| 研究生: |
沈忠佑 Shen, Chung-Yu |
|---|---|
| 論文名稱: |
利用實驗和理論計算探討薑黃素和去二甲氧基薑黃素對β-環糊精的結合 Experimental and Theoretical Studies of Curcumin and Didemethylated Curcumin Complexed with β-Cyclodextrin |
| 指導教授: |
黃福永
Huang, Fu-Yung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 131 |
| 中文關鍵詞: | 薑黃素 、去二甲氧基薑黃素 、β-環糊精 、複合物 |
| 外文關鍵詞: | Curcumin, Didemethylated Curcumin, β-cyclodextrin, Inclusion complex |
| 相關次數: | 點閱:121 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用實驗及理論計算的方法,來探討薑黃素及去二甲氧基薑黃素與β-環糊精的交互作用力及鍵結機制。螢光光譜滴定法測定發現其結合常數為薑黃素112 M-1,去二甲氧基薑黃素327 M-1,顯示去二甲氧基薑黃素與β-環糊精結合力比薑黃素高。
固態紅外線光譜比較混合前與後光譜訊號的位置,發現在β-環糊精上的O‒H鍵伸縮振動區域(3550-3200 cm-1)產生紅位移,及一級與二級碳上的C‒H鍵形變振動(deformation vibrations)區域(1400-1200 cm-1)產生藍位移。理論計算發現β-環糊精上C‒H鍵之∆S%(C‒H鍵上碳的s混成變化)值增加,顯示出此增加是由於C‒H鍵之非典型氫鍵作用造成。
從二維ROESY核磁共振光譜的結果顯示,薑黃素苯環上的氫和β-環糊精內部的氫(H5)產生空間上的偶合作用(Trough Space Nuclear Overhauser effect),去二甲氧基薑黃素的酚上OH與β-環糊精六號碳上OH (6-OH)有NOE作用。在一維1H NMR中,薑黃素與去二甲氧基薑黃素1H NMR圖譜在複合物與未加入β-環糊精前具有相同的型態(pattern),此結果顯示出薑黃素或去二甲氧基薑黃素與β-環糊精結合比例為1:2;另外去二甲氧基薑黃素OH訊號幾乎消失,推測這是一種經由酸鹼作用,使酚上的OH之氫轉移至β-環糊精6-OH上,但高斯計算(HF/6-31g(d))得到的最穩定的結構中,去二甲氧基薑黃素酚上的氫並未轉移至β-環糊精上,因此推測可能轉移至溶液中的二甲基亞碸上(NMR量測溶液)。再由NBO的E(2)值判斷兩者生成的複合物中,結合的作用力除了氫鍵與凡得瓦力,還包含了非典型氫鍵存在(在紅外線光譜中也可看到),且發現到非典型氫鍵作用力在去二甲氧基薑黃素所佔比例高於薑黃素,推測是去二甲氧基薑黃素間位(Meta)的OH酸性高於薑黃素對位(Para)的OH,導致兩複合物結合的氫鍵作用力的性質不同。
Adduct of curcumin/β-cyclodextrin (CCM/β-CD) plays an important role in advanced biomedical domain. To confirm the biomedical activities exhibited by the didemethylated curcumin (DCCM) molecule in a comparative manner compared to CCM, fluorescence titration method, FTIR, NMR spectrum and theoretical calculation were performed.
The relative values of binding constants of CCM and DCCM with β-CD obtained by fluorescence titration method were 112 M-1 and 327 M-1, respectively, indicating that the DCCM had about 3 times higher binding capability with β-CD compared to CCM. IR spectra were conducted for further verification of the better DCCM binding capability with β-CD and show that both blue shifts in 1400-1200 cm-1 and red shifts in 3550-3200 cm-1、950-700 cm-1 were found by comparing the variations of vibration frequencies in this studies.
ROESY-NMR experiments showed the binding mechanisms for both CCM/β-CD and DCCM/β-CD complexes showed NOE interactions between the phenyl ring protons (Hc、Hf) in CCM and phenolic protons (Hh、Hg) in DCCM with the protons of H5 and 6-OH in β-CD, respectively. Indicating both the CCM and DCCM entered the cavity of β-CD. The 1H-NMR spectra of the complexes showed that the resonance patterns of CCM and DCCM moieties were the same as that of free CCM and DCCM, indicating that one CCM or DCCM molecule could bind with two β-CD molecules since CCM and DCCM both possess a symmetric plane. Furthermore, both resonance signals and peak intensity of the phenolic protons almost disappeared in the DCCM/β-CD adduct compared to the free DCCM, revealing that the phenolic protons of the DCCM in its complex became more acidic.
Molecular calculations using HF/6-31g (d) method have been carried out. And found that the decreasing intensities of the phenolic protons in DCCM/β-CD was probably due to the acid-base interaction with the DMSO-d6 NMR locking solvent because that the optimized stable complex conformation did not show the protonation hydroxyl group of β-CD. The E(2)-analysis of donors/acceptors involved in the binding sites obtained by the natural bond orbital (NBO) method showed the effects of hyperconjugation were in good accordance with the close-contact bond. Analysis of C-H bond orbitals revealed significantly IR blue shifts (termed improper H-bonding) in both adducts, indicating that re-hybridization effects outweigh the hyperconjugation effects.
(1) Kiuchi, F.; Goto, Y.; Sugimoto, N.; Akao, N.; Kondo, K.; Tsuda, Y., Nematocidal activity of turmeric: synergistic action of curcuminoids. Chem Pharm Bull (Tokyo) 41 (9), 1640-3, 1993.
(2) Manolova, Y.; Deneva, V.; Antonov, L.; Drakalska, E.; Momekova, D.; Lambov, N., The effect of the water on the curcumin tautomerism: a quantitative approach. Spectrochim Acta A Mol Biomol Spectrosc 132, 815-20, 2014.
(3) Tønnesen, H. H.; Karlsen, J., Studies on curcumin and curcuminoids. Z. Lebensm. Unters. Forsch 180 (5), 402-404, 1985.
(4) Paramera, E. I.; Konteles, S. J.; Karathanos, V. T., Microencapsulation of curcumin in cells of Saccharomyces cerevisiae. Food Chemistry 125 (3), 892-902, 2011.
(5) Reddy, A. C. P.; Lokesh, B. R., Studies on spice principles as antioxidants in the inhibition of lipid peroxidation of rat liver microsomes. Mol Cell Biochem 111 (1-2), 117-124, 1992.
(6) Majeed, M.; Badmaev, V.; Shivakumar, U.; Rajendran, R., Research report from Sabinsa Corporation in curcuminoids: antioxidant phytonutrients. 2000.
(7) Lantz, R. C.; Chen, G. J.; Solyom, A. M.; Jolad, S. D.; Timmermann, B. N., The effect of turmeric extracts on inflammatory mediator production. Phytomedicine 12 (6-7), 445-52, 2005.
(8) Aggarwal, B. B.; Kumar, A.; Bharti, A. C., Anticancer Potential of Curcumin: Preclinical and Clinical Studies. Anticancer Res 23 (1A), 363-98, 2003.
(9) Shi, M.; Cai, Q.; Yao, L.; Mao, Y.; Ming, Y.; Ouyang, G., Antiproliferation and apoptosis induced by curcumin in human ovarian cancer cells. Cell Biol Int 30 (3), 221-6, 2006.
(10) Yang, F.; Lim, G. P.; Begum, A. N.; Ubeda, O. J.; Simmons, M. R.; Ambegaokar, S. S.; Chen, P. P.; Kayed, R.; Glabe, C. G.; Frautschy, S. A.; Cole, G. M., Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo. . J Biol Chem 280 (7), 5892-901, 2005.
(11) Egan, M. E.; Pearson, M.; Weiner, S. A.; Rajendran, V.; Rubin, D.; Glockner-Pagel, J.; Canny, S.; Du, K.; Lukacs, G. L.; Caplan, M. J., Curcumin, a Major Constituent of Turmeric, Corrects Cystic Fibrosis Defects. Science 304 (5670), 600-2, 2004.
(12) Gopinath, D.; Ahmed, M. R.; Gomathi, K.; Chitra, K.; Sehgal, P. K.; Jayakumar, R., Dermal wound healing processes with curcumin incorporated collagen films. Biomaterials 25 (10), 1911-7, 2004.
(13) Jagetia, G. C.; Rajanikant, G. K., Curcumin treatment enhances the repair and regeneration of wounds in mice exposed to hemibody gamma-irradiation. Plast Reconstr Surg 115 (2), 515-528, 2005.
(14) Anand, P.; Kunnumakkara, A. B.; Newman, R. A.; Aggarwal, B. B., Bioavailability of curcumin: problems and promises. Mol Pharm 4 (6), 807-18, 2007.
(15) Singh, R.; Tonnesen, H. H.; Vogensen, S. B.; Loftsson, T.; Masson, M., Studies of curcumin and curcuminoids. XXXVI. The stoichiometry and complexation constants of cyclodextrin complexes as determined by the phase-solubility method and UV-Vis titration. Journal of Inclusion Phenomena and Macrocyclic Chemistry 66 (3-4), 335-348, 2010.
(16) Frömming, K. H.; Szejtli, J., Cyclodextrins in Pharmacy. Springer Netherlands: 1994.
(17) Szejtli, J., Cyclodextrin Technology, Kluwer Academic, Dordrecht, 1988.
(18) Connors, K. A., The Stability of Cyclodextrin Complexes in Solution. Chem Rev 97 (5), 1325-1358, 1997.
(19) Loftsson, T.; Brewster, M. E., Pharmaceutical applications of cyclodextrins. 1. Drug solubilization and stabilization. J Pharm Sci 85 (10), 1017-25, 1996.
(20) Chen, G.; Jiang, M., Cyclodextrin-based inclusion complexation bridging supramolecular chemistry and macromolecular self-assembly. Chem Soc Rev 40 (5), 2254-66, 2011.
(21) Uekama, K.; Hirayama, F.; Irie, T., Cyclodextrin Drug Carrier Systems. Chem Rev 98 (5), 2045-2076, 1998.
(22) Wahlstrom, B.; Blennow, G., A study on the fate of curcumin in the rat. Acta Pharmacol Toxicol (Copenh) 43 (2), 86-92, 1978.
(23) Pan, M. H.; Huang, T. M.; Lin, J. K., Biotransformation of curcumin through reduction and glucuronidation in mice. Drug Metab Dispos 27 (4), 486-494, 1999.
(24) Cheng, A. L.; Hsu, C. H.; Lin, J. K.; Hsu, M. M.; Ho, Y. F.; Shen, T. S.; Ko, J. Y.; Lin, J. T.; Lin, B. R.; Ming-Shiang, W.; Yu, H. S.; Jee, S. H.; Chen, G. S.; Chen, T. M.; Chen, C. A.; Lai, M. K.; Pu, Y. S.; Pan, M. H.; Wang, Y. J.; Tsai, C. C.; Hsieh, C. Y., Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer Res 21 (4B), 2895-900, 2001.
(25) Bisht, S.; Feldmann, G.; Soni, S.; Ravi, R.; Karikar, C.; Maitra, A.; Maitra, A., Polymeric nanoparticle-encapsulated curcumin ("nanocurcumin"): a novel strategy for human cancer therapy. J Nanobiotechnology 5, 3, 2007.
(26) Gregoria.G; Ryman, B. E., Liposomes as Carriers of Enzymes or Drugs - New Approach to Treatment of Storage Diseases. Biochem J 124 (5), P58-&, 1971.
(27) Gregoriadis, G., Drug entrapment in liposomes. FEBS Lett 36 (3), 292-6, 1973.
(28) Gregoriadis, G., The carrier potential of liposomes in biology and medicine (first of two parts). N Engl J Med 295 (13), 704-10, 1976.
(29) Gregoriadis, G., The carrier potential of liposomes in biology and medicine (second of two parts). N Engl J Med 295 (14), 765-70, 1976.
(30) Li, L.; Braiteh, F. S.; Kurzrock, R., Liposome-encapsulated curcumin: in vitro and in vivo effects on proliferation, apoptosis, signaling and angiogenesis. Cancer 104 (6), 1322-31, 2005.
(31) Takahashi, M.; Kitamoto, D.; Imura, T.; Oku, H.; Takara, K.; Wada, K., Characterization and bioavailability of liposomes containing a ukon extract. Biosci Biotechnol Biochem 72 (5), 1199-205, 2008.
(32) K. Shinoda (Ed.), Solvent Properties of Surfactant Solutions, Marcel Dekker, New York, p. 27, 1967.
(33) J.H. Fendler, E.J. Fendler, Catalysis in Micellar and Macromolecular Systems, Academic Press, New York, 1975.
(34) P. Mukerjee, in: K.L. Mittal (Ed.), Solutions Chemistry of Surfactants, 1, Plenum Press, New York, p. 157, 1979.
(35) Tønnesen, H. H., Solubility, chemical and photochemical stability of curcumin in surfactant solutions. Studies of curcumin and curcuminoids, XXVIII. Pharmazie 57 (12), 820-4, 2002.
(36) Ma, Z. S.; Haddadi, A.; Molavi, O.; Lavasanifar, A.; Lai, R.; Samuel, J., Micelles of poly(ethylene oxide)-b-poly(epsilon-caprolactone) as vehicles for the solubilization, stabilization, and controlled delivery of curcumin. Journal of Biomedical Materials Research Part A 86a (2), 300-310, 2008.
(37) Zhang, P.; Liu, Y.; Feng, N.; Xu, J., Preparation and evaluation of self-microemulsifying drug delivery system of oridonin. Int J Pharm 355 (1-2), 269-76, 2008.
(38) Andrew J. Humberstone, W. N. C., Lipid-based liquid crystalline nanoparticles as oral drug delivery vehicles for poorly water-soluble drugs: cellular interaction and in vivo absorption. Advanced Drug Delivery Reviews 25, 103, 1997.
(39) Wang, D. K.; Shi, Z. H.; Liu, L.; Wang, X. Y.; Zhang, C. X.; Zhao, P., Development of self-microemulsifying drug delivery systems for oral bioavailability enhancement of alpha-Asarone in beagle dogs. PDA J Pharm Sci Technol 60 (6), 343-9, 2006.
(40) Shen, H.; Zhong, M., Preparation and evaluation of self-microemulsifying drug delivery systems (SMEDDS) containing atorvastatin. J Pharm Pharmacol 58 (9), 1183-91, 2006.
(41) Patel, A. R.; Vavia, P. R., Preparation and in vivo evaluation of SMEDDS (self-microemulsifying drug delivery system) containing fenofibrate. AAPS J 9 (3), 344-52, 2007.
(42) Cui, J.; Yu, B.; Zhao, Y.; Zhu, W.; Li, H.; Lou, H.; Zhai, G., Enhancement of oral absorption of curcumin by self-microemulsifying drug delivery systems. Int J Pharm 371 (1-2), 148-55, 2009.
(43) Subramanian, N.; Ray, S.; Ghosal, S. K.; Bhadra, R.; Moulik, S. P., Formulation design of self-microemulsifying drug delivery systems for improved oral bioavailability of celecoxib. Biol Pharm Bull 27 (12), 1993-9, 2004.
(44) Filburn, C. R.; Kettenacker, R.; Griffin, D. W., Bioavailability of a silybin-phosphatidylcholine complex in dogs. J Vet Pharmacol Ther 30 (2), 132-8, 2007.
(45) Maiti, K.; Mukherjee, K.; Gantait, A.; Saha, B. P.; Mukherjee, P. K., Curcumin-phospholipid complex: Preparation, therapeutic evaluation and pharmacokinetic study in rats. Int J Pharm 330 (1-2), 155-63, 2007.
(46) Tønnesen, H. H.; Masson, M.; Loftsson, T., Studies of curcumin and curcuminoids. XXVII. Cyclodextrin complexation: solubility, chemical and photochemical stability. Int J Pharm 244 (1-2), 127-35, 2002.
(47) Chirio, D.; Gallarate, M.; Trotta, M.; Carlotti, M. E.; Gaudino, E. C.; Cravotto, G., Influence of alpha- and gamma- cyclodextrin lipophilic derivatives on curcumin-loaded SLN. Journal of Inclusion Phenomena and Macrocyclic Chemistry 65 (3-4), 391-402, 2009.
(48) Yallapu, M. M.; Jaggi, M.; Chauhan, S. C., Poly(beta-cyclodextrin)/Curcumin Self-Assembly: A Novel Approach to Improve Curcumin Delivery and its Therapeutic Efficacy in Prostate Cancer Cells. Macromolecular Bioscience 10 (10), 1141-1151, 2010.
(49) Hegge, A. B.; Nielsen, T. T.; Larsen, K. L.; Bruzell, E.; Tonnesen, H. H., Impact of curcumin supersaturation in antibacterial photodynamic therapyueffect of cyclodextrin type and amount: Studies on curcumin and curcuminoides XLV. Journal of Pharmaceutical Sciences 101 (4), 1524-1537, 2012.
(50) Michel, D.; Chitanda, J. M.; Balogh, R.; Yang, P.; Singh, J.; Das, U.; El-Aneed, A.; Dimmock, J.; Verrall, R.; Badea, I., Design and evaluation of cyclodextrin-based delivery systems to incorporate poorly soluble curcumin analogs for the treatment of melanoma. Eur J Pharm Biopharm 81 (3), 548-56, 2012.
(51) Boztas, A. O.; Karakuzu, O.; Galante, G.; Ugur, Z.; Kocabas, F.; Altuntas, C. Z.; Yazaydin, A. O., Synergistic Interaction of Paclitaxel and Curcumin with Cyclodextrin Polymer Complexation in Human Cancer Cells. Molecular Pharmaceutics 10 (7), 2676-2683, 2013.
(52) Harada, T.; Giorgio, L.; Harris, T. J.; Pham, D. T.; Ngo, H. T.; Need, E. F.; Coventry, B. J.; Lincoln, S. F.; Easton, C. J.; Buchanan, G.; Kee, T. W., Diamide Linked gamma-Cyclodextrin Dimers as Molecular-Scale Delivery Systems for the Medicinal Pigment Curcumin to Prostate Cancer Cells. Molecular Pharmaceutics 10 (12), 4481-4490, 2013.
(53) Cutrignelli, A.; Lopedota, A.; Denora, N.; Iacobazzi, R. M.; Fanizza, E.; Laquintana, V.; Perrone, M.; Maggi, V.; Franco, M., A new complex of curcumin with sulfobutylether-beta-cyclodextrin: characterization studies and in vitro evaluation of cytotoxic and antioxidant activity on HepG-2 cells. J Pharm Sci 103 (12), 3932-40, 2014.
(54) Sun, Y.; Du, L.; Liu, Y.; Li, X.; Li, M.; Jin, Y.; Qian, X., Transdermal delivery of the in situ hydrogels of curcumin and its inclusion complexes of hydroxypropyl-beta-cyclodextrin for melanoma treatment. Int J Pharm 469 (1), 31-9, 2014.
(55) Changtam, C.; de Koning, H. P.; Ibrahim, H.; Sajid, M. S.; Gould, M. K.; Suksamrarn, A., Curcuminoid analogs with potent activity against Trypanosoma and Leishmania species. Eur J Med Chem 45 (3), 941-56, 2010.
(56) Lakowicz, J. R., Principles of Fluorescence Spectroscopy. Springer US: 2013.
(57) Cavanagh J.; Fairbrother W. J.; Palmer Ⅲ A.G.; Skelton N. J. “Protein NMR Spectroscopy: Principles and Practice.” pp. 1-587. Academic Press, 1996.
(58) Fischer, C. F., General Hartree-Fock Program. Comput Phys Commun 43 (3), 355-365, 1987.
(59) Parr, R. G., Density functional theory of atoms and molecules. In Horizons of Quantum Chemistry, Springer; pp 5-15, 1980.
(60) Huzinaga, S. Gaussian Basis Sets for Molecular Calculations; Elsevier: New York, 1984.
Gaussian 03, Revision B.02,
(61) M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Wallingford CT, 2004.
(62) Venkateswarlu, S.; Ramachandra, M. S.; Subbaraju, G. V., Synthesis and biological evaluation of polyhydroxycurcuminoids. Bioorg Med Chem 13 (23), 6374-80, 2005.
(63) Mangolim, C. S.; Moriwaki, C.; Nogueira, A. C.; Sato, F.; Baesso, M. L.; Neto, A. M.; Matioli, G., Curcumin-beta-cyclodextrin inclusion complex: stability, solubility, characterisation by FT-IR, FT-Raman, X-ray diffraction and photoacoustic spectroscopy, and food application. Food Chem 153, 361-70, 2014.
(64) Trott, O.; Olson, A. J., AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31 (2), 455-61, 2010.
(65) K.A. Connors, Binding constants, The Measurement of Molecular Complex Stability, Wiley, New York, NY, 1987.
(66) Bakkialakshmi, S., & Jayaranjani, G., Inclusion complexation study of curcumin and Hβ-cyclodextrin. World Journal of Pharmacy and Pharmaceutical Sciences 3 (10), 489-494, 2014.
(67) Kolev, T. M.; Velcheva, E. A.; Stamboliyska, B. A.; Spiteller, M., DFT and experimental studies of the structure and vibrational spectra of curcumin. International Journal of Quantum Chemistry 102 (6), 1069-1079, 2005.
(68) T. Binh, N.T.M. Huong, P.N.D. Yen, T.T. Luong, in: D.T. Cat, A. Pucci, K. Wandelt (Eds.), Physics and Engineering of New Materials, Springer Publications, Berlin, pp. 271–278, 2009.
(69) Fathy, M.; Sheha, M., In vitro and in vivo evaluation of an amylobarbitone/hydroxypropyl-beta-cyclodextrin complex prepared by a freeze-drying method. Pharmazie 55 (7), 513-7, 2000.
(70) F. B. T. Pessine, A. Calderini and G. L. Alexandrino, in Magnetic Resonance Spectroscopy, ed. D. Kim, InTech, pp. 237–264, 2012.
(71) Liao, J. H.; Wu, T. H.; Chen, M. Y.; Chen, W. T.; Lu, S. Y.; Wang, Y. H.; Wang, S. P.; Hsu, Y. M.; Huang, Y. S.; Huang, Z. Y.; Lin, Y. C.; Chang, C. M.; Huang, F. Y.; Wu, S. H., The Comparative Studies of Binding Activity of Curcumin and Didemethylated Curcumin with Selenite: Hydrogen Bonding vs Acid-Base Interactions. Sci Rep 5, 17614, 2015.
(72) Faucci, M. T.; Melani, F.; Mura, P., Computer-aided molecular modeling techniques for predicting the stability of drug-cyclodextrin inclusion complexes in aqueous solutions. Chem Phys Lett 358 (5-6), 383-390, 2002.
(73) Desiraju, G. R.; Steiner, T., The Weak Hydrogen Bond: In Structural Chemistry and Biology. Oxford University Press: 2001.
(74) Reed, A. E.; Weinhold, F., Natural Bond Orbital Analysis of near-Hartree-Fock Water Dimer. J Chem Phys 78 (6), 4066-4073, 1983.
(75) Foster, J. P.; Weinhold, F., Natural hybrid orbitals. Journal of the American Chemical Society 102 (24), 7211-7218, 1980.
(76) Reed, A. E.; Weinhold, F., Natural Localized Molecular-Orbitals. J Chem Phys 83 (4), 1736-1740, 1985.
(77) Reed, A. E.; Weinstock, R. B.; Weinhold, F., Natural population analysisa. The Journal of Chemical Physics 83 (2), 735-746, 1985.
(78) Carpenter, J. E.; Weinhold, F., Analysis of the Geometry of the Hydroxymethyl Radical by the Different Hybrids for Different Spins Natural Bond Orbital Procedure. J Mol Struc-Theochem 46, 41-62, 1988.
(79) Reed, A. E.; Curtiss, L. A.; Weinhold, F., Intermolecular Interactions from a Natural Bond Orbital, Donor-Acceptor Viewpoint. Chemical Reviews 88 (6), 899-926, 1988.
(80) Weinhold, Frank. Discovering chemistry with natural bond orbitals. John Wiley & Sons, 2012.
(81) Carper, W. R.; Wahlbeck, P. G.; Antony, J. H.; Mertens, D.; Dolle, A.; Wasserscheid, P., A Bloembergen-Purcell-Pound C-13 NMR relaxation study of the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate. Analytical and Bioanalytical Chemistry 378 (6), 1548-1554, 2004.
(82) Bent, H. A., An Appraisal of Valence-bond Structures and Hybridization in Compounds of the First-row elements. Chemical Reviews 61 (3), 275-311, 1961.
(83) Hegge, A. B.; Masson, M.; Kristensen, S.; Tonnesen, H. H., Investigation of curcumin-cyclodextrin inclusion complexation in aqueous solutions containing various alcoholic co-solvents and alginates using an UV-VIS titration method. Pharmazie 64 (6), 382-389, 2009.
校內:2021-08-01公開