簡易檢索 / 詳目顯示

研究生: 陳文益
Chen, Wen-Yi
論文名稱: 支援私有網路公平性傳輸之混合樹狀/環狀乙太被動光纖網路架構
TRIN-PON : A Hybrid Tree/RINg EPON Architecture for Supporting Private Networking Capability with Fairness Control
指導教授: 林輝堂
Lin, Hui-Tang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 85
中文關鍵詞: 乙太被動光纖網路網路互傳能力波長重複再利用公平性
外文關鍵詞: EPON, intercommunication capability, Wavelength Spatial Reused, fairness
相關次數: 點閱:138下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 乙太被動光纖網路的優點不僅止於其有較佳的成本花費效益,且同時能提供較高的頻寬產能及頻寬使用率並能降低資料傳輸延遲時間。然而,因在乙太被動光纖網路的傳輸路徑只能限制在光纖線路終端器及光纖網路單元之間,任一目的地為其它光纖網路單元的資料封包必需先傳輸至光纖線路終端器後,再經由光纖線路終端器處理,重新產生再重新發送出去。而這些重新發送出去的資料訊框不僅會降低可使用的下傳頻寬,且更加劇了封包端點間傳輸的延遲時間。為了解決上述問題,本論文提出了一個新穎的混合樹狀/環狀乙太被動光纖網路架構,其目的為希望達到提供光纖網路單元間互相傳輸的能力。利用此架構的環狀網路部分,此系統可達到波長重覆再利用及提供使用者之間真正的共享區域網路的能力。此外,此新穎架構也考慮到了向後支援IEEE 802.3ah 多點控制協定的能力,並針對個別光纖網路單元在乙太被動光纖網路媒介存取控制層上的存取仲裁,納入了一個有效率且具有公平性的動態頻寬配置傳輸機制。最後,經由模擬結果可論證本論文所出之頻寬配置及傳輸機制的效率及功效。

    Ethernet Passive Optical Networks (EPONs) are not only cost-effective, but also provide high bandwidth throughput, high bandwidth utilization, and low transmission latency. However, since the transmission path is restricted only between the OLT and the ONUs, any data traffic packet whose destination is other ONUs (except itself) in the same network field should be transmitted to the OLT, processed, regenerated and resubmitted by the OLT. In this way, these redirect data frames not only reduce the available downstream bandwidth but also increase end-to-end delay. Therefore, this study develops a novel network architecture, designated as Hybrid TRee/RINg EPON (TRIN-PON), to provide the intercommunication capability between ONUs. The use of Ring-based topology enables the proposed network system to achieve wavelength spatial-reuse and to provide a truly-shared LAN capability amongst the end users. Furthermore, the proposed EPON network system takes account of the requirement for backward compatibility with the IEEE 802.3ah MPCP protocol and incorporates an effective and fairness DBA scheme to arbitrate the access of the individual ONUs over the EPON MAC layer. Finally, the simulation results demonstrate the effectiveness and efficiency of the proposed DBA approach.

    摘要 i 英文摘要 ii 誌謝 iv 目錄 v 表目錄 vii 圖目錄 viii 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機 4 1.3 研究目的及論文架構 8 1.3.1 研究目的 8 1.3.2 論文架構 11 第二章 相關研究與文獻探討 12 2.1 支援光纖網路單元間網內傳輸能力之光纖網路架構 12 2.1.1 具有彈性支援網內傳輸能力之分波多工被動光纖網路架構 13 2.1.2 陣列波導光柵模組分波多工被動光纖網路架構 15 2.1.3 使用遠端放大器為基礎之被動光纖網路架構 18 2.1.4 分時多工環狀乙太被動光纖網路架構 21 2.1.5 分波多工環狀乙太被動光纖網路架構 24 第三章 支援私有網路傳輸分時多工混合樹狀/環狀乙太被動光纖網路架構 27 3.1 支援私有網路傳輸分時多工混合樹狀/環狀乙太被動光纖網路系統 27 3.1.1 各類型之光纖網路單元 28 3.1.2 佇列結構配置與管理 29 3.2 TRINPON架構傳輸模式 30 3.2.1 下行傳輸模式 31 3.2.2 上行傳輸模式 34 3.2.3 群體位址及廣播位址 37 3.3 光纖消耗長度比較 38 3.3.1 各類型架構所需之光纖總長度計算公式 39 3.3.2 各類型架構所需之光纖總長度比較 42 第四章 支援私有網路傳輸分時多工混合樹狀/環狀乙太被動光纖網路通訊協定之設計.. 45 4.1 混合式演算法 45 4.1.1 中央控制分時多工公開資料串流動態頻寬配置機制 46 4.1.2 分散式私有網路資料串流傳輸機制 50 4.1.3 傳輸來回時間計算 52 4.2 私有網路資料公平傳輸機制演算法 55 第五章 模擬結果與效能評估 58 5.1 模擬環境與設定 58 5.2 模擬結果與分析 61 第六章 結論及未來工作 79 參考文獻 81

    [1] George T. Hawley, “Systems considerations for the use of xDSL technology for data access,” IEEE Communications Magazine, Vol.35, No.3, pp.56-60, Mar. 1997.
    [2] Vijay K. Bhagavath, “Emerging high-speed xDSL access services : architectures, issues, insights, and implications,” IEEE Communications Magazine, Vol.37, No.11, pp.106-114, Nov. 1999.
    [3] Andrew Paff, “Hybrid fiber/coax in the public telecommunications infrastructure,” IEEE Communications Magazine, Vol.33, No.4, pp.40-45, Apr. 1995.
    [4] Chatschik Bisdikian, Kiyoshi Maruyama, David l. Seidman, and Dimitrios N. Serpanos, “Cable access beyond the hype : on residential broadband data services over HFC networks,” IEEE Communications Magazine, Vol.34, No.11, pp.128-135, Nov. 1996.
    [5] John W. Eng, and James F. Mollenauer, “IEEE Project 802.14 : standards for digital convergence,” IEEE Communications Magazine, Vol.33, No.5, pp.20-23, May 1995.
    [6] Chang-Hee Lee, Wayne V. Sorin, and Byoung Yoon Kim, “Fiber to the Home Using a PON Infrastructure,” IEEE Journal of Lightwave Technology, Vol.24, No.12, pp.4568-4583, Dec. 2006.
    [7] ITU-T G.983.1, “Broadband Passive Optical Networks (BPON) : General characteristics, ” Jun. 1999.
    [8] ITU-T G.984.1, SG 15, “Gigabit-Capable Passive Optical Networks (GPON) : General characteristics, ” Mar. 2003.
    [9] ITU-T G.984.2, SG 15, “Gigabit-Capable Passive Optical Networks (GPON) : Physical Media Dependent (PMD) Layer Specification, ” Mar. 2003.
    [10] ITU-T G.984.3, SG 15, “Gigabit-Capable Passive Optical Networks (GPON) : Transmission Convergence Layer Specification, ” Jul. 2005.
    [11] ITU-T G.984.3, SG 15, “Gigabit-Capable Passive Optical Networks (GPON) : ONT Management and Control Interface Specification, ” Jun. 2005.
    [12] Gerry Pesavento, and Glen Kramer, “Enabling Next Generation Ethernet Access with Ethernet Passive Optical Networks,” Proceedings of NFOEC, pp.491-499, Orlando, Sept. 2003.
    [13] Alloptic, “Ethernet Passive Optical Networks,” The International Engineering Consortium, http://www.iec.org.
    [14] Jun Zheng, and Hussein T. Mouftah, “Media Access Control for Ethernet Passive Optical Networks : An Overview,” IEEE Communication Magazine, Vol.43, No.2, pp.145-150, Feb. 2005.
    [15] Glen Kramer and Gerry Pesavento, “Ethernet Passive Optical Netork (EPON) : Building a Next-Generation Optical Access Network,” IEEE Communication Magazine, Vol.40, pp.66-73, Feb. 2002.
    [16] A. Shami and C. Assi, “Supporting Private Networking Capability in EPON,” Proceedings of of IEEE ICC, Vol. 6, pp. 2655-2660, Jun. 2006.
    [17] Martin Maier, Martin Herzog, and Martin Reisslein, “Topics in Optical Communications : STARGATE: the next evolutionary step toward unleashing the potential of WDM EPONS,” IEEE Communication Magazine, Vol.45, No.5, pp. 50-56, May 2007.
    [18] Martin Maier, and Martin Herzog, “Online Gaming and P2P File Sharing in Next-Generation EPONs,” IEEE Communication Magazine, Vol.48, pp.48-55, Feb. 2010.
    [19] Chien Aun Chan, Manik Attygalle, and Ampalavanapillai Nirmalathas, “Remote Repeater-Based EPON With MAC Forwarding for Long Reach and High-Split-Ratio Passive Optical Networks,” Journal of Optical Communication Network, Vol.2, No.1, pp.28-27, Jan. 2010.
    [20] Hui-Tang Lin, Zhong-Huan Ho, Hung-Chen Cheng, and Wang-Rong Chang, “SPON : A Slotted Long-Reach PON Architecture for Supporting Internetworking Capability,” IEEE MILCOM, pp.1-8, Oct. 2009.
    [21] Chang-Joon Chae, Seung-Tak Lee, Geun-Young Kim, and Heesang Park, “A PON system suitable for internetworking optical network units using a fiber Bragg grating on the feeder fiber,” IEEE Photonics Technology Letters, Vol.11, No.12, pp. 1686-1688, Dec. 1999.
    [22] Elaine Wong, and Chang-Joon Chae, “CSMA/CD-based EPON with optical internetworking capability among users,” IEEE Photonics Technology Letters, Vol.16, No.9, pp.2195-2197, Sept. 2004.
    [23] Qiguang Zhao, and Chun-Kit Chan, “A Wavelength-Division-Multiplexed Passive Optical Network With Flexible Optical Network Unit Internetworking Capability,” IEEE Journal of Lightwave Technology, Vol. 25, No.8, pp.1970-1977, Aug. 2007.
    [24] Hui-Tang Lin, Wang-Rong Chang, and Chai-Lin Lai, “Supporting Private Networking with Wavelength Spatial-Reuse over WDM EPONs,” IEEE GLOBECOM, pp.1-6, 2008.
    [25] M.A.Ali, “A Novel Ring-Based WDM-PON Access Architecture for the Efficient Utilization of Network Resources,” IEEE ICC, pp.5175-5181, 2008.
    [26] IEEE 802.3ah, Ethernet in the First Mile Task Force, http://www.ieee802.org/3/efm/index.html.
    [27] Michael P. McGarry, Martin Maier, and Martin Reisslein, “Ethernet PONs : a survey of dynamic bandwidth allocation (DBA) algorithm,” IEEE Communication Magazine, vol.42, pp.S8-15, Aug. 2004.
    [28] Michael P. McGarry, Martin Maier, and Martin Reisslein, “Ethernet Passive Optical Network Architectures and Dynamic Bandwidth Allocation Algorithms,” IEEE Communications Surveys and Tutorials, Vol.10, No.3, pp.46-60, 2008.
    [29] Glen Kramer, and Biswanath Mukherjee, “Ethernet PON : design and analysis of an optical access network,” Photonic Network Communications, Vol.3, No.3, pp.307-319, Jul. 2001.
    [30] Glen Kramer, Biswanath Mukherjee, and Gerry Pesavento, “IPACT : A Dynamic Protocol for an Ethernet PON (EPON),” IEEE Communication Magazine, Vol.40, pp.74-80, Feb. 2002.
    [31] Huang Song, Byoung-Whi Kim, and Biswanath Mukherjee, “Long-Reach Optical Access Networks : A Survey of Research Challenges, Demonstrations, and Bandwidth Assignment Mechanisms,” IEEE Communications Surveys & Tutorials, Vol.12, No.1, pp.112-123, 2010.
    [32] Sherif R. Sherif, Antonis Hadjiantonis, Georgios Ellinas, Chadi Assi, and Mohamed A. Ali, “A Novel Decentralized Ethernet-Based PON Access Architecture for Provisioning Differentiated QoS,” IEEE Journal of Lightwave Technology, Vol.22, No.11, pp.2483-2491, Nov. 2004.
    [33] Wang-Rong Chang, Hui-Tang Lin, and Ho-Ting Wu, “The Fairness MAC Protocol for a Slotted Packet-Switched WDM Ring Network,” in proceedings of 13th IEEE Wireless & Optical Communication Conference (WOCC), Mar. 2004.
    [34] Marco Ajmone Marsan, Andrea Bianco, Emilio Leonardi, Michela Meo, and Fabio Neri “MAC Protocols and fairness Control in WDM Multi-Rings with Tunable Transmitters and Fixed Receiver,” IEEE Journal of Lightwave Technology, Vol. 14, No.6, pp.1230-1244, Jun. 1996.
    [35] J. Fransson, M. Johansson, M. Roughan, L. Andrew, and M. Summerfield, “Design of a medium access control protocol for a WDMA/TDMA photonic ring network,” Proceedings of GLOBECOM’98, Sydeny, Australia, pp.307-312, Nov. 1998.
    [36] Andrea Fumagalli, James Cai, and Imrich Chlamtac, “A token based protocol for integrated packet and circuit switching in WDM rings,” Proceedings of GLOBECOM’98, Sydeny, Australia, pp. 2339-2344, Nov. 1998.
    [37] Walter Willinger, Murad S. Taqqu, and Ashok Erramilli, “A bibliographical guide to self-similar traffic and performance modeling for modern high-speed networks,” in Stochastic Networks. Oxford, U.K.: Oxford Univ. Press, pp. 339-366, 1996.

    無法下載圖示 校內:2016-09-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE