| 研究生: |
蔡登安 Tsai, Deng-An |
|---|---|
| 論文名稱: |
次微米晶粒透光氧化鋁製備及其性質之研究 Preparation and Properties of Sub-Micron Translucent Alumina |
| 指導教授: |
黃啟祥
Huang, Chii-Shyang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 64 |
| 中文關鍵詞: | 膠體成型製程 、常壓燒結 、粒徑窄化 、透光氧化鋁 、透光陶瓷 |
| 外文關鍵詞: | translucent alumina, narrow size distribution, transparent ceramic, colloidal forming process, pressureless sintering |
| 相關次數: | 點閱:95 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究嘗試以膠體成型製程於常壓環境下製備出次微米晶粒之透光氧化鋁燒結體。實驗是以離心分級法收集粒徑分布均一之次微米α-Al2O3粉末,其粒徑分布為80-200 nm,平均粒徑為130 nm。該粉末是以超音波攪拌法使粉末顆粒均勻分散於水中形成漿料,其中未添加有機添加劑。之後再以緩慢的蒸發乾燥過程,最終使粉末顆粒規整堆排成為乾燥之生坯,生坯之相對密度達71.8%。生坯於空氣氣氛中1250°C燒結4小時即成為具有透光性質的之燒結體,其晶粒平均尺寸為531 nm,在可見光波長範圍之總穿透率為79%。
This study performed with colloidally processed narrow-size-distributed sub-micron alumina powders to prepare translucent alumina by pressureless sintering. Narrow-size-distributed powder with an average particle size of 0.13 μm was collected by centrifugal classification. The powders were dispersed by stirring with ultrasonification in a water-based suspension without organic additive. Homogeneous green bodies with relative density of 71.8% were prepared by drying at slow evaporation rates. Samples sintered at 1250°C in air showed a total forward transmittance of 79% in visible wavelength and an average grain size of 0.53 μm.
1. G. L. Messing and A. J. Stevenson, “Toward Pore-Free Ceramics,” Science, 322 [17], 383-384 (2008).
2. R. Apetz and Michel P. B. van Bruggen, “Transparent Alumina: A Light-Scattering Model,” J. Am. Ceram. Soc., 86[3], 480-86 (2003).
3. O. H. Kwon, X. C. Scott Nordahl and G. L. Messing, “Submicrometer Transparent Alumina by Sinter Forging Seeded γ-Al2O3 Powders” J. Am. Ceram. Soc., 78 [21], 491-94 (1995).
4. A. Krell, P. Blank, H. Ma and T. Hutzler, “Transparent Sintered Corundum with High Hardness and Strength,” J. Am. Ceram. Soc., 86[1], 12–18 (2003).
5. H. Mizuta, K. Oda, Y. Shibasak, M. Maeda, M. Machida and K. Ohshima, “Preparation of High-Strength and Translucent Alumina by Hot Isostatic Pressing,” J. Am. Ceram. Soc., 75[2], 469-473 (1992).
6. M. Nagashima, K. Motoik and M. Hayakawa, “Fabrication and Optical Characterization of High-Density Al2O3 Doped with Slight MnO Dopant,” J. Ceram. Soc. Jpn., 166[5], 645-648 (2008).
7. B. N. Kim, K. Hiraga and H. Yoshida, “Spark Plasma Sintering of Transparent Alumina,” Scr. Mater., 57, 607–610 (2007).
8. L. C. Lim, P. M. Wong and J. Ma, “Colloidal Processing of Sub-Micron Alumina Powder Compacts,” J. Mater. Process. Technol., 67, 137-42 (1997).
9. J. Ma and L. C. Lim, “Effect of Particle Size Distribution on Sintering of Agglomerate-Free Submicron Alumina Powder Compacts,” J. Eur. Ceram. Soc., 22, 2197–2208 (2002).
10. T. S. Yeh and M. D. Sacks, “Low-Temperature Sintering of Aluminum Oxide,” J. Am. Cerum. Soc., 71[10], 841-44 (1988).
11. G. L. Messing and M. Kumagai, “Low Temperature Sintering of α-Alumina-Seeded Boehmite Gel,” Am. Ceram. Soc. Bullet., 73(10), 88 (1994).
12. D. Godlinski, M. Kuntz, G. Grathwohl, “Transparent Alumina with Submicrometer Grains by Float Packing and Sintering,” J. Am. Ceram. Soc., 85 [10], 2449–56 (2002).
13. J. S. Reed, Introduction of the Principles of Ceramic Processing, John Wiley and Sons, New York, (1995).
14. K. Wefer and M. G. Bell, “Oxides and Hydroxides of Alumina, ” Technical Paper, 19 (1972).
15. Y. M. Chiang, D. P. Birnie III and W. D. Kingery, “Physical Ceramics- Principles for Ceramic Science and Engineering,” John Wiley & Sons, New York (1997).
16. G. C. Wei, “Transparent Ceramic Lamp Envelope,” J. Phys. D: Appl. Phys., 38, 3057–3065 (2005).
17. R. L. Coble, Transparent Alumina and Method of Preparation U.S. Patent 3026210 (1962).
18. P. F. Becher “Press-Forged Al2O3-Rich Spinel Crystals for IR application” J. Am. Ceram. Soc., 56[11], 1015-1017 (1977).
19. G. de With and H. J. A. van Dijk, “Translucent Y3Al5O12 Ceramics,” Mater. Res. Bull, 19[12], 1669-1674 (1984).
20. J. M. McCauley and N. D. Corbin, “Phase Relations and Reaction Sintering of Transparent Cubic Aluminum Oxynitride (AlON) Spinel,” J. Am. Ceram. Soc., 62, 476-479 (1979).
21. G. C. Wei and W. H. Rhodes, “Sintering of Translucent Alumina in a Nitrogen–Hydrogen Gas Atmosphere,” J. Am. Ceram. Soc., 83[7], 1641–48 (2000).
22. Q. H. Yang, Z. J. Zeng, J. Xu and H. G. Zhang. “Effect of La2O3 on Microstructure and Transmittance of Transparent Alumina Ceramics,” J. Rare Earths, 24, 72-75 (2006).
23. A. Krell, T. Hutzler and J. Klimke, “Transmission Physics and Consequences for Materials Selection, Manufacturing and Applications,” J. Eur. Ceram. Soc., 29, 207–221 (2009).
24. X. Mao, S. Shimai, M. J. Dong and S. W. Wang, “Gelcasting and Pressureless Sintering of Translucent Alumina Ceramics,” J. Am. Ceram. Soc., 91[5], 1700–1702 (2008).
25. 楊秋紅, 徐軍, 宋平新, 趙志偉, 曾智江, “Al2O3透明陶瓷顯微結構的研究,” 功能材料與器件學報, 14[3], 299-302 (2003).
26. X. J. Mao, S. W. Wang, S. Z. Shimai and J. K. Guoz, “Transparent Polycrystalline Alumina Ceramics with Orientated Optical Axes,” J. Am. Ceram. Soc., 91 [10], 3431–3433 (2008).
27. T. S. Suzuki, Y. Sakka, and K. Kitazawa, “Orientation Amplification of Alumina by Colloidal Filtration in a Strong Magnetic Field,” Adv. Eng. Mater., 3,490–492 (2001).
28. Y. Zhou, K. Hirao, Y. Yamauchi and S. Kanzaki, “Densification and Grain Growth in Pulse Electric Current Sintering of Alumina,” J. Eur. Ceram. Soc., 24, 3465–3470 (2004).
29. M. Born and E. Wolf, “Principles of Optics. Pergamon Press,” Oxford, U.K. (1975).
30. I. Yamashita, H. Nagayama and K. Tsukuma, “Transmission Properties of Translucent Polycrystalline Alumina,” J. Am. Ceram. Soc., 91[8], 2611–2616 (2008).
31. M. N. Rahaman, “Ceramic Processing and Sintering,” M. Dekker, New York (1995).
32. C. R. Veale, Fine Powders: Preparation, Properties and Uses, Applied Science Publishers Ltd, London (1972).
33. M. F. Yan, R. M. Cannon, U. Chowdhry, and H. K. Bowen, “Effect of Grain Size Distribution on Sintered Density”Mater. Sci. Eng., 60, 275-80 (1983).
34. A. Roosen and H. K. Bowen, “Influence of Various Consolidation Techniques on the Green Microstructure and Sintering Behavior of Alumina Powders,” J. Am. Ceram. Soc., 71 [11], 970-77 (1988).
35. J. P. Smith and G. L. Messing, “Sintering of Bimodally Distributed Alumina Powders,” J. Am. Ceram. Soc., 67 [4], 238-242, (1984).
36. G. L. Messing and J. L. McArdle, “Seeding with γ-Alumina for Transformation and Microstructure Control in Boehmite-Derived α-Alumina,” J. Am. Ceram. Soc., 69[5], 98-101 (1986).
37. P. A. Badkar and J. E. Bailey, “The Mechanism of Simultaneous Sintering and Phase Transformation in Alumina,” J. Mater. Sci., 11, 1794-1806 (1976).
38. G. L. Messing and J. L. McArdle, “Transformation, Microstructure Development, and Densification in α-Fe2O3 Seeded Boehmite-Derived Alumina,” J. Am. Ceram. Soc., 76[1], 214-222 (1993).
39. F. F. Lange and B. I. Davis, “Sinterability of ZrO2 and Al2O3 Powders: The Role of Pore Coordination Number Distribution,” in Science and Technology of Zirconia II, Ed. By N. Claussen, M. Ruble, and A. H. Heuer, Am. Ceram. Soc., (1984).
40. J. W. Halloran, “Role of Powder Agglomerates in Ceramic Processing,” in Advances in Ceramics, 9, Forming of Ceramics, Eds. J. A. Mange and G. L. Messing, Am. Ceram. Soc., (1984).
41. F. D. Dynys and J. W. Halloran, “Influence of Aggregates on Sintering,” J. Am. Ceram. Soc., 67 [9], 596-601 (1984).
42. A. Krell, P. Blank, H. Ma, T. Hutzler and M. Nebelung, “Processing of High-Density Submicrometer Al2O3 for New Applications,” J. Am. Ceram. Soc., 86[4], 546–53 (2003).
43. A. Krell and J. Klimke, “Effects of the Homogeneity of Particle Coordination on Solid-State Sintering of Transparent Alumina,” J. Am. Ceram. Soc., 89[6], 1985–1992 (2006).
44. R. C. Chiu, T. J. Garino and M. J. Cima, “Drying of Granular Ceramic Films: I, Effect of Processing Variables on Cracking Behavior,” J. Am. Ceram. Soc., 76[9], 2257-64 (1993).
45. P. A. Kralchevskyt and K. Nagayama, “Capillary Forces between Colloidal Particles,” Langmuir, 10, 23-26 (1994).
46. J. Aizenberg, P. V. Braun and P. Wiltzius, “Patterned Colloidal Deposition Controlled by Electrostatic and Capillary Forces,” Phys. Rev. Lett., 84[13], 2997-3000 (2000).
47. G. W. Scherer, “Theory of Drying,” J. Am. Ceram. Soc., 73 [1], 3-14 (1990).