| 研究生: |
姜智裴 Pei-hiang, Chih- |
|---|---|
| 論文名稱: |
聚對位乙烯基酚(PVPh)與脂肪族聚酯高分子相容性與相型態之探討 Miscibility in Blends of Poly(p-vinyl phenol) (PVPh) with Aliphatic Polyesters. |
| 指導教授: |
吳逸謨
Woo, Eamor-M |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 107 |
| 中文關鍵詞: | 高分子摻合 、相容性 、作用力 |
| 相關次數: | 點閱:67 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用微分掃描熱卡計(DSC)、偏光顯微鏡(POM)、掃描式電子顯微鏡(SEM)、傅利葉紅外線光譜儀(FTIR)探討Poly(p-vinylphenol) (PVPh)與一系列直鏈型聚酯類高分子(CH2/COO=x)摻合系統之不定型區之相容性相型態及其作用力,其中聚酯類高分子包括poly(ethylene azelate) (PEAz,CH2/COO=4.5)、poly(hexamethylene adipate) (PHA,CH2/COO=5)、Poly(hexamethylene sebacate) (PHS,CH2/COO=7)。此系列PVPh/PEAz、PVPh/PHA、PVPh/PHS摻合系統均可呈現出單一玻璃轉移溫度及均勻的相型態,利用Kavocs方程式可良好的描述此系列摻合系統Tg對組成的關係,其g值對PVPh/PEAz、PVPh/PHA、PVPh/PHS分別為0.010、0.010和0.018。
由FT-IR結果顯示有氫鍵作用力存在於PVPh與聚酯高分子間。而利用熔點下降及Flory-Huggins理論計算作用力參數12值,可得到PVPh/PEAz、PVPh/PHA及PVPh/PHS之12值分別為-1.230、-0.416及-0.167。因此,可証明此系列摻合系統具有作用力及良好相容性。
最後利用結晶動力學了解PVPh的加入對聚酯高分子結晶速率會有明顯的抑制但不會影響聚酯高分子結晶機制。
此外,PVPh/PEAz、PVPh/PHS會因為不同摻合方式而得到非均相的相型態且隨著升高溫度會出現相轉變轉為均勻的相型態,經過改變不同溶劑及摻合方式釐清,顯示其並非UCST行為而是溶劑誘導相分離。
New miscible blend systems comprised of poly(p-vinyl phenol) (PVPh) and a homologous series of polyesters of different CH2/COO ratios were investigated by using differential scanning calorimeter (DSC), polarized-light microscopy (POM), scanning electron microscopy (SEM) and Fourier-transform infrared spectroscopy (FT-IR). The series blends of PVPh/PEAz、PVPh/PHA and PVPh/PHS all exhibit a single composition-dependent glass transition and homogeneous phase morphology. Kovacs equation is used to explained the Tg-composition relationship and the g values of PVPh/PEAz、PVPh/PHA、PVPh/PHS blends are 0.010, 0.010 and 0.018, respectively.
Binary interaction strengths in these series of miscible blends were quantitatively compared. FT-IR study showed evidence of hydrogen-bonding interactions between the two polymers in blends. The quantitative Flory-Huggins interaction parameters (12) obtained from analysis of melting point depression are -1.230, -0.416 and -0.167 for PVPh/PEAz, PVPh/PHA and PVPh/PHS, respectively. The negative values proving that the blends are miscible in a wide temperature range from ambient up to high temperatures in the melt state.
The rate of nucleation and growth crystallization was affected by miscible components in the blends on the basis of Avrami model.
When using THF casting, the blends of PVPH/PEAz and PVPh/PHS are apparently immiscible. However, with increasing the temperatures, the blends become miscible. Utilizing different solvents and methods to prepare the binary blends it is further proved that no UCST behavior exists and the phase separation is induced by solvent.
1. Paul DR, Newman S, Eds. Polymer Blends; Academic Press: New York, 1978; Vols. 1, 2.
2. Bank M, Leffingwell J, Thies C, Macromolecules, 4: 43 (1971).
3. Nishimoto M, Keskkula H, Paul DR, Polymer, 32: 272 (1991).
4. Walsh DJ, Higgins JS, Maconndchie,“Polymer Blends and Mixtures”, Mijhoff Publishers (1985).
5. Landry CJT, Yang H, Machell JS, Polymer, 32: 44 (1991).
6. Coleman MM, Moskala EJ, Polymer, 24: 251 (1983).
7. Varnell DF, Moskala EJ, Painter PC, Coleman MM, Polym. Eng. Sci. Phys. Ed., 23: 658 (1983).
8. Eisenberg A, Hara M, Polym. Eng. Sci., 24: 1306 (1984).
9. Aubin M, Bedard Y, Morrissette MF, Prudhomme RE, J. Polym. Sci. Phys. Ed., 21: 233 (1983).
10. Rodriguez-Parada JM and Percec V, Macromolecules, 19: 55 (1986).
11. Landry CJT; Massa DJ; Teegarden DM; Landry MR; Henrichs MP; Colby RH; Long TE, Macromolecules, 26: 6299 (1993).
12. Lee LT and Woo EM, Polym. Inter., accepted (2003).
13. Goh SH and Siow KS, Polym. Bull., 17: 453 (1987).
14. Belfiore LA, Pires ATN and Qin C, Macromolecules, 24: 666 (1991).
15. Moskala EJ, Varnell DF and Coleman MM, Polymer, 26: 228 (1985).
16. Qin C, Pires ATN and Belfiore LA, Polymer Commun., 31: 177 (1990).
17. Belfiore LA, Qin C, Ueda E, Pires ATN, J. Polym. Sci., Part B: Polym. Phys., 31: 409 (1993).
18. Qiu Z, Komura M, Ikehara T, Nishi T Polymer, 44: 8111 (2003).
19. Moskala EJ, Howe SE, Painter PC and Coleman MM, Macromolecules, 17: 1671 (1984).
20. Chen HL, Wang SF, Lin TL, Macromolecules, 31: 8924 (1998).
21. Kuo SW, Huang CF, Chang FC, J.Polym. Sci., Part B: Polym. Phys., 39: 1348 (2001).
22. Wang J, Cheung MK, Mi Y, Polymer, 43: 1357 (2002).
23. Cruz CA, Paul DR, Barlow JW, J. Appl. Polym. Sci., 24: 2101 (1979).
24. Ziska JJ, Barlow JW, Paul DR, Polymer, 22: 918 (1981).
25. Woo EM, Barlow JW, Paul DR, Polymer, 26: 763 (1985).
26. Lee S, Lee JG, Lee H, Mumby SJ, Polymer, 40: 5137 (1999).
27. Harris JE, Goh SH, Paul DR, Barlow JW, J. Appl. Polym. Sci., 27: 839 (1982).
28. Sperling LH, Introduction to Physical Polymer Science 2nd ed., John Wiley and Sons (1992).
29. Hudson SD, Davies DD, Lovinger AJ, Macromolecules, 25: 1759 (1992).
30. Kovacs AJ, Adv. Polym. Sci., 3: 394 (1963).
31. Yau SN and Woo EM, Macromolecules, 30: 3626 (1997).
32. Chen HL, Macromolecules, 28: 2845 (1995).
33. Aubin M; Prud'homme RE, Macromolecules, 21: 2945 (1988).
34. Aubin M; Prud'homme RE, Polym. Eng. and Sci., 28: 1355 (1988).
35. Jutier JJ; Lemieux E; Prud'Homme RE, J. Polym. Sci., Part B: Polym. Phys. 26: 1313 (1988).
36. Pedrosa P; Pomposo JA; Calahorra E; Cortazar M, Macromolecules, 27: 102 (1994).
37. Cheung YW; Stein RS, Macromolecules 27: 2512 (1994).
38. O. Olabishi, L. M. Robeson and M. T. Shaw, “Polymer-Polymer Miscibility”, Academic Press Inc., New York (1979).
39. Lee SW, Cakmak M, J.Macromol. Sci.Phys., 37: 501 (1998).
40. Brandrup J, Immergut EH, and Grulke EA, Ed., “Polyner Handbook”, John Wiley& Sons, Inc. New York, N. Y., (1999).
41. Li D, Brisson J, Polymer, 39: 793(1998).
42. Tobin MC, J. Polym. Sci.: Polym. Phys., 12: 399 (1974).
43. Kavindranath K, Jog JP, J. Appl. Polym. Sci., 49: 1395 (1993).
44. Aggarwal SL, Marker L, Kollar WL, Geroch R, J. Polym. Sci.: A-2., 4, 715 (1966).
45. Chen JM, Woo EM, J. Appl. Polym. Sci., 57: 877 (1995).
46. Coleman MM, Moskala EJ, Polymer, 24: 251 (1983).
47. Moskala EJ, Varnell DF, Coleman MM, Polymer, 26: 228 (1985).
48. Woo EM, Cho IC, Lee LT, Polymer, 43: 4225 (2002).
49. Chen HL, Hwang JC, Wang RC, Polymer, 39: 6067 (1998).
50. Chang LL, Woo EM, Colloid Polym. Sci., 281: 1149 (2003).
51. Y Shi, Jabarin SA, J. Appl. Polym. Sci., 81: 11 (2001).
52. Y Shi, Jabarin SA, J. Appl. Polym. Sci., 81: 23 (2001).
53. Y Shi, Jabarin SA, J. Appl. Polym. Sci., 80: 2422 (2001).
54. Woo EM, Yau SN, J. Polym. Sci. Pol. Chem., 35: 97 (1997).
55. Mandal TK, Woo EM, Macromol. Chem. Physic., 200: 1143 (1999).
56. Mandal TK, Woo EM, Polymer, 40: 2813 (1999).
57. Landry CJT, Teegarden DM, Macromolecules, 24: 4310 (1991).
58. Dong J, Ozaki Y, Macromolecules, 30: 286 (1997).
59. Hsu, WP, J. Appl. Polym. Sci., 80: 842 (2001).
60. Hsu WP, J. Appl. Polym. Sci., 83: 1425 (2002).
61. Porter RS, Wang LH, Polymer, 33: 2019 (1992).
62. Guo M, Brittain WJ, Macromoleculs, 31: 7166 (1998).