y. Electrochemistry Communications 2006, 8, 513-516.
    (62)Chen, Q. L.; Xue, K. H.; Shen, W.; Tao, F. F.; Yin, S. Y.; Xu, W. Electrochimica Acta 2004, 49, 4157-4161.
    (63)Wang, X. Y.; Wang, X. Y.; Huang, W. G.; Sebastian, P. J.; Gamboa, S. Journal of Power Sources 2005, 140, 211-215.
    (64)Zhou, Y. K.; Li, H. L. Journal of Materials Chemistry 2002, 12, 681-686.
    (65)Erlebacher, J.; Sieradzki, K. Scripta Materialia 2003, 49, 991-996.
    (66)Erlebacher, J.; Aziz, M. J.; Karma, A.; Dimitrov, N.; Sieradzki, K. Nature 2001, 410, 450-453.
    (67)Erlebacher, J. Journal of the Electrochemical Society 2004, 151, C614-C626.
    (68)Sieradzki, K.; Dimitrov, N.; Movrin, D.; McCall, C.; Vasiljevic, N.; Erlebacher, J. Journal of the Electrochemical Society 2002, 149, B370-B377.
    (69)Zhou, M.; Myung, N.; Chen, X.; Rajeshwar, K. J. Electroanal. Chem. 1995, 398, 5-12.
    (70)Sun, L.; Chien, C. L.; Searson, P. C. Chemistry of Materials 2004, 16, 3125-3129.
    (71)Bard, A. J.; Faulkner, L. R. Electrochemical Method-Fundamentals and Applications; John Wiley & Sons, 1980.
    (72)李明宗, 國立成功大學材料科學與工程學系博士論文, 2010.
    (73)Chang, J.-K.; Lee, M.-T.; Huang, C.-H.; Tsai, W.-T. Materials Chemistry and Physics 2008, 108, 124–131.
    (74)Stracke, M. P.; Migliorini, M. V.; Lissner, E.; Schrekker, H. S.; Back, D.; Lang, E. S.; Dupont, J.; alves, R. S. G. New Journal of Chemistry 2009, 33, 82–87.
    (75)Fletcher, S. I.; Sillars, F. B.; Carter, R. C.; Cruden, A. J.; Mirzaeian, M.; Hudson, N. E.; Parkinson, J. A.; Hall, P. J. Journal of Power Sources 2010, 195, 7484–7488.
    (76)Lee, M.-T.; Tsai, W.-T.; Deng, M.-J.; Cheng, H.-F.; Sun, I. W.; Chang, J.-K. Journal of Power Sources 2010, 195, 919-922.
    (77)Ghigna, P.; Flor, G.; Spinolo, G. Journal of Solid State Chemistry 2000, 149, 252-255.
    (78)Shiraishi, Y.; Nakai, I.; Tsubata, T.; Himeda, T.; Nishikawa, F. Journal of Solid State Chemistry 1997, 133, 587-590.
    (79)Shannon, R. D. Acta Crystallogr. 1976, 32, 751.

    下載圖示 校內:2013-07-21公開
    校外:2016-07-21公開
    QR CODE