簡易檢索 / 詳目顯示

研究生: 侯馨茹
Hou, Hsin-Ju
論文名稱: 金屬-中孔氧化矽特性研究及其應用於葡萄糖生物感測器
characterization of mesoporous silica supported metal nanoparticles and its application on glucose biosensor
指導教授: 黃文星
Hwang, Weng-Sing
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 123
中文關鍵詞: 中孔氧化矽螯合劑奈米顆粒微波還原法葡萄糖氧化酵素
外文關鍵詞: mesoporous silica, chelating agent, nanoparticles, microwave synthesis, glucose oxidase
相關次數: 點閱:89下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗主要分成四個部分,首先是中孔氧化矽合成之性質研究,藉由氮氣等溫吸附脫附量測儀( N2 adsorption/desorption measurement ) 和高解析穿透式電子顯微鏡 ( High resolution transmission electro microscopy,HRTEM ) 探討孔洞結構和比表面積之情形。並利用3-氨丙基三甲氧基矽烷 ( 3-Aminopropyltrimethoxysilane,APTMS ) 進行氮官能基表面改質,增進金屬奈米顆粒均勻散佈性。接著在合成奈米載體的部分則是利用螯合劑以微波還原法的方式,將 Au、Pt、Ag、Cu 奈米顆粒負載在中孔氧化矽的表面,並以粉末 X 光繞射 ( X-ray diffraction,XRD ) 和 HRTEM 觀察奈米顆粒形貌、分散狀況和結晶結構。最後探討負載之金屬奈米顆粒吸附葡萄糖酵素,搭配電化學循環伏安法 ( Cyclic Voltammatry,CV ) 以偵測電流值與葡萄糖濃度變化之間關係,以評估此修飾電極之穩定性與重複性以及是否能運用在生物感測器上。
    由氮氣等溫吸附脫附實驗顯示,合成出的中孔氧化矽具有高比表面積以及高孔洞體積。藉由表面胺官能基改質有效提升金屬奈米顆粒均勻性。利用微波還原法並搭配螯合劑的使用,由 TEM 結果顯示可以製備出粒徑小且散佈均勻之奈米顆粒。最後 CV 實驗結果顯示,負載金屬奈米顆粒能穩定葡萄糖酵素,保持酵素活性,用以偵測葡萄糖濃度變化,其中金奈米顆粒穩定性最佳,可作為生物感測器之載體用途。

    This study reports the preparation and characterization of mesoporous silica supported metal nanoparticles and the electrocatalytic oxidation of glucose. the mesoporous silica was synthesized by the use of poly-(alkylene oxide) block copolymer. The high specific surface areas and large pore volume of mesoporous silica was observed from the N2 adsorption/desorption measurement. To distribute the metal nanoparticles uniformly on the surface of mesoporous silica, its surfaces were functionalized with amine group prior to addition of APTMS by post-synthesis. Then, the surface of mesoporous silica was supported metal nanoparticles, such as Au, Ag, Pt, and Cu, by chelating agent assisted with microwave synthesis. The surface morphology of mesoporous silica after microwave synthesis and the crystal structure of metal nanoparticles were both investigated by High Resolution Transmission Electron Microscopy (HRTEM) and X-ray Diffraction (XRD).
    In order to show its application as a biosensor, the Glucose Oxidase (GOD) was adsorbed onto the matrix of the mesoporous silica-supported metal nanoparticles. Cyclic voltammetry measurement (CV) was employed to investigate the catalytic behavior of the mesoporous silica supported with different metal nanoparticles. The results showed that mesoporous silica supported metal nanoparticles could be used efficiently to detect the oxidation of glucose and the stability of the modified electrode. Our findings suggest that the mesoporous silica supported gold nanoparticles have a better stability than others. Therefore, the mesoporous silica supported gold nanoparticles can be developed as enzyme immobilization for biosensor construction.

    目錄 摘要................................................Ι Abstract..........................................III 致謝...............................................VI 目錄..............................................VII 表目錄...............................................XI 圖目錄..............................................XII 第一章 緒論………………………………………………………………….1 1.1 酵素葡萄糖感測器…………………………………………………1 1.2 中孔洞分子篩及其研究……………………………………………3 1.3 中孔洞分子篩之性質與應用………………………………………4 1.3.1中孔洞分子篩表面改質應用…….…………………………..4 1.3.2 中孔洞分子篩負載金屬奈米顆粒………………………….4 1.4 Au 奈米顆粒應用於生物感測器………………………………….5 1.5 研究目的……………………………………………………………5 第二章 理論基礎......................................8 2.1 生物感測器介紹...................................8 2.2 電化學轉換元件之原理…………………………………….……...9 2.3 葡萄糖酵素氧化之行為....…………………..........10 2.4 修飾電極之製備與應用……………………………………..11 2.4.1修飾電極具備之條件……………………………………….11 2.5 生物感測器之特性……………………………………..........12 第三章 實驗方法與步驟 ………………………………………………… 15 3.1 藥品與儀器設備.......................15 3.1.1化學藥品與試劑.........................15 3.1.2 實驗水溶液製備…………………………………………...15 3.1.2.1 金屬水溶液製備...................15 3.1.2.2 2M 氫氧化鈉水溶液製備................16 3.1.2.3 葡萄糖水溶液製備..........................16 3.1.3 修飾電極前置作業………………………………………...16 3.1.3.1 電極清潔步驟…………..........16 3.1.3.2 電極校正 ……………………………………………17 3.1.4 實驗設備…………………………………..……………….17 3.1.4.1 電位儀系統 (循環伏安法)………………………….17 3.1.4.2 高速離心機 …………………....17 3.2 實驗流程……………………………………………………………18 3.2.1 中孔洞氧化矽合成步驟…………………………………...18 3.2.2 中孔洞氧化矽表面官能基改質 ………………………….18 3.2.3 微波還原法製備金屬顆粒.................19 3.2.3.1微波還原法製備黃金顆粒………………………….19 3.2.3.2 微波還原法製備白金顆粒...………….19 3.2.3.3 微波還原法製備銀顆粒……………………………20 3.2.3.4 微波還原法製備銅顆粒……………………………20 3.2.4 製備葡萄糖感測器………………………………………….21 3.2.4.1 表面修飾膜製備……………………………………21 3.3 儀器分析設備………………………………………………………21 3.3.1 粉末X-ray光繞射分析(X-ray diffraction, XRD)21 3.3.2 氮氣等溫吸附/脫附量測儀(N2 adsorption/desorption measurement)…………22 3.3.3 高解析傅立葉紅外線吸收光譜(High resolution fourier transform infrared spectroscopy, HRFTIR)24 3.3.4 感應耦合電漿質譜分析(Inductively coupled plasma mass spectrometry, ICP-MS)…………………………………25 3.3.5 高解析穿透式電子顯微鏡(High resolution transmission electron microscopy, HRTEM)……….25 3.3.6 電化學系統 ……………………………………..…….28 3.3.6.1循環伏安法 (Cyclic Voltammatry)………………….28 第四章 結果與討論...............................44 4.1 中孔氧化矽實驗合成分析結果………………..……….………….44 4.2表面官能基改質結果………………………………..….…………..45 4.3 微波還原製備金屬奈米顆粒之分析......................46 4.3.1 Au奈米顆粒性質分析............................46 4.3.2 Pt奈米顆粒性質分析 …………………….....….48 4.3.3 Ag奈米顆粒性質分析......................49 4.3.4 Cu奈米顆粒性質分析………………………….50 4.4 金屬奈米顆粒電化學循環伏安分析....……………………………51 4.4.1 Au金屬載體循環伏安特性量測...................51 4.4.2 Pt金屬載體循環伏安特性量測 ..................55 4.4.3 Ag金屬載體循環伏安特性量測............58 4.4.4 Cu金屬載體循環伏安特性量測…………………………….61 第五章 結論……………………………………………………….………118 參考文獻..............................................119

    1. 陳建源, <生物感測器之發展及應用>,生物產業, 3, pp. 205-212, 1993
    2. 陳建中, 顧野松, 杜景順, 以導電性聚苯胺建構過氧化氫生物感測器 之技術及其性質探討. 2009 .
    3. CL Morgan, D.N.a.C.P., Immunosensors: technology and opportunities in laboratory medicine. Clinical Chemistry, 42 , 1996
    4. J. Chen, D. Du, F. Yan, H.X. Ju and H.Z. Lian, Electrochemical antitumor drug sensitivity test for leukemia K562 cells at carbon nanotube modified electrode, Chem. Eur. J., 11, pp. 1467–1472, 2005
    5. M. Musameh, J. Wang, A. Merkoci and Y. Liu, Low-potential stable NADH detection at carbon-nanotube-modified glassy carbon electrodes, Electrochem. Commun. 4 , pp. 743–746, 2002
    6. S. Iijima, M. Yudasaka, R. Yamada, S. Bandow, K. Suenaga, F. Kokai and K. Takahashi, Affinity selection of peptide phage libraries against single-wall carbon nanohorns identifies a peptide aptamer with conformational variability, Chem. Phys. Lett. 309 , pp. 165–170, 1999
    7. T. Ohba, K. Murata, K. Kaneko, W.A. Steele, F. Kokai, K. Takahashi, D. Kasuya, M. Yudasaka and S. Iijima, N2 adsorption in an internal nanopore space of single-walled carbon nanohorn: GCMC simulation and experiment, Nano Lett. 1, pp. 371–373, 2001
    8. A. Wei, X. W. Sun, J. X. Wang, Y. Lei, X. P. Cai, C. M. Li, Z. L. Dong, and W. Huang, Enzymatic glucose biosensor based on ZnO nanorod array grown by hydrothermal decomposition, Appl. Phys. Lett. 89, 123902 , 2006.
    9. Y.J. Han, J.M. Kim and G.D. Stuchy, Preparation of Noble Metal Nanowires Using Hexagonal Mesoporous Silica SBA-15, Chem. Mater. 12 , pp. 2068–2069, 2000
    10. L. Zheng, S. Zhang, L. Zhao, G. Zhu, X. Yang, G. Gao and S. Cao, Resolution of N-(2-ethyl-6-methylphenyl)alanine via free and immobilized lipase from Pseudomonas cepacia, J. Mol. Catal. B: Enzym. 38, pp. 119–125, 2006
    11. A. Salimi, E. Sharifi, A. Noorbakhah and S. Soltanian, Direct voltammetry and electrocatalytic properties of hemoglobin immobilized on a glassy carbon electrode modified with nickel oxide nanoparticles, Electrochem. Commun. 8, pp. 1499–1508, 2006
    12. L. Washmon-Kriel, V.L. Jimenez and K.J. Balkus Jr., Cytochrome c immobilization into mesoporous molecular sieves, J. Mol. Catal. B: Enzym. 10, pp. 453–469, 2000
    13. J.Y. Ying, C.P. Mehnert and M.S. Wong, Synthesis and Applications of Supramolecular-Templated Mesoporous Materials, Angew. Chem. Int. Ed. 38, pp. 56–77, 1999
    14. Yu JJ, Lu S, Li JW, Zhao FQ, Zeng BZ, Characterization of gold nanoparticles electrochemically deposited on amine-functioned mesoporous silica films and electrocatalytic oxidation of glucose, J Solid State Electrochem, 11, pp.1211–1219, 2007
    15. J. S. Dailey and T. J. Pinnavaia, Silica-pillared derivatives of H+-magadiite, a crystalline hydrated silica. chemistry of materials, 4, pp. 855, 1992
    16. D. Zhao, Q. Huo,J. Feng, B. F. Chmelka and G. D.Stucky, Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures. J. Am. Chem. Soc., 120, 1998
    17. A. M. Khenkin and R. Neumann, Vanadium-substituted MCM-41 zeolites as catalysts for oxidation of alkanes with peroxides, 23, 1996
    18. Heller A , The role of oxygen in photooxidation of organic molecules on semiconductor particles. Acc Chem Res 23, pp. 128, 1990
    19. Willner I, Katz E, Integration of layered redox-proteins and conductive supports for bioelectronic applications. Angew Chem Int Ed, 39, pp.1180, 2000
    20. J. Fan, J. Lei, L.-M. Wang, C.-Z. Yu, B. Tu, D.-Y. Zhao, Rapid and high-capacity immobilization of enzymes based on mesoporous silicas with controlled morphologies. Electronic supplementary information (ESI) available: XRD and nitrogen sorption isotherms for MPSs used in bioimmobilization. ChemComm., 2003.
    21. Z.-H. Dai, S.-Q. Liu, H.-X. Ju, H.-Y. Chen, Direct electron transfer and enzymatic activity of hemoglobin in a hexagonal mesoporous silica matrix. Biosens. Bioelectron., 19, 2004
    22. Y.J. Han, G.D. Stucky, A. Butler, Mesoporous silicate sequestration and release of proteins. J. Am. Chem. Soc., 121, 1999
    23. L. Washmon-Kriel, V.L. Jimenez, K.J. Balkus Jr., Cytochrome c immobilization into mesoporous molecular sieves. J. Mol. Catal. B: Enzym., 10, 2000.
    24. J.F.Diaz.K.J.Balkus Jr, F.Bedioui, V. Kurshev and L. Kevan, Synthesis and Characterization of Cobalt−Complex Functionalized MCM-41. Chemistry of materials, 1997. 9.
    25. X. Feng, G.E.Fryxell, L.-Q. Wang, A. Y. Kim, J. Liu and K.M. Kemner, Functionalized Monolayers on Ordered Mesoporous Supports. science, 276, 1997
    26. R. Ryoo, C.H. Ko, J.M. Kim and R. Howe, Preparation of nanosize Pt clusters using ion exchange of Pt(NH3)42+ inside mesoporous channel of MCM-41. catalysis letters, 37, 1996.
    27. U. Junges, F. Schuth , G. Schmid, Y. Uchida , R. Schlogl, Synthesis and characterization of catalysts based on ligand-stabilized clusters incorporated in mesoporous oxides. Phys. Chem., 101, 1997
    28. C. T. Kresge, M.E. Leonowicz, W. J. Roth, J. C. Vartuli and J. S. Beck, Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 359, 1992.
    29. J. S. Beck et al, A new family of mesoporous molecular sieves prepared with liquid crystal templates. J. Am. Chem. Soc., 114, 1992.
    30. D. Zhao, J.Feng, Q. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka, and G.D. Stucky, Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores. . science, 279, 1998.
    31. G. Sastre, C.R.A. Catlow and A. Corma, Influence of the Intermolecular Interactions on the Mobility of Heptane in the Supercages of MCM-22 Zeolite. A Molecular Dynamics Study. J. Phys. Chem. B, 106, 2002.
    32. G.J. Kennedy and D.L. Dorset, Crystal Structure of MCM-70: A Microporous Material with High Framework Density. J. Phys. Chem. B, 109, 2005.
    33. T. S. Jiang, Q.ZHao and H.B.Yin, Synthesis and characterization of Ni-mesoporous molecular sieves with high stability Inorganic Materials, 43, 2007.
    34. A. Ghosh, R.P. Chitta, P. Mukherjee, M. Sastry and R. Kumar, Preparation and stabilization of gold nanoparticles formed by in situ reduction of aqueous chloroaurate ions within surface-modified mesoporous silica. Microporous and Mesoporous Materials, 58, 3, pp. 201-211, 2003.
    35. D. Liu, J.H. Lei, L.P. Guo, X.D. Du and K. Zeng, Ordered thiol-functionalized mesoporous silica with macrostructure by true liquid crystal templating route. Microporous and Mesoporous Materials, 117, 1 pp. 67-74, 2009
    36. V. Zelenák et al, Amine-modified ordered mesoporous silica: Effect of pore size on carbon dioxide capture. Chemical Engineering Journal, 144, 2 , pp. 336-342, 2008.
    37. J.M. Pingarrón, P. Yáñez-Sedeño and A. González-Cortés, Gold nanoparticle-based electrochemical biosensors Analytical and Bioanalytical Chemistry, 382, 2005.
    38. S. Liu,D. Leech and H. Ju, Application of Colloidal Gold in Protein Immobilization, Electron Transfer, and Biosensing Analytical Letters, 36, 1, 2003.
    39. Tsuneo Yanagisawa, K.K.a.C.K., Organic Derivatives of Layered Polysilicates. II. Reaction of Magadiite and Kenyaite with Diphenylmethylchlorosilane. Bulletin of the Chemical Society of Japan, 61, 1988.
    40. M. Gerard, A.Chaubey, and B. D. Malhotra, Application of conducting polymers to biosensors Biosensors and Bioelectronics, 17, 2002.
    41. Eun-Hyung Yoo and Soo-Youn Lee , Glucose Biosensors: An Overview of Use in Clinical Practice, Sensors, 10, pp. 4558-4576, 2010
    42. Bai Y, Yang H, Yang W W. Gold nanoparticles-mesoporous silica composite used as an enzyme immobilization matrix for amperometric glucose biosensor construction. Sens Actu B, 124, 1, pp.179-186, 2007
    43. CL Morgan, D.N.a.C.P., Immunosensors: technology and opportunities in laboratory medicine. Clinical Chemistry, 42, 1996
    44. S. Liu, H. Ju, Reagentless glucose biosensor based on direct electron
    transfer of glucose oxidase immobilized on colloidal gold modified carbon
    paste electrode, Biosens. Bioelectron. 19 ,pp. 177–183, 2003
    45. Z.H. Dai, H.X. Ju, H.Y. Chen, Mesoporous materials promoting directelectrochemistry and electrocatalysis of horseradish peroxidase, Electroanalysis ,17 ,pp. 1571–1577, 2005
    46. C.X. Cai, J. Chen, Direct electron transfer of glucose oxidase promoted by carbon nanotubes , Anal. Biochem. 332 , pp.75–83, 2004
    47. Y. Liu, M.Wang, F. Zhao, Z. Xu, S. Dong, The direct electron transfer of glucose oxidase and glucose biosensor based on carbon nanotubes/chitosan matrix, Biosens. Bioelectron. 21 ,pp. 984–988, 2005
    48. Y.X. Huang,W.J. Zhang, H. Xiao, G.X. Li, An electrochemical investigation of glucose oxidase at a CdS nanoparticles modified electrode ,Biosens. Bioelectron. 21 ,pp. 817–821, 2005
    49. S.Y. Lu, C.E. Li, D.D. Zhang, Y. Zhang, Z.H. Mo, Q. Cai, A.R. Zhu,
    Electron transfer on an electrode of glucose oxidase immobilized in
    polyaniline, J. Electroanal. Chem. 364, pp. 31–36, 1994
    50. Z.H. Dai, S.Q. Liu, H.X. Ju, H.Y. Chen, Direct electron transfer and
    enzymatic activity of hemoglobin in a hexagonal mesoporous silica matrix,Biosens. Bioelectron. 19 ,pp. 861–867, 2004
    51. 鍾協訓與曾志明:液體電化學感測器的介紹與應用。Chemistry,59卷,2期,pp.201-206, 2001
    52. J. D. Genders and D. Pletcher, Electrosynthesis from Laboratory, to Pilot, to Production, The Electrosynthesis Company Inc., New York , 1990.
    53. Kim, H.-J., et al., One-pot synthesis of multifunctional mesoporous silica nanoparticle incorporated with zinc(II) phthalocyanine and iron oxide. Scripta Materialia, 61, 12, pp. 1137-1140, 2009.
    54. D. Zhao, J.F., Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka, and G. D. Stucky Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores. . science, 279, 1998.
    55. Qi Wei , Z.-R.N., Ya-Li Hao , Li Liu ,Zeng-Xiang Chen , Jing-Xia Zou, Effect of synthesis conditions on the mesoscopical order of mesoporous silica SBA-15 functionalized by amino groups. J Sol-Gel Sci Techn, 39, 2006.
    56. S.-W. Song, K.H., S. Kawi, Functionalized SBA-15 Materials as Carriers for Controlled Drug Delivery: Influence of Surface Properties on Matrix-Drug Interactions. Langmuir, 21, 2006.
    57. Michal Kruk, M.J., Chang Hyun Ko and Ryong Ryoo, Characterization of the Porous Structure of SBA-15. Chemistry of materials, 12, 2000
    58. Srisuda Sae-ung , V.B., One-Pot Synthesis of Organic–Inorganic Hybrid Mesoporous Materials for the Adsorption of Formaldehyde Vapor. Environmental Engineering Science, 25, 2008.
    59. Qi Wei , Z.-R.N., Ya-Li Hao , Li Liu ,Zeng-Xiang Chen , Jing-Xia Zou, Effect of synthesis conditions on the mesoscopical order of mesoporous silica SBA-15 functionalized by amino groups. J Sol-Gel Sci Techn, 39, 2006
    60. S.-W. Song, K.H., S. Kawi, Functionalized SBA-15 Materials as Carriers for Controlled Drug Delivery: Influence of Surface Properties on Matrix-Drug Interactions. Langmuir, 21, 2006.

    無法下載圖示 校內:2021-01-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE