研究生: |
侯馨茹 Hou, Hsin-Ju |
---|---|
論文名稱: |
金屬-中孔氧化矽特性研究及其應用於葡萄糖生物感測器 characterization of mesoporous silica supported metal nanoparticles and its application on glucose biosensor |
指導教授: |
黃文星
Hwang, Weng-Sing |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 123 |
中文關鍵詞: | 中孔氧化矽 、螯合劑 、奈米顆粒 、微波還原法 、葡萄糖氧化酵素 |
外文關鍵詞: | mesoporous silica, chelating agent, nanoparticles, microwave synthesis, glucose oxidase |
相關次數: | 點閱:89 下載:1 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗主要分成四個部分,首先是中孔氧化矽合成之性質研究,藉由氮氣等溫吸附脫附量測儀( N2 adsorption/desorption measurement ) 和高解析穿透式電子顯微鏡 ( High resolution transmission electro microscopy,HRTEM ) 探討孔洞結構和比表面積之情形。並利用3-氨丙基三甲氧基矽烷 ( 3-Aminopropyltrimethoxysilane,APTMS ) 進行氮官能基表面改質,增進金屬奈米顆粒均勻散佈性。接著在合成奈米載體的部分則是利用螯合劑以微波還原法的方式,將 Au、Pt、Ag、Cu 奈米顆粒負載在中孔氧化矽的表面,並以粉末 X 光繞射 ( X-ray diffraction,XRD ) 和 HRTEM 觀察奈米顆粒形貌、分散狀況和結晶結構。最後探討負載之金屬奈米顆粒吸附葡萄糖酵素,搭配電化學循環伏安法 ( Cyclic Voltammatry,CV ) 以偵測電流值與葡萄糖濃度變化之間關係,以評估此修飾電極之穩定性與重複性以及是否能運用在生物感測器上。
由氮氣等溫吸附脫附實驗顯示,合成出的中孔氧化矽具有高比表面積以及高孔洞體積。藉由表面胺官能基改質有效提升金屬奈米顆粒均勻性。利用微波還原法並搭配螯合劑的使用,由 TEM 結果顯示可以製備出粒徑小且散佈均勻之奈米顆粒。最後 CV 實驗結果顯示,負載金屬奈米顆粒能穩定葡萄糖酵素,保持酵素活性,用以偵測葡萄糖濃度變化,其中金奈米顆粒穩定性最佳,可作為生物感測器之載體用途。
This study reports the preparation and characterization of mesoporous silica supported metal nanoparticles and the electrocatalytic oxidation of glucose. the mesoporous silica was synthesized by the use of poly-(alkylene oxide) block copolymer. The high specific surface areas and large pore volume of mesoporous silica was observed from the N2 adsorption/desorption measurement. To distribute the metal nanoparticles uniformly on the surface of mesoporous silica, its surfaces were functionalized with amine group prior to addition of APTMS by post-synthesis. Then, the surface of mesoporous silica was supported metal nanoparticles, such as Au, Ag, Pt, and Cu, by chelating agent assisted with microwave synthesis. The surface morphology of mesoporous silica after microwave synthesis and the crystal structure of metal nanoparticles were both investigated by High Resolution Transmission Electron Microscopy (HRTEM) and X-ray Diffraction (XRD).
In order to show its application as a biosensor, the Glucose Oxidase (GOD) was adsorbed onto the matrix of the mesoporous silica-supported metal nanoparticles. Cyclic voltammetry measurement (CV) was employed to investigate the catalytic behavior of the mesoporous silica supported with different metal nanoparticles. The results showed that mesoporous silica supported metal nanoparticles could be used efficiently to detect the oxidation of glucose and the stability of the modified electrode. Our findings suggest that the mesoporous silica supported gold nanoparticles have a better stability than others. Therefore, the mesoporous silica supported gold nanoparticles can be developed as enzyme immobilization for biosensor construction.
1. 陳建源, <生物感測器之發展及應用>,生物產業, 3, pp. 205-212, 1993
2. 陳建中, 顧野松, 杜景順, 以導電性聚苯胺建構過氧化氫生物感測器 之技術及其性質探討. 2009 .
3. CL Morgan, D.N.a.C.P., Immunosensors: technology and opportunities in laboratory medicine. Clinical Chemistry, 42 , 1996
4. J. Chen, D. Du, F. Yan, H.X. Ju and H.Z. Lian, Electrochemical antitumor drug sensitivity test for leukemia K562 cells at carbon nanotube modified electrode, Chem. Eur. J., 11, pp. 1467–1472, 2005
5. M. Musameh, J. Wang, A. Merkoci and Y. Liu, Low-potential stable NADH detection at carbon-nanotube-modified glassy carbon electrodes, Electrochem. Commun. 4 , pp. 743–746, 2002
6. S. Iijima, M. Yudasaka, R. Yamada, S. Bandow, K. Suenaga, F. Kokai and K. Takahashi, Affinity selection of peptide phage libraries against single-wall carbon nanohorns identifies a peptide aptamer with conformational variability, Chem. Phys. Lett. 309 , pp. 165–170, 1999
7. T. Ohba, K. Murata, K. Kaneko, W.A. Steele, F. Kokai, K. Takahashi, D. Kasuya, M. Yudasaka and S. Iijima, N2 adsorption in an internal nanopore space of single-walled carbon nanohorn: GCMC simulation and experiment, Nano Lett. 1, pp. 371–373, 2001
8. A. Wei, X. W. Sun, J. X. Wang, Y. Lei, X. P. Cai, C. M. Li, Z. L. Dong, and W. Huang, Enzymatic glucose biosensor based on ZnO nanorod array grown by hydrothermal decomposition, Appl. Phys. Lett. 89, 123902 , 2006.
9. Y.J. Han, J.M. Kim and G.D. Stuchy, Preparation of Noble Metal Nanowires Using Hexagonal Mesoporous Silica SBA-15, Chem. Mater. 12 , pp. 2068–2069, 2000
10. L. Zheng, S. Zhang, L. Zhao, G. Zhu, X. Yang, G. Gao and S. Cao, Resolution of N-(2-ethyl-6-methylphenyl)alanine via free and immobilized lipase from Pseudomonas cepacia, J. Mol. Catal. B: Enzym. 38, pp. 119–125, 2006
11. A. Salimi, E. Sharifi, A. Noorbakhah and S. Soltanian, Direct voltammetry and electrocatalytic properties of hemoglobin immobilized on a glassy carbon electrode modified with nickel oxide nanoparticles, Electrochem. Commun. 8, pp. 1499–1508, 2006
12. L. Washmon-Kriel, V.L. Jimenez and K.J. Balkus Jr., Cytochrome c immobilization into mesoporous molecular sieves, J. Mol. Catal. B: Enzym. 10, pp. 453–469, 2000
13. J.Y. Ying, C.P. Mehnert and M.S. Wong, Synthesis and Applications of Supramolecular-Templated Mesoporous Materials, Angew. Chem. Int. Ed. 38, pp. 56–77, 1999
14. Yu JJ, Lu S, Li JW, Zhao FQ, Zeng BZ, Characterization of gold nanoparticles electrochemically deposited on amine-functioned mesoporous silica films and electrocatalytic oxidation of glucose, J Solid State Electrochem, 11, pp.1211–1219, 2007
15. J. S. Dailey and T. J. Pinnavaia, Silica-pillared derivatives of H+-magadiite, a crystalline hydrated silica. chemistry of materials, 4, pp. 855, 1992
16. D. Zhao, Q. Huo,J. Feng, B. F. Chmelka and G. D.Stucky, Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures. J. Am. Chem. Soc., 120, 1998
17. A. M. Khenkin and R. Neumann, Vanadium-substituted MCM-41 zeolites as catalysts for oxidation of alkanes with peroxides, 23, 1996
18. Heller A , The role of oxygen in photooxidation of organic molecules on semiconductor particles. Acc Chem Res 23, pp. 128, 1990
19. Willner I, Katz E, Integration of layered redox-proteins and conductive supports for bioelectronic applications. Angew Chem Int Ed, 39, pp.1180, 2000
20. J. Fan, J. Lei, L.-M. Wang, C.-Z. Yu, B. Tu, D.-Y. Zhao, Rapid and high-capacity immobilization of enzymes based on mesoporous silicas with controlled morphologies. Electronic supplementary information (ESI) available: XRD and nitrogen sorption isotherms for MPSs used in bioimmobilization. ChemComm., 2003.
21. Z.-H. Dai, S.-Q. Liu, H.-X. Ju, H.-Y. Chen, Direct electron transfer and enzymatic activity of hemoglobin in a hexagonal mesoporous silica matrix. Biosens. Bioelectron., 19, 2004
22. Y.J. Han, G.D. Stucky, A. Butler, Mesoporous silicate sequestration and release of proteins. J. Am. Chem. Soc., 121, 1999
23. L. Washmon-Kriel, V.L. Jimenez, K.J. Balkus Jr., Cytochrome c immobilization into mesoporous molecular sieves. J. Mol. Catal. B: Enzym., 10, 2000.
24. J.F.Diaz.K.J.Balkus Jr, F.Bedioui, V. Kurshev and L. Kevan, Synthesis and Characterization of Cobalt−Complex Functionalized MCM-41. Chemistry of materials, 1997. 9.
25. X. Feng, G.E.Fryxell, L.-Q. Wang, A. Y. Kim, J. Liu and K.M. Kemner, Functionalized Monolayers on Ordered Mesoporous Supports. science, 276, 1997
26. R. Ryoo, C.H. Ko, J.M. Kim and R. Howe, Preparation of nanosize Pt clusters using ion exchange of Pt(NH3)42+ inside mesoporous channel of MCM-41. catalysis letters, 37, 1996.
27. U. Junges, F. Schuth , G. Schmid, Y. Uchida , R. Schlogl, Synthesis and characterization of catalysts based on ligand-stabilized clusters incorporated in mesoporous oxides. Phys. Chem., 101, 1997
28. C. T. Kresge, M.E. Leonowicz, W. J. Roth, J. C. Vartuli and J. S. Beck, Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 359, 1992.
29. J. S. Beck et al, A new family of mesoporous molecular sieves prepared with liquid crystal templates. J. Am. Chem. Soc., 114, 1992.
30. D. Zhao, J.Feng, Q. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka, and G.D. Stucky, Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores. . science, 279, 1998.
31. G. Sastre, C.R.A. Catlow and A. Corma, Influence of the Intermolecular Interactions on the Mobility of Heptane in the Supercages of MCM-22 Zeolite. A Molecular Dynamics Study. J. Phys. Chem. B, 106, 2002.
32. G.J. Kennedy and D.L. Dorset, Crystal Structure of MCM-70: A Microporous Material with High Framework Density. J. Phys. Chem. B, 109, 2005.
33. T. S. Jiang, Q.ZHao and H.B.Yin, Synthesis and characterization of Ni-mesoporous molecular sieves with high stability Inorganic Materials, 43, 2007.
34. A. Ghosh, R.P. Chitta, P. Mukherjee, M. Sastry and R. Kumar, Preparation and stabilization of gold nanoparticles formed by in situ reduction of aqueous chloroaurate ions within surface-modified mesoporous silica. Microporous and Mesoporous Materials, 58, 3, pp. 201-211, 2003.
35. D. Liu, J.H. Lei, L.P. Guo, X.D. Du and K. Zeng, Ordered thiol-functionalized mesoporous silica with macrostructure by true liquid crystal templating route. Microporous and Mesoporous Materials, 117, 1 pp. 67-74, 2009
36. V. Zelenák et al, Amine-modified ordered mesoporous silica: Effect of pore size on carbon dioxide capture. Chemical Engineering Journal, 144, 2 , pp. 336-342, 2008.
37. J.M. Pingarrón, P. Yáñez-Sedeño and A. González-Cortés, Gold nanoparticle-based electrochemical biosensors Analytical and Bioanalytical Chemistry, 382, 2005.
38. S. Liu,D. Leech and H. Ju, Application of Colloidal Gold in Protein Immobilization, Electron Transfer, and Biosensing Analytical Letters, 36, 1, 2003.
39. Tsuneo Yanagisawa, K.K.a.C.K., Organic Derivatives of Layered Polysilicates. II. Reaction of Magadiite and Kenyaite with Diphenylmethylchlorosilane. Bulletin of the Chemical Society of Japan, 61, 1988.
40. M. Gerard, A.Chaubey, and B. D. Malhotra, Application of conducting polymers to biosensors Biosensors and Bioelectronics, 17, 2002.
41. Eun-Hyung Yoo and Soo-Youn Lee , Glucose Biosensors: An Overview of Use in Clinical Practice, Sensors, 10, pp. 4558-4576, 2010
42. Bai Y, Yang H, Yang W W. Gold nanoparticles-mesoporous silica composite used as an enzyme immobilization matrix for amperometric glucose biosensor construction. Sens Actu B, 124, 1, pp.179-186, 2007
43. CL Morgan, D.N.a.C.P., Immunosensors: technology and opportunities in laboratory medicine. Clinical Chemistry, 42, 1996
44. S. Liu, H. Ju, Reagentless glucose biosensor based on direct electron
transfer of glucose oxidase immobilized on colloidal gold modified carbon
paste electrode, Biosens. Bioelectron. 19 ,pp. 177–183, 2003
45. Z.H. Dai, H.X. Ju, H.Y. Chen, Mesoporous materials promoting directelectrochemistry and electrocatalysis of horseradish peroxidase, Electroanalysis ,17 ,pp. 1571–1577, 2005
46. C.X. Cai, J. Chen, Direct electron transfer of glucose oxidase promoted by carbon nanotubes , Anal. Biochem. 332 , pp.75–83, 2004
47. Y. Liu, M.Wang, F. Zhao, Z. Xu, S. Dong, The direct electron transfer of glucose oxidase and glucose biosensor based on carbon nanotubes/chitosan matrix, Biosens. Bioelectron. 21 ,pp. 984–988, 2005
48. Y.X. Huang,W.J. Zhang, H. Xiao, G.X. Li, An electrochemical investigation of glucose oxidase at a CdS nanoparticles modified electrode ,Biosens. Bioelectron. 21 ,pp. 817–821, 2005
49. S.Y. Lu, C.E. Li, D.D. Zhang, Y. Zhang, Z.H. Mo, Q. Cai, A.R. Zhu,
Electron transfer on an electrode of glucose oxidase immobilized in
polyaniline, J. Electroanal. Chem. 364, pp. 31–36, 1994
50. Z.H. Dai, S.Q. Liu, H.X. Ju, H.Y. Chen, Direct electron transfer and
enzymatic activity of hemoglobin in a hexagonal mesoporous silica matrix,Biosens. Bioelectron. 19 ,pp. 861–867, 2004
51. 鍾協訓與曾志明:液體電化學感測器的介紹與應用。Chemistry,59卷,2期,pp.201-206, 2001
52. J. D. Genders and D. Pletcher, Electrosynthesis from Laboratory, to Pilot, to Production, The Electrosynthesis Company Inc., New York , 1990.
53. Kim, H.-J., et al., One-pot synthesis of multifunctional mesoporous silica nanoparticle incorporated with zinc(II) phthalocyanine and iron oxide. Scripta Materialia, 61, 12, pp. 1137-1140, 2009.
54. D. Zhao, J.F., Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka, and G. D. Stucky Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores. . science, 279, 1998.
55. Qi Wei , Z.-R.N., Ya-Li Hao , Li Liu ,Zeng-Xiang Chen , Jing-Xia Zou, Effect of synthesis conditions on the mesoscopical order of mesoporous silica SBA-15 functionalized by amino groups. J Sol-Gel Sci Techn, 39, 2006.
56. S.-W. Song, K.H., S. Kawi, Functionalized SBA-15 Materials as Carriers for Controlled Drug Delivery: Influence of Surface Properties on Matrix-Drug Interactions. Langmuir, 21, 2006.
57. Michal Kruk, M.J., Chang Hyun Ko and Ryong Ryoo, Characterization of the Porous Structure of SBA-15. Chemistry of materials, 12, 2000
58. Srisuda Sae-ung , V.B., One-Pot Synthesis of Organic–Inorganic Hybrid Mesoporous Materials for the Adsorption of Formaldehyde Vapor. Environmental Engineering Science, 25, 2008.
59. Qi Wei , Z.-R.N., Ya-Li Hao , Li Liu ,Zeng-Xiang Chen , Jing-Xia Zou, Effect of synthesis conditions on the mesoscopical order of mesoporous silica SBA-15 functionalized by amino groups. J Sol-Gel Sci Techn, 39, 2006
60. S.-W. Song, K.H., S. Kawi, Functionalized SBA-15 Materials as Carriers for Controlled Drug Delivery: Influence of Surface Properties on Matrix-Drug Interactions. Langmuir, 21, 2006.