簡易檢索 / 詳目顯示

研究生: 洪志仁
Hung, Chih-Jen
論文名稱: 工業條件下之二氧化碳甲烷化可行性評估研究
Investigation on the Methanation of CO2 under Industrial Conditions
指導教授: 王偉成
Wang, Wei-Cheng
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 57
中文關鍵詞: 二氧化碳甲烷化Ni/Al2O3催化劑薩巴蒂爾(Sabatier)反應不同尺寸反應器結合碳捕捉系統
外文關鍵詞: CO2 methanation, Ni/Al₂O₃ catalyst, Sabatier reaction, Different reactor sizes, Integrated carbon capture system
相關次數: 點閱:39下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 二氧化碳甲烷化技術是一種高效利用二氧化碳排放的途徑,不僅有助於減少溫室氣體排放,也是減緩全球暖化的重要方法之一。該技術利用氫氣與二氧化碳反應,在催化劑的輔助下間歇性地生成可再生能源甲烷。考慮到二氧化碳可以從多種途徑獲得,而這些來源的二氧化碳通常含有其他微量氣體,目前對於這些雜質在二氧化碳甲烷化過程中的影響理解仍然不足。因此,本研究使用自製的Ni/Al2O3催化劑,在300℃、1 bar壓力、氣體空速(GHSV)為4000 h⁻¹及氫氣與二氧化碳比例為4.5的反應條件下,進行了實驗。研究了添加微量氣體(如一氧化碳、氧氣和氮氣等)對二氧化碳轉化率的影響。實驗結果顯示,在含有3%一氧化碳和3%氧氣的條件下,CO₂轉化率分別從90.3%下降至73.87%和68.49%,證實二氧化碳和一氧化碳或氧氣共存時,二氧化碳甲烷化反應受到抑制;而微量的氮氣對反應較沒顯著影響。為了進一步評估催化劑的穩定性,使用熱重分析儀(TGA)對未使用、使用後及再生後的催化劑進行測試和討論。同時,本研究還比較了不同尺寸反應器對反應效果的影響,以全面了解其在實驗中的表現。最後,結合實驗室的碳捕捉系統進行實驗,進一步評估該技術的可行性和局限性。

    CO2 methanation is an efficient method for utilizing CO₂ emissions, contributing not only to the reduction of greenhouse gas emissions but also serving as an important approach for mitigating global warming. This technology facilitates the reaction between hydrogen and carbon dioxide, intermittently producing renewable energy methane with the aid of a catalyst.To evaluate the feasibility of this technology on an industrial scale, this study use a homemade Ni/Al₂O₃ catalyst under reaction conditions of 250 to 400°C, 1 to 4 bar pressure, gas hourly space velocity (GHSV) of 4000 h⁻¹, and H2 to CO2 ratio 4.5. The focus of the study was to investigate the impact of introducing trace amounts of other gases (such as carbon monoxide, oxygen, and nitrogen) on CO₂ conversion and CH4 selectivity.Experimental results indicated that the addition of 5% carbon monoxide reduced the CO₂ conversion rate from 90.21% to 59.33%, while the addition of 5% oxygen decreased the CO₂ conversion rate from 90.30% to 45.57%. These findings confirm that the methanation of CO₂ is inhibited in the presence of carbon monoxide or oxygen. Conversely, the addition of 5% nitrogen had no significant impact on the reaction.To further evaluate the stability of the catalyst, thermogravimetric analysis (TGA) was conducted on the unused, post-reaction, and regenerated catalysts, with detailed discussions provided. Additionally, the study compared the effects of different reactor sizes on the reaction performance to gain a comprehensive understanding of their experimental behavior.Finally, the feasibility and limitations of this technology were further evaluated by integrating the laboratory carbon capture system into the experiments.

    中文摘要 i Extended Abstract ii 致謝 viii 目錄 ix 表目錄 xi 圖目錄 xii 縮寫 xiv 第一章 1 前言 1 第二章 11 實驗 11 2.1. 材料 11 2.2 觸媒製備 11 2.3 實驗設置 11 2.3.1 二氧化碳甲烷化系統 11 2.3.2 結合碳捕捉系統 12 2.4. 實驗流程 16 2.5. 產物分析 17 2.5.1 氣體產物分析 17 2.5.2 液體產物分析 17 2.6. 觸媒特徵 18 2.6.1熱重分析儀(Thermal Gravimetric Analysis ; TGA) 18 2.7. 計算方式 18 第三章 19 結果與討論 19 3.1 原料雜質對反應結果影響 19 3.1.1 氣體產物分析 19 3.1.1.1 初始氮氣濃度對CO2轉化的影響 19 3.1.1.2 初始一氧化碳濃度對CO2轉化的影響 21 3.1.1.3 初始氧氣濃度對CO2轉化的影響 24 3.1.2 操作參數對添加微量CO/O2二氧化碳甲烷化反應影響 27 3.1.2.1 壓力(Pressure) 27 3.1.2.2 溫度(Temperature) 28 3.1.2.3 GHSV 28 3.1.2.4 H2/CO2 比重 29 3.1.3 可逆性測試 30 3.1.4 液體產物分析 31 3.2 比較不同尺寸反應器對反應影響 32 3.3 結合碳捕捉系統研究 35 3.4 觸媒特性之測量與比較 36 3.4.1熱重分析(Thermogravimetric analysis, TGA)檢測結果 36 第四章 37 結論 37 參考文獻 38

    [1] U.S.E.P.A.O.o. Policy, Inventory of US Greenhouse Gas Emissions and Sinks: 1990-1994, US Environmental Protection Agency, 1995.
    [2] M.K. Ardakani, S.M. Seyedaliakbar, Impact of energy consumption and economic growth on CO2 emission using multivariate regression, Energy Strategy Reviews, 26 (2019) 100428.
    [3] J.V. Veselovskaya, P.D. Parunin, A.G. Okunev, Catalytic process for methane production from atmospheric carbon dioxide utilizing renewable energy, Catalysis Today, 298 (2017) 117-123.
    [4] A. Vita, C. Italiano, L. Pino, P. Frontera, M. Ferraro, V. Antonucci, Activity and stability of powder and monolith-coated Ni/GDC catalysts for CO2 methanation, Applied Catalysis B: Environmental, 226 (2018) 384-395.
    [5] Y. Li, Q. Zhang, R. Chai, G. Zhao, Y. Liu, Y. Lu, F. Cao, N i‐A l2 O 3/N i‐foam catalyst with enhanced heat transfer for hydrogenation of C O2 to methane, AIChE Journal, 61 (2015) 4323-4331.
    [6] A.A. Alkhoori, O. Elmutasim, A.A. Dabbawala, M.A. Vasiliades, K.C. Petallidou, A.-H. Emwas, D.H. Anjum, N. Singh, M.A. Baker, N.D. Charisiou, Mechanistic Features of the CeO2-Modified Ni/Al2O3 Catalysts for the CO2 Methanation Reaction: Experimental and Ab Initio Studies, ACS applied energy materials, 6 (2023) 8550-8571.
    [7] C. Dioxide, Overview of greenhouse gases, (2017).
    [8] M. Allen, O. Dube, W. Solecki, F. Aragón-Durand, W. Cramer, S. Humphreys, M. Kainuma, J. Kala, N. Mahowald, Y. Mulugetta, Global warming of 1.5 C. An IPCC Special Report on the impacts of global warming of 1.5 C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty, Sustainable Development, and Efforts to Eradicate Poverty, (2018).
    [9] M.J. Alam, I.A. Begum, J. Buysse, S. Rahman, G. Van Huylenbroeck, Dynamic modeling of causal relationship between energy consumption, CO2 emissions and economic growth in India, Renewable and Sustainable Energy Reviews, 15 (2011) 3243-3251.
    [10] B. Kahouli, The causality link between energy electricity consumption, CO2 emissions, R&D stocks and economic growth in Mediterranean countries (MCs), Energy, 145 (2018) 388-399.
    [11] V. Barbarossa, G. Vanga, R. Viscardi, D.M. Gattia, CO2 as carbon source for fuel synthesis, Energy Procedia, 45 (2014) 1325-1329.
    [12] J. Laumb, J. Kay, M. Holmes, R. Cowan, A. Azenkeng, L. Heebink, S. Hanson, M. Jensen, P. Letvin, L. Raymond, Economic and market analysis of CO2 utilization technologies–focus on CO2 derived from North Dakota lignite, Energy Procedia, 37 (2013) 6987-6998.
    [13] F.D. Meylan, V. Moreau, S. Erkman, Material constraints related to storage of future European renewable electricity surpluses with CO2 methanation, Energy Policy, 94 (2016) 366-376.
    [14] A. García-Trenco, A. Regoutz, E.R. White, D.J. Payne, M.S. Shaffer, C.K. Williams, PdIn intermetallic nanoparticles for the hydrogenation of CO2 to methanol, Applied Catalysis B: Environmental, 220 (2018) 9-18.
    [15] R.Y. Chein, C.C. Wang, Experimental Study on CO2 Methanation over Ni/Al2O3, Ru/Al2O3, and Ru-Ni/Al2O3 Catalysts, Catalysts, 10 (2020) 1112.
    [16] G. Centi, S. Perathoner, Opportunities and prospects in the chemical recycling of carbon dioxide to fuels, Catalysis Today, 148 (2009) 191-205.
    [17] W. Davis, M. Martín, Optimal year-round operation for methane production from CO2 and water using wind energy, Energy, 69 (2014) 497-505.
    [18] H. Muroyama, Y. Tsuda, T. Asakoshi, H. Masitah, T. Okanishi, T. Matsui, K. Eguchi, Carbon Dioxide Methanation over Ni Catalysts Supported on Various Metal Oxides, Journal of Catalysis, 343 (2016) 178-184.
    [19] K. Ghaib, K. Nitz, F.Z. Ben‐Fares, Chemical methanation of CO2: A review, ChemBioEng Reviews, 3 (2016) 266-275.
    [20] J.K. Prabhakar, P.A. Apte, G. Deo, The kinetics of Ni/Al2O3 and Ni-Fe/Al2O3 catalysts for the CO2 methanation reaction and the reasons for promotion, Chemical Engineering Journal, 471 (2023) 144252.
    [21] P. Frontera, A. Macario, M. Ferraro, P. Antonucci, Supported catalysts for CO2 methanation: a review, Catalysts, 7 (2017) 59.
    [22] S. Rönsch, J. Schneider, S. Matthischke, M. Schlüter, M. Götz, J. Lefebvre, P. Prabhakaran, S. Bajohr, Review on methanation–From fundamentals to current projects, Fuel, 166 (2016) 276-296.
    [23] G. Centi, E.A. Quadrelli, S. Perathoner, Catalysis for CO 2 conversion: a key technology for rapid introduction of renewable energy in the value chain of chemical industries, Energy & Environmental Science, 6 (2013) 1711-1731.
    [24] T. Zhang, W. Wang, F. Gu, W. Xu, J. Zhang, Z. Li, T. Zhu, G. Xu, Z. Zhong, F. Su, Enhancing the low-temperature CO2 methanation over Ni/La-CeO2 catalyst: The effects of surface oxygen vacancy and basic site on the catalytic performance, Applied Catalysis B: Environmental, 312 (2022) 121385.
    [25] M. Younas, L. Loong Kong, M.J. Bashir, H. Nadeem, A. Shehzad, S. Sethupathi, Recent advancements, fundamental challenges, and opportunities in catalytic methanation of CO2, Energy & Fuels, 30 (2016) 8815-8831.
    [26] D. Wierzbicki, R. Debek, M. Motak, T. Grzybek, M.E. Gálvez, P. Da Costa, Novel Ni-La-hydrotalcite derived catalysts for CO2 methanation, Catalysis Communications, 83 (2016) 5-8.
    [27] G. Zhou, H. Liu, K. Cui, A. Jia, G. Hu, Z. Jiao, Y. Liu, X. Zhang, Role of surface Ni and Ce species of Ni/CeO2 catalyst in CO2 methanation, Applied Surface Science, 383 (2016) 248-252.
    [28] L. Li, W. Zeng, M. Song, X. Wu, G. Li, C. Hu, Research progress and reaction mechanism of CO2 methanation over Ni-based catalysts at low temperature: a review, Catalysts, 12 (2022) 244.
    [29] A. Quindimil, M.C. Bacariza, J.A. González-Marcos, C. Henriques, J.R. González-Velasco, Enhancing the CO2 methanation activity of γ-Al2O3 supported mono-and bi-metallic catalysts prepared by glycerol assisted impregnation, Applied Catalysis B: Environmental, 296 (2021) 120322.
    [30] D.J. Goodman, Methanation of carbon dioxide, University of California, Los Angeles, 2013.
    [31] J. Gao, Y. Wang, Y. Ping, D. Hu, G. Xu, F. Gu, F. Su, A thermodynamic analysis of methanation reactions of carbon oxides for the production of synthetic natural gas, RSC advances, 2 (2012) 2358-2368.
    [32] K. Stangeland, D. Kalai, H. Li, Z. Yu, CO2 methanation: the effect of catalysts and reaction conditions, Energy Procedia, 105 (2017) 2022-2027.
    [33] A. Alarcón, J. Guilera, J.A. Díaz, T. Andreu, Optimization of nickel and ceria catalyst content for synthetic natural gas production through CO2 methanation, Fuel processing technology, 193 (2019) 114-122.
    [34] X. Su, J. Xu, B. Liang, H. Duan, B. Hou, Y. Huang, Catalytic carbon dioxide hydrogenation to methane: A review of recent studies, Journal of energy chemistry, 25 (2016) 553-565.
    [35] J. Ren, F. Zeng, C. Mebrahtu, R. Palkovits, Understanding promotional effects of trace oxygen in CO2 methanation over Ni/ZrO2 catalysts, Journal of Catalysis, 405 (2022) 385-390.
    [36] A. Beuls, C. Swalus, M. Jacquemin, G. Heyen, A. Karelovic, P. Ruiz, Methanation of CO2: Further insight into the mechanism over Rh/γ-Al2O3 catalyst, Applied Catalysis B: Environmental, 113 (2012) 2-10.
    [37] D. Han, Y. Kim, H. Byun, W. Cho, Y. Baek, CO2 methanation of biogas over 20 wt% Ni-Mg-Al catalyst: On the effect of N2, CH4, and O2 on CO2 conversion rate, Catalysts, 10 (2020) 1201.
    [38] A. Alarcon, J. Guilera, R. Soto, T. Andreu, Higher tolerance to sulfur poisoning in CO2 methanation by the presence of CeO2, Applied Catalysis B: Environmental, 263 (2020) 118346.
    [39] D. Türks, H. Mena, U. Armbruster, A. Martin, Methanation of CO2 on Ni/Al2O3 in a structured fixed-bed reactor—A scale-up study, Catalysts, 7 (2017) 152.
    [40] A. Supaokit, The Process Optimization on CO2 Methanation over Ni-based catalyst, in, National Cheng Kung University, 2023.
    [41] S. Tada, O.J. Ochieng, R. Kikuchi, T. Haneda, H. Kameyama, Promotion of CO2 methanation activity and CH4 selectivity at low temperatures over Ru/CeO2/Al2O3 catalysts, International journal of hydrogen energy, 39 (2014) 10090-10100.
    [42] Z. Zhang, Y. Tian, L. Zhang, S. Hu, J. Xiang, Y. Wang, L. Xu, Q. Liu, S. Zhang, X. Hu, Impacts of Nickel Loading on Properties, Catalytic Behaviors of Ni/γ–Al2O3 Catalysts and The Reaction Intermediates Formed in Methanation of CO2, International Journal of Hydrogen Energy, 44 (2019).
    [43] S. Tada, T. Shimizu, H. Kameyama, T. Haneda, R. Kikuchi, Ni/CeO2 catalysts with high CO2 methanation activity and high CH4 selectivity at low temperatures, International Journal of Hydrogen Energy, 37 (2012) 5527-5531.
    [44] G. Zhi, X. Guo, Y. Wang, G. Jin, X. Guo, Effect of La2O3 modification on the catalytic performance of Ni/SiC for methanation of carbon dioxide, Catalysis Communications, 16 (2011) 56-59.
    [45] J. Zhang, Y. Bai, Q. Zhang, X. Wang, T. Zhang, Y. Tan, Y. Han, Low-temperature methanation of syngas in slurry phase over Zr-doped Ni/γ-Al2O3 catalysts prepared using different methods, Fuel, 132 (2014) 211-218.
    [46] R.-Y. Chein, C.-C. Wang, Experimental Study on CO2 Methanation over Ni/Al2O3, Ru/Al2O3, and Ru-Ni/Al2O3 Catalysts, Catalysts, 10 (2020) 1112.
    [47] J. Lin, C. Ma, Q. Wang, Y. Xu, G. Ma, J. Wang, H. Wang, C. Dong, C. Zhang, M. Ding, Enhanced low-temperature performance of CO2 methanation over mesoporous Ni/Al2O3-ZrO2 catalysts, Applied Catalysis B: Environmental, 243 (2019) 262-272.
    [48] R. Daroughegi, F. Meshkani, M. Rezaei, Enhanced low-temperature activity of CO2 methanation over ceria-promoted Ni-Al2O3 nanocatalyst, Chemical Engineering Science, 230 (2021) 116194.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE