| 研究生: |
高淑雅 Kao, Shu-Ya |
|---|---|
| 論文名稱: |
高溫電紡聚乙烯奈米纖維及其微結構鑑定 Preparation of polyethylene nanofibers via high temperature electrospinning and microstructure characterization |
| 指導教授: |
王紀
Wang, Chi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 160 |
| 中文關鍵詞: | 高溫電紡絲 、LLDPE 、mPE 、UHMWPE |
| 外文關鍵詞: | high-temperature electrospinning, LLDPE, mPE, UHMWPE |
| 相關次數: | 點閱:78 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗利用高溫電紡設備製備PE奈米纖維,並研究不同PE(LLDPE、mPE、UHMWPE)與鹽類濃度對電紡所得纖維的影響。成形纖維分析鑒定使用 DSC、FTIR、WAXD與SAXS瞭解製程的改變對纖維微結構的影響,實驗發現:添加高濃度鹽於電紡液,能有效提高導電度,使液柱在電紡過程中劇烈拉伸,形成直徑較細的纖維,使用超高分子量的UHMWPE,與其他兩種PE相較,可在較低濃度時形成entangled溶液,而藉由纖維直徑與溶液濃度成反比的關係,達到獲得奈米級纖維的目的。
在UHMWPE纖維內分子鏈受拉伸,排列情形較整齊,DSC升溫過程會有高熔點;由FTIR與WAXD結果觀察到含有少量的半穩定monoclinic晶型,研究發現逐步升溫回火過程monoclinic晶型會在65度時轉換為orthorhombic,並有冷結晶情形的出現,結晶度持續上升後於120度開始下降。
LLDPE溶液中添加mPE可形成混摻溶液,對電紡製程不會造成太大影響,但纖維直徑變小且結晶度下降。
This research was to prepare PE nano-fibers by high-temperature solution electrospinning, and to study the effects of material(LLDPE, mPE, UHMWPE) and concentration of salts on the as-spun fibers. Solutions with high conductivity by adding more salts allowed significant elongation during electrospinning, and thinner fibers would be collected. Ultra high molecular weight PE(UHMWPE) was better than the other two PEs to become entangled solution easily, and nano-fibers could be readily obtained from dilute solutions.
For comparison, casting film was also prepared for analysis. Polymer chains in UHMWPE fibers were more ordered than those in the casting film, and a high melting point was observed from DSC heating traces. In the as-spun fibers, few crystals of meta-stable monoclinic form were detected by FTIR and WAXD. During step-wise annealing, the monoclinic crystals transformed into the orthorhombic crystals, and crystallinity was also increased.
When LLDPE solution was blended with mPE, there was no effect on electrospinning process, but fiber diameter was reduced and the fiber crystallinity was decreased.
[1]沈崇豪,“以電紡絲法製備彈性 SBS 奈米纖維膜”, 國立成功大學
碩士論文, 2004.
[2]J. T. Yeh, S. C. Lin, C. W. Tu, K. H. Hsie, F. C. Chang, “Investigation of the drawing mechanism of UHMWPE fibers”, Journal of Materials Science, 43, 4892, 2008.
[3]H. Li, Y. Ke, Y. Hu, “Polymer nanofibers prepared by template melt extrusion”, Journal of Applied Polymer Science, 99, 1018, 2006.
[4]K. Kageyama, J. I. Tamazawa, T. Aida, “Extrusion polymerization: catalyzed synthesis of crystalline linear polyethylene nanofibers within a mesoporous silica”, Science, 285, 2113, 1999.
[5]L. Larrondo, R. S. J. Manley, “Electrostatic fiber spinning from polymer melts -1. experimental observations on fiber formation and properties”, Journal of Polymer Science. Part A-2, Polymer physics, 19, 909, 1981.
[6]S. R. Givens, K. H. Gardner, J. F. Rabolt, D. B. Chase, “High-temperature electrospinning of polyethylene microfibers from solution”, Macromolecules, 40, 608, 2006.
[7]D. M. Rein, L. Shavit-Hadar, R. L. Khalfin, Y. Cohen, K. Shuster, E. Zussman, “Electrospinning of ultrahigh molecular-weight polyethylene nanofibers”, Journal of Polymer Science Part B: Polymer Physics, 45, 766, 2007.
[8]K. H. Lee, O. Ohsawa, K. Watanabe, I. S. Kim, S. R. Givens, B. Chase, J. F. Rabolt, “Electrospinning of syndiotactic polypropylene from a polymer solution at ambient temperatures”, Macromolecules, 42, 5215, 2009.
[9]S. C. Moyses, R. Machado, “A study of melting of low density polyethylene by in situ WAXD”, European Polymer Journal, 38, 2041, 2002.
[10]K.E. Russell, B.K. Hunter, R.D. Heyding, “Monoclinic polyethylene revisited”, Polymer, 38, 1409, 1997.
[11]C. Vasile, M. Pascu, “Practical guide to polyethylene”, Rapra: UK, 2005.
[12]Y. Takahashi, T. Ishida, M. Furusaka, “Monoclinic-to-orthorhombic transformation in polyethylene”, Journal of Polymer Science Part B: Polymer Physics, 26, 2267, 1988.
[13]H. Uehara, T. Kanamoto, A. Kawaguchi, S.Murakami, “Real-time X-ray diffraction study on two-stage drawing of ultra-high molecular weight polyethylene reactor powder above the static melting temperature”, Macromolecules, 29, 1540, 1996.