簡易檢索 / 詳目顯示

研究生: 陳思達
Chen, Ssu-Ta
論文名稱: 純鋁及鋁銅合金拉伸性質之摩擦攪拌效應及Hollomon方程式適用性檢討
Influence of friction stir process and applicability of Hollomon equation on the tensile properties of pure aluminum and Al-Cu aluminum alloys
指導教授: 呂傳盛
Lui, Truan-Sheng
陳立輝
Chen, Li-Hui
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 125
中文關鍵詞: 摩擦攪拌製程應變硬化指數晶界滑移原子擴散
外文關鍵詞: friction stir process, strain hardening exponent, grain boundary sliding, diffusion of atoms
相關次數: 點閱:144下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Al-Cu系2218合金於摩擦攪拌製程前後有明顯的組織差異,而組織特徵是影響拉伸性質的重要因素,故有必要探討2218合金於不同測試條件拉伸性質的摩擦攪拌效應。為避免時效、第二相顆粒及合金元素的影響,攪拌材室溫機械性質的結晶方位效應以純鋁1050合金進行。此外,雖然Hollomon方程式之應變硬化指數理論上能視為材料均勻變形能力,但使用時仍需注意該方程式是否能充分地描述實驗結果,故本研究對以Hollomon方程式描述實驗結果的適用性進行討論。
    假設應變速率對室溫拉伸流應力的貢獻可忽略,則僅少數實驗材料的拉伸行為能適用Hollomon方程式。Hollomon方程式之應變硬化指數(n)無法準確評估實驗材料均勻塑性應變能力。降伏強度負偏差(計算值減實驗值)與材料的降伏強度及加工硬化率有關,負偏差的程度隨降伏強度上升或較低之變形初期加工硬化率而趨於明顯,而變形初期範圍以外較高的加工硬化率亦造成較明顯之降伏強度負偏差。
    1050合金退火材經摩擦攪拌製程後可獲得細化的晶粒與提升其拉伸強度與硬度。1050合金攪拌區室溫之拉伸流應力與硬度值非等向性。垂直攪拌進給方向拉伸可得到較平行方向高的拉伸流應力,此外攪拌區內各區域TD面平均Taylor係數與對應之平均微硬度值具正相關性。
    以初始應變速率2.08×10-3s-1對2218合金攪拌材進行室溫至500℃的拉伸測試並與攪拌前的擠型材實驗數據互相比對。結果顯示前者於室溫至300℃範圍內具較高的拉伸降伏強度,此因攪拌產生的高入熱量導致顯著的固溶及後續自然時效所致;另一方面,攪拌材於350~450℃的拉伸延性隨溫度上升而顯著地增加且優於擠型材,變形機構為拉伸過程引發的動態再結晶(DRX)及晶界滑移(GBS)。攪拌材與擠型材於450~500℃發生熔融,導致兩材料於此溫區的拉伸延性略呈持平,熔融主要是由Mg原子及部分Cu原子的擴散至晶界而造成該區域熔點下降所致。攪拌材變形溫度高於一臨界溫度時,需同時考慮DRX、GBS與熔融對拉伸延性的影響,而以上變形機構皆與應變速率有關,因此攪拌材的最佳高溫拉伸延性發生於一合適的應變速率。

    Microstructural feature is an important factor in tensile properties. The influence of microstructural characteristics of friction stir processed (FSPed) Al-Cu 2218 alloys on tensile properties at elevated temperatures was examined in this study. To rule out effects of aning and second phase particles as well as alloy elements, FSPed 1050 aluminum alloys were utilized to clarify textural factors in room temperature tensile properties and hardness of SZ. In addition, applicability of Hollomon equation was also considered to judge whether it is proper to describe tensile behaviors in this study.
    Under an assumption that the contribution of strain rate hardening for flow stress at room temperature can be ignored, and then Hollomon equation is invalid for most materials in terms of strain hardening exponent (n) and tensile yield stress. The capability of true plastic uniform strain can’t be predicted appropriately by the n calculated from Hollomon equation. On the other hand, the negative deviation of yield stress (calculated value deducts experimental one) relates either to yield stress or work hardening rate. A pronounced negative deviation correlates with higher yield stress and lower work hardening rate in preliminary strain, as well as higher work hardening rate outside the preliminary strain range.
    Compared with 1050 alloy annealed plates, both refined grains and promoted tensile strength can be achieved by FSP. Room temperature tensile flow stress and hardness of stir zone (SZ) of FSPed 1050 alloys are anisotropic. A higher tensile flow stress can be obtained as tested perpendicularly to processing direction rather than parallel. There is a positive correlation between TD planes average microhardness and corresponding average Taylor factors in different regions within SZ.
    Tensile tests of as friction stir processed (AF) and as extruded (AE) samples from room temperature to 500℃ were carried out at an initial strain rate of 2.08×10-3s-1. Compared with AE samples, AF ones possess higher tensile yield strength between room temperature and 300℃. This superior strength of AF samples is ascribed to a more pronounced solid solution and subsequent natural aging than that of AE. Within 350~450℃, AF samples have both higher and more enhanced tensile ductility than AE ones. Tensile deformation induced dynamic recrystallization (DRX) and grain boundary sliding (GBS) are responsible for this improved ductility. However, ductility of AF and AE samples no longer increase and keep almost constant in 450~500℃, and this is due to the liquation which is resulted mainly from diffusion of Mg atoms and minor from Cu atoms. Above a critical temperature, it is rational to consider effects of DRX, GBS and liquation on tensile ductility of AF samples. DRX, GBS and diffusion of solute atoms are all strain rate dependent; consequently, the optimum tensile ductility of AF samples at high temperatures can be achieve at a moderate strain rate.

    總目錄 中文摘要..................................................I 英文摘要................................................II 誌謝..................................................IV 總目錄................................................V 表目錄...............................................VIII 圖目錄...................................................IX 符號說明.........................................XIV 第一章 前言.................................................1 第二章 文獻回顧.......................................3 2-1 Al-Cu系鋁合金....................................3 2-2 摩擦攪拌材組織特徵與機械性質..........................3 2-3 應變硬化指數與Hollomon方程式.....................5 2-4 Taylor係數...............................7 2-5 Hall-Petch關係式..............................8 2-6 應變速率敏感度................................10 2-7 材料高溫變形(潛變)機構..........................10 2-7-1 晶界滑移...................................11 (i) 差排移動................................12 (ii) 原子擴散..............................12 2-7-2 動態再結晶................................13 2-8 研究主題與架構................................14 第三章 以Hollomon方程式描述鋁合金材料拉伸行為之檢討..........21 3-1 概述......................................21 3-2 實驗方法....................................21 3-2-1 實驗材料製備............................21 3-2-2 室溫拉伸測試...............................22 3-2-3 實驗數據計算與擷取.....................23 3-2-4 降伏強度偏差.................................23 3-3 實驗結果與討論....................................24 3-3-1 應變硬化指數..............................24 (i) 應變硬化指數之數據擷取起始點效應.....................24 (ii) 應變硬化指數與均勻塑性應變..........................25 3-3-2 降伏強度偏差之降伏強度值效應.......................25 3-3-3 降伏強度偏差之加工硬化率效應............26 (i) 變形初期加工硬化率效應.................27 (ii) 變形初期階段以外加工硬化率效應..................28 3-4 結論.............................................29 第四章 1050鋁合金摩擦攪拌材組織特徵與室溫機械性質.............42 4-1 概述..................................42 4-2 實驗方法...........................42 4-2-1 摩擦攪拌製程.................................42 4-2-2 組織特徵觀察與量測........................42 (i) 金相觀察...................................42 (ii) 結晶方位量測...............................43 (iii) 平均Taylor係數( )計算......................43 4-2-3 機械性質測試..............................45 (i) 硬度值量測...............................46 (ii) 拉伸性質測試............................46 4-3 實驗結果......................................46 4-3-1 1050合金攪拌區金相組織與結晶方位....................46 4-3-2 1050合金攪拌材硬度量測結果........................47 4-3-3 1050合金攪拌材室溫拉伸性質...........48 4-4 討論......................................48 4-4-1 降伏強度及硬度.............................49 (i) 攪拌材與退火材.........................49 (ii) 攪拌材之進給速度效應................49 4-4-2 SZ的拉伸降伏強度及硬度之摩擦攪拌結晶方位效應..........50 4-5 結論.....................................51 第五章 2218鋁合金組織特徵與室溫至500℃拉伸行為之摩擦攪拌效應....68 5-1 概述.........................................68 5-2 實驗方法..............................68 5-2-1 材料製備............................68 5-2-2 組織特徵觀察與鑑定........................68 (i) 金相觀察.................................68 (ii) 晶界取向量測............................69 5-2-3 硬度值量測.................................69 5-2-4 拉伸測試與變形組織特徵觀察........................69 (i) 室溫至500℃拉伸測試...................70 (ii) 變形組織特徵觀察..........................70 5-3 實驗結果.....................................70 5-3-1 2218合金組織特徵之摩擦攪拌效應......................70 5-3-2 2218合金室溫拉伸及硬度性質之摩擦攪拌效應.............71 5-3-3 2218合金室溫至500℃拉伸行為之摩擦攪拌效應............71 (i) 室溫至300℃之拉伸性質與變形組織.....................72 (ii) 300℃至400℃之拉伸性質與變形組織................73 (iii) 400℃至500℃之拉伸性質與變形組織...........74 5-3-4 2218合金攪拌材與擠型材350℃至450℃拉伸性質之初始應變速率效應.......................75 5-4 討論..............................75 5-4-1 2218合金攪拌材組織特徵對SZ硬度的影響.................76 5-4-2 室溫至300℃拉伸行為之摩擦攪拌效應..................77 5-4-3 300℃至400℃拉伸行為之摩擦攪拌效應..............78 5-4-4 400℃至500℃拉伸延性之摩擦攪拌效應................79 5-4-5 2218合金攪拌材中高溫拉伸行為之應變速率效應...........81 5-5 結論....................................83 第六章 總結論..............................114 參考文獻.............................................117 表目錄 表2-1 Al-Cu-Mg系合金之共晶與包晶反應[49, 50]。....................................................15 表2-2 Cu及Mg元素於Al-Cu-Mg系合金之固溶限(wt. %) [49-51]。...........................15 表3-1 實驗材料化學成分組成(wt%)。.............................................................................30 表3-2 摩擦攪拌製程條件。..............................................................................................30 表3-3 實驗材料試片代號及製備方法。..........................................................................31 表3-4 以降伏點為數據擷取起始點並依Hollomon方程式計算出1050合金軋延材、退火材及攪拌材,2218合金擠型材、退火材、峰值時效材及攪拌材的強度係數(KH)及應變硬化指數(n),並列出相關係數(r)說明迴歸情況,均勻塑性應變實驗值(εu)列於最後一欄以便與n對照。除2218AE與2218AF的應變速率為 外,其餘實驗材料的初始應變速率皆為 。各數據為各材料具代表性之單一試片實驗結果。..............................................................32 表3-5 各實驗材料的降伏強度(σy)、均勻塑性應變(εu)、最大拉伸應力(σu)及降伏強度偏差(Δσy)。各拉伸數據為至少三次實驗結果之平均值,除2218AE與2218AF初始應變速率為 外,其餘材料初始應變速率皆為 。試片代號依降伏強度由低至高依序排列。..........................................................33 表4-1 1050合金攪拌材及退火材的拉伸性質,初始應變速率皆為 (此表σy、εu與σu即為整理於表3-5之實驗結果,各數據為至少三次實驗結果之平均)。........................................................................................................................53 表5-1 2218合金擠型材、攪拌材及攪拌材熱處理後之室溫拉伸性質,試片代號分別為AERT、AFRT及AFART。拉伸初始應變速率為2.08×10-3s-1,熱處理條件為300℃持溫10小時。..........................................................................................85 圖目錄 圖2-1 Al-Cu-Mg系合金三元相圖[49]。....................................................................... 16 圖2-2 鋁合金應變硬化指數(n)與應變速率敏感度(m)隨溫度變化示意圖[63]。.......17 圖2-3 fcc材料在軸對稱拉伸變形時,不同拉伸軸向所對應的Taylor係數[73]。.......18 圖2-4 Gifkins [90]提出理論說明晶界滑移以差排移動為調節機構。原本沿晶界滑移之差排分解成利於繼續於其他晶界滑移之差排與部分進入晶粒滑移之差排。.......................................................................................................................19 圖2-5 Ashby等人[94]提出的晶界滑移以原子擴散為調節機構之示意圖: (a)初期階段; (b)中間階段; (c)最終階段。 (d)原子擴散示意圖,虛線與實線晶粒分別代表滑移前後之晶粒,箭號方向為原子擴散之方向。......................................20 圖3-1 探討Hollomon方程式適用性之實驗流程圖。...................................................34 圖3-2 摩擦攪拌製程示意圖及攪拌棒尺寸(單位為mm)。攪拌棒材質為工具鋼SKD61。................................................................................................................35 圖3-3 拉伸試片取樣及尺寸示意圖(單位為mm): (a) 1050鋁合金退火材(1050Opar及1050Oper)與攪拌材(1050O-FSPpar及1050O-FSPper); (b) 2218鋁合金擠型材(2218AE)與攪拌材(2218AF)。....................................................................36 圖3-4 以Hollomon方程式之KH與n繪製之預測曲線,並與實驗曲線對照: (a) 1050H; (b) 2218AF。請注意兩材料縱軸及橫軸座標尺度不同。....................37 圖3-5 (a)改變據擷取起點對1050Opar、1050O-FSP1.1par、2218AE及2218AF n值之影響; (b)以1050Opar為例,n值與Δσy隨不同數據擷取起始點(數據擷取至真塑性應變0.310)的變化趨勢;(c)擷取起始點為ε= 0.308之預測曲線與實驗曲線對照。....................................................................................................38 圖3-6 降伏強度偏差( )與降伏強度值( )的線性迴歸結果。..............................39 圖3-7 (a)拉伸曲線; (b)參考(a)所繪製的曲線HH與HL,兩者在變形初期(ε=0.002~0.03)具不同的加工硬化率; (c)轉換至自然對數座標的HH與HL; (d)、(e): HH與HL應力應變在自然對數座標下迴歸的情況; (f) HL下調應力水準後(稱HLlow)的迴歸結果。(d)至(f)之Δ為線性迴歸結果於降伏點的偏差。........................................................................................................................40 圖3-8 (a) 2218AF調降降伏強度前後(調降後稱2218AFlow)與2218AE之拉伸曲線; (b)參考2218AFlow與2218AE重新繪製之曲線,兩曲線於真塑性應變0.05~0.156具不同加工硬化率,加工硬化率較高者稱HH,較低者稱HL; (c) 轉換至自然對數座標的HH與HL。(d)及(e)為預測曲線與拉伸曲線對照: (d) HH; (e) HL。.........................................................................................................41 圖4-1 1050鋁合金室溫機械性質之摩擦攪拌效應實驗流程圖。................................54 圖4-2 1050合金攪拌材SZ內五個不同區域結晶方位偵測之試片尺寸與取樣示意圖(單位為mm)。由AS至RS端依序為C-5.0AS、C-2.5AS、C-0、C-2.5RS及C-5.0RS。..............................................................................................................55 圖4-3 以(θ, φ) 座標表示[u’ v’ w’]在[100]-[110]-[111]所構成的三角投影圖內的位置示意圖。................................................................................................................56 圖4-4 Bishop與Hill [106, 107]依不同滑移系統的組合將三角投影圖內區分為五個區,每個區域有各自對應的Taylor係數(M)計算方式。....................................57 圖4-5 不同進給速度之1050合金攪拌材PD面之巨觀OM照片: (a) O-FSP1.1 ; (b) O-FSP3.4。PD方向為垂直出紙面方向。圖中之RS與AS分別代表後退端(retreating side)與前進端(advancing side)。........................................................58 圖4-6 1050合金退火材(RD面)及攪拌材SZ (PD面)的金相OM照片: (a) O (退火材); (b) O-FSP1.1; (c) O-FSP3.4。攪拌材的取樣位置為SZ之中央區域。.................59 圖4-7 1050合金攪拌材O-FSP1.1per SZ內不同區域TD方向逆極圖與對應之 : (a) C-5.0AS; (b) C-2.5AS; (c) C-0; (d) C-2.5RS; (e) C-5.0RS。........................60 圖4-8 1050合金攪拌材O-FSP3.4per SZ內不同區域TD方向逆極圖與對應之 : (a) C-5.0AS; (b) C-2.5AS; (c) C-0; (d) C-2.5RS; (e) C-5.0RS。........................61 圖4-9 不同進給速度1050合金攪拌材C-0區域之ODF: (a) O-FSP1.1; (b) O-FSP3.4。..............................................................................................................62 圖4-10 1050合金攪拌材PD面與退火材RD面的硬度量測結果: (a)微硬度及奈米硬度量測結果,奈米硬度量測位置如圖中箭號所指之位置附近。不同對比流紋區域的金相OM照片與微硬度測試結果: (b) O-FSP1.1; (c) O-FSP3.4。..........63 圖4-11 1050合金退火材及不同進給速度之攪拌材的拉伸應力應變曲線: (a) Oper與Opar; (b) O-FSP1.1per及O-FSP1.1par; (c) O-FSP3.4per及O-FSP3.4par。…....64 圖4-12 1050合金攪拌材靠近RS端之晶粒徑量測結果: (a) O-FSP1.1; (b) O-FSP3.4。...........................................................................................................65 圖4-13 1050合金攪拌材SZ內各區域(C-5.0RS, C-2.5RS, C-0, C-2.5AS, C-5.0AS) TD面微硬度值與所對應平均Taylor係數,每區域的微硬度值為40次量測結果之平均: (a) O-FSP1.1; (b) O-FSP3.4。.................................................................66 圖4-14 1050合金攪拌材SZ內各區域(C-5.0RS, C-2.5RS, C-0, C-2.5AS, C-5.0AS) TD面平均微硬度值與所對應平均Taylor係數之線性迴歸及相關係數,每區域的微硬度值為40次量測結果之平均: (a) O-FSP1.1; (b) O-FSP3.4。....................67 圖5-1 2218鋁合金組織與機械性質之摩擦攪拌效應實驗流程圖。............................86 圖5-2 2218合金與第二相顆粒觀察結果: (a)及(b):分別為擠型材ED面及攪拌材PD面的OM金相照片; (c)及(d): Al-Cu-Ni顆粒SEM觀察及EDS分析結果; (e)及(f): Si顆粒SEM照片及EDS分析結果。(c)及(e)為SZ內觀察結果。….......87 圖5-3 擠型材與攪拌材之ND面結晶方位XRD分析結果: (a) 20°~ 90°; (b) 23°~ 27°。......................................................................................................................88 圖5-4 利用EBSD對2218合金進行晶界角度分佈的量測結果: (a)擠型材; (b)攪拌材SZ。...............................................................................................................89 圖5-5 2218合金擠型材(ED面)與攪拌材(PD面)的微硬度量測結果,AE硬度為至少十次量測結果的平均值。攪拌材與擠型材分別經過不同熱處理後的微硬度量測結果亦標示於此圖中。................................................................................90 圖5-6 2218合金擠型材(AE)與攪拌材(AF)室溫至500℃之拉伸性質: (a)降伏強度; (b)總伸長量。初始應變速率為2.08×10-3s-1。......................................................91 圖5-7 2218合金室溫到300℃之拉伸真應力應變曲線: (a)攪拌材,箭號所指為抖動發生處; (b)擠型材。初始應變速率為2.08×10-3s-1。曲線由降伏點開始繪製至頸縮開始發生為止。............................................................................................92 圖5-8 2218合金攪拌材與擠型材加工硬化率隨應變量增加的變化,拉伸溫度分別為: (a)室溫; (b) 100℃; (c) 200℃; (d) 300℃。初始應變速率為2.08×10-3s-1。.........................................................................................................93 圖5-9 2218合金擠型材與攪拌材100℃之拉伸破斷面SEM照片: (a) AE100; (b) AF100。遠離破斷處(距破斷位置約3mm)之試片表面SEM照片: (c) AE100; (d) AF100。圖中雙箭號所指方向為拉伸方向(tensile direction, T. D.)。...........94 圖5-10 2218合金擠型材與攪拌材300℃之拉伸破斷面SEM照片: (a) AE300;(b) AF300。遠離破斷處(距破斷位置約5mm)之試片表面SEM照片: (c) AE300; (d) AF300,圖中雙箭號所指方向為拉伸方向。(e) AE及AF晶界顆粒之EDS分析結果。............................................................................................................95 圖5-11 2218合金擠型材與攪拌材之工程拉伸應力應變曲線: (a) 350℃; (b) 375℃。300~400℃之拉伸總伸長量: (c)擠型材; (d)攪拌材。初始應變速率為2.08×10-3s-1。.........................................................................................................96 圖5-12 2218合金擠型材與攪拌材375℃之拉伸破斷面SEM照片: (a) AE375; (b) AF375。.................................................................................................................97 圖5-13 2218合金AE350與AF350之拉伸試片表面SEM照片: (a) AE350遠破斷處(距破斷處約5mm); (b) AF350遠破斷處(距破斷處約5mm); (c) AE350近破斷處; (d) AF350近破斷處。圖中雙箭號所指方向為拉伸方向。.................98 圖5-14 2218合金AE375與AF375之拉伸試片表面SEM照片: (a) AE375遠破斷處(距破斷處約5mm); (b) AF375遠破斷處(距破斷處約5mm); (c) AE375近破斷處; (d) AF375近破斷處。圖中雙箭號所指方向為拉伸方向,所圈之處為絲狀組織。........................................................................................................99 圖5-15 2218合金擠型材與攪拌材於400℃、450℃及500℃之工程拉伸應力應變曲線: (a)擠型材; (b)攪拌材。450℃拉伸測試之試片次表面金相照片(遠離破斷區域): (c)擠型材; (d)攪拌材。初始應變速率為2.08×10-3s-1。圖中雙箭號所指方向為拉伸方向。......................................................................................100 圖5-16 2218合金擠型材與攪拌材分別於400℃、450℃及500℃測試後拉伸試片之巨觀觀察: (a)擠型材; (b)攪拌材。初始應變速率為2.08×10-3s-1。................101 圖5-17 2218合金擠型材與攪拌材400℃、450℃及500℃之拉伸破斷面SEM照片: (a) AE400; (b) AF400; (c) AE450; (d) AF450; (e) AE500; (f) AF500。.........102 圖5-18 2218合金擠型材與攪拌材400℃及450℃近破斷區域之拉伸試片表面SEM照片: (a) AE400,所圈之處為凹洞; (b) AF400,所圈之處為凹洞; (c) AE450; (d) AF450。圖中雙箭號所指方向為拉伸方向。初始應變速率為2.08×10-3s-1。.......................................................................................................103 圖5-19 2218合金擠型材與攪拌材400℃及450℃遠離破斷區域之拉伸試片表面SEM照片: (a) AE400; (b) AF400; (c) AE450; (d) AF450。圖中雙箭號所指方向為拉伸方向。初始應變速率為2.08×10-3s-1。................................................104 圖5-20 (a) 2218合金攪拌材與擠型材拉伸降伏強度隨不同溫度及應變速率之變化; (b)以ε = 0.2之流應力所計算兩材料於350℃、400℃及450℃之m值。........105 圖5-21 固定拉伸溫度,伸長量隨應變速率之變化: (a) 350℃; (b) 400℃; (c) 450℃。................................................................................................................106 圖5-22 2218合金經固溶化處理(510℃持溫一小時水淬)後的自然時效硬度曲線。......................................................................................................................107 圖5-23 (a)擠型材與攪拌材經300℃持溫十小時熱處理之ND面結晶方位XRD分析結果。(b)及(c)為部分角度範圍分析結果: (b) 20°~27°; (c) 41°~49°。.........108 圖5-24 峰值時效狀態的2218合金其拉伸降伏強度隨測試溫度的變化[54]。……..109 圖5-25 2218合金攪拌材AF450晶粒內部與絲狀組織觀察及EDS分析結果。(a)及(b):晶粒內部(Spectrum 1)及絲狀組織(Spectrum 2) EDS分析取樣區域; (c)及(d):晶粒內部及絲狀組織EDS分析結果。圖中雙箭號所指方向為拉伸方向。....110 圖5-26 2218合金攪拌材AF500拉伸破斷面組織觀察及EDS分析結果: (a)破斷面組織; (b)晶粒組織EDS分析結果,分析位置為圖(a)之○1; (c)絲狀組織EDS分析結果,分析位置為圖(a)之○2。....................................................................111 圖5-27 固定拉伸溫度,AF350、AF400及AF450之伸長量隨應變速率之變化: (a) 350℃; (b) 400℃; (c) 450℃。(d) AF350之部分拉伸曲線,不同應變速率之縱軸座標尺度皆相同。......................................................................................112 圖5-28 攪拌材的延性與變形機構(晶界滑移、動態再結晶及熔融)隨應變速率的變化關係圖。..............................................................................................................113

    [1] "摩擦攪拌接合",產報出版株式會社, Tokyo, Japan, (2006).
    [2] Z.Y. Ma, Friction stir processing technology: a review, Metall. Mater. Trans. A, 39A (2008), pp. 642-658.
    [3] R. Nandan, T. DebRoy, H.K.D.H. Bhadeshia, Recent advances in friction-stir welding - Process, weldment structure and properties, Prog. Mater. Sci., 53 (2008), pp. 980-1023.
    [4] M.A. Attallah, C.L. Davis, M. Strangwood, Microstructure-microhardness relationships in friction stir welded AA5251, J. Mater. Sci., 42 (2007), pp. 7299-7306.
    [5] K. Chen, W. Gan, K. Okamoto, K. Chung, R.H. Wagoner, The mechanism of grain coarsening in friction-stir-welded AA5083 after heat treatment, Metallurgical and Materials Transactions A, (2010), pp. 1-20.
    [6] A.H. Feng, B.L. Xiao, Z.Y. Ma, Grain boundary misorientation and texture development in friction stir welded SiCp/Al-Cu-Mg composite, Mater. Sci. Eng. A 497 (2008), pp. 515-518.
    [7] R.W. Fonda, K.E. Knipling, J.F. Bingert, Microstructural evolution ahead of the tool in aluminum friction stir welds, Scripta Mater., 58 (2007), pp. 343-348.
    [8] K.V. Jata, K.K. Sankaran, J.J. Ruschau, Friction-stir welding effects on microstructure and fatigue of aluminum alloy 7050-T7451, Metall. Mater. Trans. A, 31A (2000), pp. 2181-2192.
    [9] L.B. Johannes, R.S. Mishra, Multiple passes of friction stir processing for the creation of superplastic 7075 aluminum, Mater. Sci. Eng. A 464 (2007), pp. 255-260.
    [10] K.N. Krishnan, The effect of post weld heat treatment on the properties of 6061 friction stir welded joints, J. Mater. Sci., 37 (2002), pp. 473-480.
    [11] N.T. Kumbhar, S.K. Sahoo, I. Samajdar, G.K. Dey, K. Bhanumurthy, Microstructure and microtextural studies of friction stir welded aluminium alloy 5052, Mater. Des., 32 (2010), pp. 1657-1666.
    [12] H. Liu, M. Maeda, H. Fujii, K. Nogi, Tensile properties and fracture locations of friction-stir welded joints of 1050-H24 aluminum alloy, J. Mater. Sci. Lett., 22 (2003), pp. 41-43.
    [13] Y.S. Sato, S.H.C. Park, H. Kokawa, Microstructural factors governing hardness in friction-stir welds of solid-solution-hardened Al alloys, Metall. Mater. Trans. A, 32A (2001), pp. 3033-3042.
    [14] J.Q. Su, T.W. Nelson, C.J. Sterling, Microstructure evolution during FSW/FSP of high strength aluminum alloys, Mater. Sci. Eng. A 405 (2005), pp. 277-286.
    [15] G. Bhargava, W. Yuan, S.S. Webb, R.S. Mishra, Influence of texture on mechanical behavior of friction-stir-processed magnesium alloy, Metall. Mater. Trans. A, 41A (2010), pp. 13-17.
    [16] W.B. Lee, S.B. Jung, The joint properties of copper by friction stir welding, Mater. Lett., 58 (2004), pp. 1041-1046.
    [17] Y. Zhang, Y.S. Sato, H. Kokawa, S.H.C. Park, S. Hirano, Microstructural characteristics and mechanical properties of Ti-6Al-4V friction stir welds, Mater. Sci. Eng. A 485 (2008), pp. 448-455.
    [18] Y.S. Sato, H. Yamanoi, H. Kokawa, T. Furuhara, Microstructural evolution of ultrahigh carbon steel during friction stir welding, Scripta Mater., 57 (2007), pp. 557-560.
    [19] J.H. Cho, P.R. Dawson, Investigation on texture evolution during friction stir welding of stainless steel, Metall. Mater. Trans. A, 37A (2006), pp. 1147-1164.
    [20] Y.S. Sato, Y. Kurihara, S.H.C. Park, H. Kokawa, N. Tsuji, Friction stir welding of ultrafine grained Al alloy 1100 produced by accumulative roll-bonding, Scripta Mater., 50 (2004), pp. 57-60.
    [21] Y.S. Sato, M. Urata, H. Kokawa, K. Ikeda, Hall-Petch relationship in friction stir welds of equal channel angular-pressed aluminium alloys, Mater. Sci. Eng. A 354 (2003), pp. 298-305.
    [22] L.B. Johannes, I. Charit, R.S. Mishra, R. Verma, Enhanced superplasticity through friction stir processing in continuous cast AA5083 aluminum, Mater. Sci. Eng. A 464 (2007), pp. 351-357.
    [23] Z.Y. Ma, R.S. Mishra, M.W. Mahoney, Superplasticity in cast A356 induced via friction stir processing, Scripta Mater., 50 (2004), pp. 931-935.
    [24] B. Yang, J. Yan, M.A. Sutton, A.P. Reynolds, Banded microstructure in AA2024-T351 and AA2524-T351 aluminum friction stir welds: Part I. Metallurgical studies, Mater. Sci. Eng. A 364 (2004), pp. 55-65.
    [25] K.E. Knipling, R.W. Fonda, Texture development in the stir zone of near-a titanium friction stir welds, Scripta Mater., 60 (2009), pp. 1097-1100.
    [26] W.P. Xu, X. Li, L.M. Ke, Analysis of the grain orientation and texture of friction stir welded magnesium alloy, Mater. Sci. Forum, 620-622 (2009), pp. 97-100.
    [27] D.P. Field, T.W. Nelson, Y. Hovanski, K.V. Jata, Heterogeneity of crystallographic texture in friction stir welds of aluminum, Metall. Mater. Trans. A, 32A (2001), pp. 2869-2877.
    [28] S.H.C. Park, Y.S. Sato, H. Kokawa, Basal plane texture and flow pattern in friction stir weld of a magnesium alloy, Metall. Mater. Trans. A, 34A (2003), pp. 987-994.
    [29] R. Kapoor, N. Kumar, R.S. Mishra, C.S. Huskamp, K.K. Sankaran, Influence of fraction of high angle boundaries on the mechanical behavior of an ultrafine grained Al-Mg alloy, Mater. Sci. Eng. A 527 (2010), pp. 5246-5254.
    [30] C. Genevois, D. Fabrègue, A. Deschamps, W.J. Poole, On the coupling between precipitation and plastic deformation in relation with friction stir welding of AA2024 T3 aluminium alloy, Mater. Sci. Eng. A 441 (2006), pp. 39-48.
    [31] C.A.W. Olea, L. Roldo, J.F. dos Santos, T.R. Strohaecker, A sub-structural analysis of friction stir welded joints in an AA6056 Al-alloy in T4 and T6 temper conditions, Mater. Sci. Eng. A 454-455 (2007), pp. 52-62.
    [32] M.M. Attallah, H.G. Salem, Friction stir welding parameters: a tool for controlling abnormal grain growth during subsequent heat treatment, Mater. Sci. Eng. A 391 (2005), pp. 51-59.
    [33] M.A. Sutton, B. Yang, A.P. Reynolds, J. Yan, Banded microstructure in 2024-T351 and 2524-T351 aluminum friction stir welds: Part II. Mechanical characterization, Mater. Sci. Eng. A 364 (2004), pp. 66-74.
    [34] R. Markandeya, S. Nagarjuna, D.V.V. Satyanarayana, D.S. Sarma, Correlation of structure and flow behaviour of Cu-Ti-Cd alloys, Mater. Sci. Eng. A 428 (2006), pp. 233-243.
    [35] I. Mejía, C. Maldonado, J.A. Benito, J. Jorba, A. Roca, Determination of the work hardening exponent by the hollomon and differential crussard-jaoul analyses of cold drawn ferrite-pearlite steels, Mater. Sci. Forum, 509 (2006), pp. 37-42.
    [36] S. Nagarjuna, B. Gopalakrishna, M. Srinivas, On the strain hardening exponent of Cu-26Ni-17Zn alloy, Mater. Sci. Eng. A 429 (2006), pp. 169-172.
    [37] K.G. Samuel, Limitations of Hollomon and Ludwigson stress-strain relations in assessing the strain hardening parameters, J. Phys. D, 39 (2006), pp. 203-212.
    [38] H.J. Kleemola, M.A. Nieminen, On the strain-hardening parameters of metals, Metall. Mater. Trans. B, 5 (1974), pp. 1863-1866.
    [39] W.B. Morrison, Disscussion of "On the double-n behavior of iron", Metall. Mater. Trans. B, 2 (1971), pp. 2948-2949.
    [40] W. Truszkowski, On physical meaning of the stress-strain relationship parameters in high strength polycristalline metals, Mem. Sci. Rev. Metall., 77 (1980), pp. 193-201.
    [41] G.E. Dieter, "Mechanical Metallurgy", McGraw-Hill, New York, USA, (1961).
    [42] Y.S. Sato, H. Kokawa, M. Enomoto, S. Jogan, T. Hashimoto, Precipitation sequence in friction stir weld of 6063 aluminum during aging, Metall. Mater. Trans. A, 30A (1999), pp. 3125-3130.
    [43] Y.S. Sato, M. Urata, H. Kokawa, Parameters controlling microstructure and hardness during friction-stir welding of precipitation-hardenable aluminum alloy 6063, Metall. Mater. Trans. A, 33A (2002), pp. 625-635.
    [44] M. Jayaraman, R. Sivasubramanian, V. Balasubramanian, Establishing relationship between the base metal properties and friction stir welding process parameters of cast aluminium alloys, Mater. Des., 31 (2010), pp. 4567-4576.
    [45] I. Charit, R.S. Mishra, High strain rate superplasticity in a commercial 2024 Al alloy via friction stir processing, Mater. Sci. Eng. A 359 (2003), pp. 290-296.
    [46] R.S. Mishra, Processing commercial aluminum alloys for high strain rate superplasticity, JOM, 53 (2001), pp. 23-26.
    [47] 黃國聰,『鋁-鎂合金拉伸與振動破壞特性之摩擦攪拌效應研究』,國立成功大學材料科學及工程學系博士論文,第七章,(民國97年)。
    [48] Y.A. Bagaryatskii, Mechanism of artificial aging of Al-Cu-Mg alloy, Dokl. Akad. (SSSR) 87 (1952), pp. 397-400.
    [49] L.F. Mondolfo, "Aluminum Alloys : Structure and Properties", Butterworths, London and Boston, (1976).
    [50] M.E. Drits, E.S. Kadaner, E.M. Padezhnova, L.L. Rokhlin, Z.A. Sviderskaya, N.I. Turkina, "Phase Diagrams of Aluminum- and Magnesium-Based Systems", Moscow, Russia, (1977).
    [51] H.W.L. Phillips, "Annotated Equilibrium Diagrams of Some Aluminum Alloy Systems", vol. 25, The Institute of Metals, London, UK, (1959).
    [52] J.E. Hatch, "Aluminum Properties and Physical Metallurgicay", ASM, Metals Park, Ohio, USA, (1984).
    [53] N.A. Belov, D.G. Eskin, A.A. Aksenov, "Multicomponent Phase Diagrams: Applications for Commercial Aluminum Alloys", Elsevier Ltd., Oxford, UK, (2005).
    [54] "Properties of Wrought Aluminums and Aluminum Alloys", vol. 2, ASM, USA, (1990).
    [55] E.O. Hall, The deformation and ageing of mild steel: III discussion of results, Proc. Phys. Soc. B, 64 (1951), pp. 747-753.
    [56] N.J. Petch, The cleavage strength of polycrystals, J. Iron Steel Inst., 173 (1953), p. 25.
    [57] Y.S. Sato, H. Kokawa, K. Ikeda, M. Enomoto, T. Hashimoto, S. Jogan, Microtexture in the friction-stir weld of an aluminum alloy, Metall. Mater. Trans. A, 32A (2001), pp. 941-948.
    [58] Y.S. Sato, H. Kokawa, Distribution of tensile property and microstructure in friction stir weld of 6063 aluminum, Metall. Mater. Trans. A, 32A (2001), pp. 3023-3031.
    [59] J.C. McClure, W. Tang, X. Guo, L.E. Murr, A. Nunes, Heat input and temperature distribution in friction stir welding, J. Mater. Process. Manuf. Sci., 7 (1998), pp. 163-172.
    [60] J.Q. Su, T.W. Nelson, R.S. Mishra, M. Mahoney, Microstructural investigation of friction stir welded 7050-T651 aluminium, Acta Mater., 51 (2003), pp. 713-729.
    [61] K. Elangovan, V. Balasubramanian, Influences of post-weld heat treatment on tensile properties of friction stir-welded AA6061 aluminum alloy joints, Mater. Charact., 59 (2008), pp. 1168-1177.
    [62] Z.Y. Ma, R.S. Mishra, M.W. Mahoney, Superplastic deformation behavior of friction stir processed 7075Al alloy, Acta Mater., 50 (2002), pp. 4419-4430.
    [63] T. Andrews, W.T. Roberts, P.M.B. Rodrigues, D.V. Wilson, Warm forming of Al alloy sheet, in: Proceedings of the Aluminum Technology’86, Institute of Metals, London, (1986), pp. 581–588.
    [64] J.H. Hollomon, Tensile deformation, Trans. AIME, 162 (1945), pp. 268-290.
    [65] P. Ludwik, "Elemente der Technologischen Mechanik", Springer Verlag, Germany, (1909).
    [66] H.W. Swift, Plastic instability under plane stress, J. Mech. Phys. Solid, 1 (1952), pp. 1-18.
    [67] E. Voce, The relationship between stress and strain for homogeneous deformation, J. Inst. Met., 74 (1948), pp. 537-562.
    [68] E. Martín, A. Forn, R. Nogué, Strain hardening behaviour and temperature effect on Al-2124/SiCp, J. Mater. Process. Technol., 143-144 (2003), pp. 1-4.
    [69] C.H. Caceres, T. Din, A.K.M.B. Rashid, J. Campbell, Effect of aging on quality index of an Al–Cu casting alloy, Mater. Sci. Technol., 15 (1999), pp. 711-716.
    [70] R. Reed-Hill, W. Cribb, S. Monteiro, Concerning the analysis of tensile stress-strain data using log dσ/dεp versus log σ diagrams, Metall. Mater. Trans B, 4 (1973), pp. 2665-2667.
    [71] D.C. Ludwigson, Modified stress-strain relation for fcc metals and alloys, Metall. Mater. Trans. B, 2 (1971), pp. 2825-2828.
    [72] G.I. Taylor, "Analysis of plastic strain in a cubic crystal", in: Stephen Timoshenko 60th Anniversary Volume, Macmillan, New York, USA, (1938), pp. 218-224.
    [73] G.Y. Chin, W.L. Mammel, Computer solutions of the Taylor analysis for axisymmetric flow, Trans. Metall. Soc. AIME,, 239 (1967), pp. 1400-1405.
    [74] G.I. Taylor, Plastic strain in metals, J. Inst. Met., 62 (1938), pp. 307-324.
    [75] M.F. Ashby, D.H.R. Jones, "Engineering Materials: An Introduction to Their Properties and Application", Pergamon Press, Oxford, UK, (1980).
    [76] J.W. Wyrzykowski, M.W. Grabski, Hall-Petch relation in aluminum and its dependence on the grain boundary structure, Philos. Mag. A, 53 (1986), pp. 505-520.
    [77] T.N. Baker, "Determination of the Friction Stress from Microstructural Measurements", in: T.N. Baker (Ed.), "Yield, Flow and Fracture of Polycrystals", Applied Science Publishers Ltd., Barking, England, (1983), pp. 235-273.
    [78] R.W. Armstrong, "The Yield and Flow Stress Dependence on Polycrystal Grain Size", in: T.N. Baker (Ed.), "Yield, Flow and Fracture of Polycrystals", Applied Science Publishers Ltd., Barking, England, (1983), pp. 1-31.
    [79] H. Hasegawa, S. Komura, A. Utsunomiya, Z. Horita, M. Furukawa, M. Nemoto, T.G. Langdon, Thermal stability of ultrafine-grained aluminum in the presence of Mg and Zr additions, Mater. Sci. Eng. A 265 (1999), pp. 188-196.
    [80] N. Hansen, Effect of grain size and strain on the tensile flow stress of aluminum at room temperature, Acta Metall., 25 (1977), pp. 863-869.
    [81] H. Fujita, T. Tabata, The effect of grain size and deformation substructure on mechanical properties of polycrystalline aluminum, Acta Mater., 21 (1973), pp. 355-365.
    [82] C. Kwan, Z. Wang, S.B. Kang, Mechanical behavior and microstructural evolution upon annealing of the accumulative roll-bonding (ARB) processed Al alloy 1100, Mater. Sci. Eng. A 480 (2008), pp. 148-159.
    [83] J.W. Edington, K.N. Melton, C.P. Cutler, Superplasticity, Prog. Mater. Sci., 21 (1976), pp. 61-158.
    [84] J.P. Poirier, "Creep of Crystals, High-Temperature Deformation Process in Metals, Ceramics and Minerals", Press Syndicate of the University of Camberidge, Cambridge, UK, (1985).
    [85] T.G. Nieh, J. Wadsworth, O.D. Sherby, "Superplasticity in Metals and Ceramics", Press Syndicate of the University of Camberidge, Cambridge, UK, (1997).
    [86] A.K. Mukherjee, J.E. Bird, J.E. Dorn, Experimental correlations for high-temperature creep, Trans. A.S.M., 62 (1969), pp. 155-179.
    [87] T.R. Bieler, A.K. Mukherjee, The high strain rate superplastic deformation mechanisms of mechanically alloyed aluminum IN90211, Mater. Sci. Eng. A 128 (1990), pp. 171-182.
    [88] T. Chen, J. Huang, Observations of grain-boundary sliding and surface topography in an 8090 al alloy after uniaxial and biaxial superplastic deformation, Metall. Mater. Trans. A, 30A (1999), pp. 53-64.
    [89] R.S. Mishra, T.R. Bieler, A.K. Mukherjee, Superplasticity in powder metallurgy aluminum alloys and composites, Acta Metall. Mater., 43 (1995), pp. 877-891.
    [90] R.C. Gifkins, Grain-boundary sliding and its accommodation during creep and superplasticity, Metall. Mater. Trans. A, 7A (1976), pp. 1225-1232.
    [91] R. Raj, M.F. Ashby, On grain boundary sliding and diffusional creep, Metall. Mater. Trans. B, 2 (1971), pp. 1113-1127.
    [92] S.S. Bhattacharya, K.A. Padmanabhan, On the apparent activation energies for superplastic flow, Mater. Sci. Forum, 243-245 (1997), pp. 65-70.
    [93] W.J. Kim, High-strain-rate superplastic deformation behavior of a powder metallurgy-processed 2124 Al alloy, J. Mater. Sci., 35 (2000), pp. 2779-2784.
    [94] M.F. Ashby, R.A. Verrall, Diffusion-accommodated flow and superplasticity, Acta Metall., 21 (1973), pp. 149-163.
    [95] Z.Y. Ma, F.C. Liu, R.S. Mishra, Superplastic deformation mechanism of an ultrafine-grained aluminum alloy produced by friction stir processing, Acta Mater., 58 (2010), pp. 4693-4704.
    [96] Z.Y. Ma, R.S. Mishra, M.W. Mahoney, R. Grimes, Effect of friction stir processing on the kinetics of superplastic deformation in an Al-Mg-Zr alloy, Metall. Mater. Trans. A, 36A (2005), pp. 1447-1458.
    [97] F.J. Humphreys, M. Hatherly, "Recrystallization and Related Annealing Phenomenon", Elsevier Science Ltd., Oxford, UK, (1995).
    [98] H.J. McQueen, C.A.C. Imbert, Dynamic recrystallization: plasticity enhancing structural development, J. Alloy. Compd., 378 (2004), pp. 35-43.
    [99] D. Rittel, P. Landau, A. Venkert, Dynamic recrystallization as a potential cause for adiabatic shear failure Phys. Rev. Lett., 101 (2008), pp. 1-4.
    [100] R.W.K. Honeycombe, "The Plastic Deformation of Metals", 2 ed., Edward Arnold, London, UK, (1984).
    [101] K.V. Jata, S.L. Semiatin, Continuous dynamic recrystallization during friction stir welding of high strength aluminum alloys, Scripta Mater., 43 (2000), pp. 743-749.
    [102] K.N. Krishnan, On the formation of onion rings in friction stir welds, Mater. Sci. Eng. A 327 (2002), pp. 246-251.
    [103] C.S. Paglia, K.V. Jata, R.G. Buchheit, The influence of artificial aging on the microstructure, mechanical properties, corrosion, and environmental cracking susceptibility of a 7075 friction-stir-weld, Mater. Corros., 58 (2007), pp. 737-750.
    [104] U.F.H.R. Suhuddin, S. Mironov, Y.S. Sato, H. Kokawa, Grain structure and texture evolution during friction stir welding of thin 6016 aluminum alloy sheets, Mater. Sci. Eng. A 527 (2010), pp. 1962-1969.
    [105] O. Engler, V. Randle, "Introduction to Texture Analysis: Macrotexture, Microtexture, and Orientation Mapping", 2 ed., CRC Press, Taylor and Francis group, Boca Raton, FL, USA, (2010).
    [106] J.F.W. Bishop, R. Hill, A theory of the plastic distortion of a polycrystalline aggregate under combimed stresses, Phil. Mag., 42 (1951), pp. 414-427.
    [107] J.F.W. Bishop, R. Hill, A theoretical derivation of the plastic properties of a polycrytalline face-centered metal, Phil. Mag., 42 (1951), pp. 1298-1307.
    [108] B. Bacroix, T. Chauveau, J.F. Duarte, A. Barata da Rocha, J. Gracio, The respective influences of grain size and texture on the formability of a 1050 aluminium alloy, Int. J. Eng. Sci., 37 (1999), pp. 509-526.
    [109] N. Saito, I. Shigematsu, T. Komaya, T. Tamaki, G. Yamauchi, M. Nakamura, Grain refinement of 1050 aluminum alloy by friction stir processing, J. Mater. Sci. Lett., 20 (2001), pp. 1913-1915.
    [110] Y.J. Kwon, I.S. I., N. Saito, Mechanical property improvements in aluminum alloy through grain refinement using friction stir process, Mater. Trans., 45 (2004), pp. 2304-2311.
    [111] C. Badini, F. Marino, E. Verné, Calorimetric study on precipitation path in 2024 alloy and its SiC composite, Mater. Sci. Eng. A, 191 (1995), pp. 185-191.
    [112] I.N.A. Oguocha, S. Yannacopoulos, A calorimetric study of S′ and θ′ precipitation in Al2O3 particle-reinforced AA2618, J. Mater. Sci., 34 (1999), pp. 3335-3340.
    [113] M. Nganbe, A. Fahim, Equicohesion: intermediate temperature transition of the grain size effect in the nickel-base superalloy PM 3030, J. Mater. Eng. Perform., 19 (2010), pp. 395-400.
    [114] D.L. Holt, W.A. Backofen, Superplasticity in the Al-Cu eutectic alloy, ASM Trans Quart., 59 (1966), pp. 755-768.
    [115] M. Eddahbi, F. Carreño, O.A. Ruano, Microstructural changes during high temperature deformation of an Al-Li(8090) alloy, Scripta Mater., 38 (1998), pp. 1717-1723.
    [116] K. Higashi, M. Uno, S. Matsuda, T. Ito, S. Tanimura, "Dynamic Recrystallization of Superplastic Aluminium Alloy", presented at the Recrystallization '90, Wollongong, Australia, (1990).
    [117] C. Herring, Diffusional viscosity of a pollycrystalline solid, J. Appl. Phys., 21 (1950), pp. 437-445.
    [118] F.R.N. Nabarro, Steady state diffusional creep, Philos. Mag. , 16 (1967), pp. 231-237.
    [119] V.P. Poida, V.V. Bryukhovetskii, A.V. Poida, R.I. Kuznetsova, V.F. Klepikov, D.L. Voronov, Morphology and mechanisms of the formation of fiber structures upon high-temperature superplastic deformation of aluminum alloys, Phys. Met. Metallogr. (USSR), 103 (2007), pp. 414-423.
    [120] M.G. Zelin, On micro-superplasticity, Acta Mater., 45 (1997), pp. 3533-3542.
    [121] C. Lea, C. Molinari, Magnesium diffusion, surface segregation and oxidation in AI-Mg alloys, J. Mater. Sci., 19 (1984), pp. 2336-2352.
    [122] W.B. Alexander, L.M. Slifkin, Diffusion of solutes in aluminum and dilute aluminum alloys, Phys. Rev. B, 1 (1970), pp. 3274-3282.
    [123] N.L. Peterson, S.J. Rothman, Impurity diffusion in aluminum, Phys. Rev. B, 1 (1970), pp. 3264-3273.
    [124] W.J.D. Shaw, Microsuperplastic behavior, Mater. Lett., 4 (1985), pp. 1-4.
    [125] Y. Takayama, T. Tozawa, H. Kato, Superplasticity and thickness of liquid phase in the vicinity of solidus temperature in a 7475 aluminum alloy, Acta Mater., 47 (1999), pp. 1263-1270.
    [126] M. Mabuchi, H.G. Jeong, K. Hiraga, K. Higashi, Partial melting at interfaces and graln boundaries for high-strain-rate superplastic materials, Interface Sci., 4 (1997), pp. 357-368.
    [127] K. Higashi, T.G. Nieh, J. Wadsworth, Effect of temperature on the mechanical properties of mechanically-alloyed materials at high strain rates, Acta Metall. Mater., 43 (1995), pp. 3275-3282.
    [128] H.G. Jeong, K. Hiraga, M. Mabuchi, K. Higashi, The role of partial melting on superplasticity of Si3N4p/Al-Cu-Mg composite, Scripta Mater., 42 (2000), pp. 479-485.
    [129] R. Kaibyshev, F. Musin, D. Gromov, T.G. Nieh, D.R. Lesuer, Effect of liquid phase on superplastic behavior of a modified 6061 aluminum alloy, Scripta Mater., 47 (2002), pp. 569-575.
    [130] J. Koike, M. Mabuchi, K. Higashi, In situ observation of partial melting in superplastic aluminum alloy composites at high temperatures, Acta Metall. Mater., 43 (1995), pp. 199-206.
    [131] I. Charit, R.S. Mishra, Low temperature superplasticity in a friction-stir -processed ultrafine grained Al-Zn-Mg-Sc alloy, Acta Mater., 53 (2005), pp. 4211-4223.

    下載圖示 校內:2013-09-06公開
    校外:2014-09-06公開
    QR CODE