| 研究生: |
陳思達 Chen, Ssu-Ta |
|---|---|
| 論文名稱: |
純鋁及鋁銅合金拉伸性質之摩擦攪拌效應及Hollomon方程式適用性檢討 Influence of friction stir process and applicability of Hollomon equation on the tensile properties of pure aluminum and Al-Cu aluminum alloys |
| 指導教授: |
呂傳盛
Lui, Truan-Sheng 陳立輝 Chen, Li-Hui |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 125 |
| 中文關鍵詞: | 摩擦攪拌製程 、應變硬化指數 、晶界滑移 、原子擴散 |
| 外文關鍵詞: | friction stir process, strain hardening exponent, grain boundary sliding, diffusion of atoms |
| 相關次數: | 點閱:144 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Al-Cu系2218合金於摩擦攪拌製程前後有明顯的組織差異,而組織特徵是影響拉伸性質的重要因素,故有必要探討2218合金於不同測試條件拉伸性質的摩擦攪拌效應。為避免時效、第二相顆粒及合金元素的影響,攪拌材室溫機械性質的結晶方位效應以純鋁1050合金進行。此外,雖然Hollomon方程式之應變硬化指數理論上能視為材料均勻變形能力,但使用時仍需注意該方程式是否能充分地描述實驗結果,故本研究對以Hollomon方程式描述實驗結果的適用性進行討論。
假設應變速率對室溫拉伸流應力的貢獻可忽略,則僅少數實驗材料的拉伸行為能適用Hollomon方程式。Hollomon方程式之應變硬化指數(n)無法準確評估實驗材料均勻塑性應變能力。降伏強度負偏差(計算值減實驗值)與材料的降伏強度及加工硬化率有關,負偏差的程度隨降伏強度上升或較低之變形初期加工硬化率而趨於明顯,而變形初期範圍以外較高的加工硬化率亦造成較明顯之降伏強度負偏差。
1050合金退火材經摩擦攪拌製程後可獲得細化的晶粒與提升其拉伸強度與硬度。1050合金攪拌區室溫之拉伸流應力與硬度值非等向性。垂直攪拌進給方向拉伸可得到較平行方向高的拉伸流應力,此外攪拌區內各區域TD面平均Taylor係數與對應之平均微硬度值具正相關性。
以初始應變速率2.08×10-3s-1對2218合金攪拌材進行室溫至500℃的拉伸測試並與攪拌前的擠型材實驗數據互相比對。結果顯示前者於室溫至300℃範圍內具較高的拉伸降伏強度,此因攪拌產生的高入熱量導致顯著的固溶及後續自然時效所致;另一方面,攪拌材於350~450℃的拉伸延性隨溫度上升而顯著地增加且優於擠型材,變形機構為拉伸過程引發的動態再結晶(DRX)及晶界滑移(GBS)。攪拌材與擠型材於450~500℃發生熔融,導致兩材料於此溫區的拉伸延性略呈持平,熔融主要是由Mg原子及部分Cu原子的擴散至晶界而造成該區域熔點下降所致。攪拌材變形溫度高於一臨界溫度時,需同時考慮DRX、GBS與熔融對拉伸延性的影響,而以上變形機構皆與應變速率有關,因此攪拌材的最佳高溫拉伸延性發生於一合適的應變速率。
Microstructural feature is an important factor in tensile properties. The influence of microstructural characteristics of friction stir processed (FSPed) Al-Cu 2218 alloys on tensile properties at elevated temperatures was examined in this study. To rule out effects of aning and second phase particles as well as alloy elements, FSPed 1050 aluminum alloys were utilized to clarify textural factors in room temperature tensile properties and hardness of SZ. In addition, applicability of Hollomon equation was also considered to judge whether it is proper to describe tensile behaviors in this study.
Under an assumption that the contribution of strain rate hardening for flow stress at room temperature can be ignored, and then Hollomon equation is invalid for most materials in terms of strain hardening exponent (n) and tensile yield stress. The capability of true plastic uniform strain can’t be predicted appropriately by the n calculated from Hollomon equation. On the other hand, the negative deviation of yield stress (calculated value deducts experimental one) relates either to yield stress or work hardening rate. A pronounced negative deviation correlates with higher yield stress and lower work hardening rate in preliminary strain, as well as higher work hardening rate outside the preliminary strain range.
Compared with 1050 alloy annealed plates, both refined grains and promoted tensile strength can be achieved by FSP. Room temperature tensile flow stress and hardness of stir zone (SZ) of FSPed 1050 alloys are anisotropic. A higher tensile flow stress can be obtained as tested perpendicularly to processing direction rather than parallel. There is a positive correlation between TD planes average microhardness and corresponding average Taylor factors in different regions within SZ.
Tensile tests of as friction stir processed (AF) and as extruded (AE) samples from room temperature to 500℃ were carried out at an initial strain rate of 2.08×10-3s-1. Compared with AE samples, AF ones possess higher tensile yield strength between room temperature and 300℃. This superior strength of AF samples is ascribed to a more pronounced solid solution and subsequent natural aging than that of AE. Within 350~450℃, AF samples have both higher and more enhanced tensile ductility than AE ones. Tensile deformation induced dynamic recrystallization (DRX) and grain boundary sliding (GBS) are responsible for this improved ductility. However, ductility of AF and AE samples no longer increase and keep almost constant in 450~500℃, and this is due to the liquation which is resulted mainly from diffusion of Mg atoms and minor from Cu atoms. Above a critical temperature, it is rational to consider effects of DRX, GBS and liquation on tensile ductility of AF samples. DRX, GBS and diffusion of solute atoms are all strain rate dependent; consequently, the optimum tensile ductility of AF samples at high temperatures can be achieve at a moderate strain rate.
[1] "摩擦攪拌接合",產報出版株式會社, Tokyo, Japan, (2006).
[2] Z.Y. Ma, Friction stir processing technology: a review, Metall. Mater. Trans. A, 39A (2008), pp. 642-658.
[3] R. Nandan, T. DebRoy, H.K.D.H. Bhadeshia, Recent advances in friction-stir welding - Process, weldment structure and properties, Prog. Mater. Sci., 53 (2008), pp. 980-1023.
[4] M.A. Attallah, C.L. Davis, M. Strangwood, Microstructure-microhardness relationships in friction stir welded AA5251, J. Mater. Sci., 42 (2007), pp. 7299-7306.
[5] K. Chen, W. Gan, K. Okamoto, K. Chung, R.H. Wagoner, The mechanism of grain coarsening in friction-stir-welded AA5083 after heat treatment, Metallurgical and Materials Transactions A, (2010), pp. 1-20.
[6] A.H. Feng, B.L. Xiao, Z.Y. Ma, Grain boundary misorientation and texture development in friction stir welded SiCp/Al-Cu-Mg composite, Mater. Sci. Eng. A 497 (2008), pp. 515-518.
[7] R.W. Fonda, K.E. Knipling, J.F. Bingert, Microstructural evolution ahead of the tool in aluminum friction stir welds, Scripta Mater., 58 (2007), pp. 343-348.
[8] K.V. Jata, K.K. Sankaran, J.J. Ruschau, Friction-stir welding effects on microstructure and fatigue of aluminum alloy 7050-T7451, Metall. Mater. Trans. A, 31A (2000), pp. 2181-2192.
[9] L.B. Johannes, R.S. Mishra, Multiple passes of friction stir processing for the creation of superplastic 7075 aluminum, Mater. Sci. Eng. A 464 (2007), pp. 255-260.
[10] K.N. Krishnan, The effect of post weld heat treatment on the properties of 6061 friction stir welded joints, J. Mater. Sci., 37 (2002), pp. 473-480.
[11] N.T. Kumbhar, S.K. Sahoo, I. Samajdar, G.K. Dey, K. Bhanumurthy, Microstructure and microtextural studies of friction stir welded aluminium alloy 5052, Mater. Des., 32 (2010), pp. 1657-1666.
[12] H. Liu, M. Maeda, H. Fujii, K. Nogi, Tensile properties and fracture locations of friction-stir welded joints of 1050-H24 aluminum alloy, J. Mater. Sci. Lett., 22 (2003), pp. 41-43.
[13] Y.S. Sato, S.H.C. Park, H. Kokawa, Microstructural factors governing hardness in friction-stir welds of solid-solution-hardened Al alloys, Metall. Mater. Trans. A, 32A (2001), pp. 3033-3042.
[14] J.Q. Su, T.W. Nelson, C.J. Sterling, Microstructure evolution during FSW/FSP of high strength aluminum alloys, Mater. Sci. Eng. A 405 (2005), pp. 277-286.
[15] G. Bhargava, W. Yuan, S.S. Webb, R.S. Mishra, Influence of texture on mechanical behavior of friction-stir-processed magnesium alloy, Metall. Mater. Trans. A, 41A (2010), pp. 13-17.
[16] W.B. Lee, S.B. Jung, The joint properties of copper by friction stir welding, Mater. Lett., 58 (2004), pp. 1041-1046.
[17] Y. Zhang, Y.S. Sato, H. Kokawa, S.H.C. Park, S. Hirano, Microstructural characteristics and mechanical properties of Ti-6Al-4V friction stir welds, Mater. Sci. Eng. A 485 (2008), pp. 448-455.
[18] Y.S. Sato, H. Yamanoi, H. Kokawa, T. Furuhara, Microstructural evolution of ultrahigh carbon steel during friction stir welding, Scripta Mater., 57 (2007), pp. 557-560.
[19] J.H. Cho, P.R. Dawson, Investigation on texture evolution during friction stir welding of stainless steel, Metall. Mater. Trans. A, 37A (2006), pp. 1147-1164.
[20] Y.S. Sato, Y. Kurihara, S.H.C. Park, H. Kokawa, N. Tsuji, Friction stir welding of ultrafine grained Al alloy 1100 produced by accumulative roll-bonding, Scripta Mater., 50 (2004), pp. 57-60.
[21] Y.S. Sato, M. Urata, H. Kokawa, K. Ikeda, Hall-Petch relationship in friction stir welds of equal channel angular-pressed aluminium alloys, Mater. Sci. Eng. A 354 (2003), pp. 298-305.
[22] L.B. Johannes, I. Charit, R.S. Mishra, R. Verma, Enhanced superplasticity through friction stir processing in continuous cast AA5083 aluminum, Mater. Sci. Eng. A 464 (2007), pp. 351-357.
[23] Z.Y. Ma, R.S. Mishra, M.W. Mahoney, Superplasticity in cast A356 induced via friction stir processing, Scripta Mater., 50 (2004), pp. 931-935.
[24] B. Yang, J. Yan, M.A. Sutton, A.P. Reynolds, Banded microstructure in AA2024-T351 and AA2524-T351 aluminum friction stir welds: Part I. Metallurgical studies, Mater. Sci. Eng. A 364 (2004), pp. 55-65.
[25] K.E. Knipling, R.W. Fonda, Texture development in the stir zone of near-a titanium friction stir welds, Scripta Mater., 60 (2009), pp. 1097-1100.
[26] W.P. Xu, X. Li, L.M. Ke, Analysis of the grain orientation and texture of friction stir welded magnesium alloy, Mater. Sci. Forum, 620-622 (2009), pp. 97-100.
[27] D.P. Field, T.W. Nelson, Y. Hovanski, K.V. Jata, Heterogeneity of crystallographic texture in friction stir welds of aluminum, Metall. Mater. Trans. A, 32A (2001), pp. 2869-2877.
[28] S.H.C. Park, Y.S. Sato, H. Kokawa, Basal plane texture and flow pattern in friction stir weld of a magnesium alloy, Metall. Mater. Trans. A, 34A (2003), pp. 987-994.
[29] R. Kapoor, N. Kumar, R.S. Mishra, C.S. Huskamp, K.K. Sankaran, Influence of fraction of high angle boundaries on the mechanical behavior of an ultrafine grained Al-Mg alloy, Mater. Sci. Eng. A 527 (2010), pp. 5246-5254.
[30] C. Genevois, D. Fabrègue, A. Deschamps, W.J. Poole, On the coupling between precipitation and plastic deformation in relation with friction stir welding of AA2024 T3 aluminium alloy, Mater. Sci. Eng. A 441 (2006), pp. 39-48.
[31] C.A.W. Olea, L. Roldo, J.F. dos Santos, T.R. Strohaecker, A sub-structural analysis of friction stir welded joints in an AA6056 Al-alloy in T4 and T6 temper conditions, Mater. Sci. Eng. A 454-455 (2007), pp. 52-62.
[32] M.M. Attallah, H.G. Salem, Friction stir welding parameters: a tool for controlling abnormal grain growth during subsequent heat treatment, Mater. Sci. Eng. A 391 (2005), pp. 51-59.
[33] M.A. Sutton, B. Yang, A.P. Reynolds, J. Yan, Banded microstructure in 2024-T351 and 2524-T351 aluminum friction stir welds: Part II. Mechanical characterization, Mater. Sci. Eng. A 364 (2004), pp. 66-74.
[34] R. Markandeya, S. Nagarjuna, D.V.V. Satyanarayana, D.S. Sarma, Correlation of structure and flow behaviour of Cu-Ti-Cd alloys, Mater. Sci. Eng. A 428 (2006), pp. 233-243.
[35] I. Mejía, C. Maldonado, J.A. Benito, J. Jorba, A. Roca, Determination of the work hardening exponent by the hollomon and differential crussard-jaoul analyses of cold drawn ferrite-pearlite steels, Mater. Sci. Forum, 509 (2006), pp. 37-42.
[36] S. Nagarjuna, B. Gopalakrishna, M. Srinivas, On the strain hardening exponent of Cu-26Ni-17Zn alloy, Mater. Sci. Eng. A 429 (2006), pp. 169-172.
[37] K.G. Samuel, Limitations of Hollomon and Ludwigson stress-strain relations in assessing the strain hardening parameters, J. Phys. D, 39 (2006), pp. 203-212.
[38] H.J. Kleemola, M.A. Nieminen, On the strain-hardening parameters of metals, Metall. Mater. Trans. B, 5 (1974), pp. 1863-1866.
[39] W.B. Morrison, Disscussion of "On the double-n behavior of iron", Metall. Mater. Trans. B, 2 (1971), pp. 2948-2949.
[40] W. Truszkowski, On physical meaning of the stress-strain relationship parameters in high strength polycristalline metals, Mem. Sci. Rev. Metall., 77 (1980), pp. 193-201.
[41] G.E. Dieter, "Mechanical Metallurgy", McGraw-Hill, New York, USA, (1961).
[42] Y.S. Sato, H. Kokawa, M. Enomoto, S. Jogan, T. Hashimoto, Precipitation sequence in friction stir weld of 6063 aluminum during aging, Metall. Mater. Trans. A, 30A (1999), pp. 3125-3130.
[43] Y.S. Sato, M. Urata, H. Kokawa, Parameters controlling microstructure and hardness during friction-stir welding of precipitation-hardenable aluminum alloy 6063, Metall. Mater. Trans. A, 33A (2002), pp. 625-635.
[44] M. Jayaraman, R. Sivasubramanian, V. Balasubramanian, Establishing relationship between the base metal properties and friction stir welding process parameters of cast aluminium alloys, Mater. Des., 31 (2010), pp. 4567-4576.
[45] I. Charit, R.S. Mishra, High strain rate superplasticity in a commercial 2024 Al alloy via friction stir processing, Mater. Sci. Eng. A 359 (2003), pp. 290-296.
[46] R.S. Mishra, Processing commercial aluminum alloys for high strain rate superplasticity, JOM, 53 (2001), pp. 23-26.
[47] 黃國聰,『鋁-鎂合金拉伸與振動破壞特性之摩擦攪拌效應研究』,國立成功大學材料科學及工程學系博士論文,第七章,(民國97年)。
[48] Y.A. Bagaryatskii, Mechanism of artificial aging of Al-Cu-Mg alloy, Dokl. Akad. (SSSR) 87 (1952), pp. 397-400.
[49] L.F. Mondolfo, "Aluminum Alloys : Structure and Properties", Butterworths, London and Boston, (1976).
[50] M.E. Drits, E.S. Kadaner, E.M. Padezhnova, L.L. Rokhlin, Z.A. Sviderskaya, N.I. Turkina, "Phase Diagrams of Aluminum- and Magnesium-Based Systems", Moscow, Russia, (1977).
[51] H.W.L. Phillips, "Annotated Equilibrium Diagrams of Some Aluminum Alloy Systems", vol. 25, The Institute of Metals, London, UK, (1959).
[52] J.E. Hatch, "Aluminum Properties and Physical Metallurgicay", ASM, Metals Park, Ohio, USA, (1984).
[53] N.A. Belov, D.G. Eskin, A.A. Aksenov, "Multicomponent Phase Diagrams: Applications for Commercial Aluminum Alloys", Elsevier Ltd., Oxford, UK, (2005).
[54] "Properties of Wrought Aluminums and Aluminum Alloys", vol. 2, ASM, USA, (1990).
[55] E.O. Hall, The deformation and ageing of mild steel: III discussion of results, Proc. Phys. Soc. B, 64 (1951), pp. 747-753.
[56] N.J. Petch, The cleavage strength of polycrystals, J. Iron Steel Inst., 173 (1953), p. 25.
[57] Y.S. Sato, H. Kokawa, K. Ikeda, M. Enomoto, T. Hashimoto, S. Jogan, Microtexture in the friction-stir weld of an aluminum alloy, Metall. Mater. Trans. A, 32A (2001), pp. 941-948.
[58] Y.S. Sato, H. Kokawa, Distribution of tensile property and microstructure in friction stir weld of 6063 aluminum, Metall. Mater. Trans. A, 32A (2001), pp. 3023-3031.
[59] J.C. McClure, W. Tang, X. Guo, L.E. Murr, A. Nunes, Heat input and temperature distribution in friction stir welding, J. Mater. Process. Manuf. Sci., 7 (1998), pp. 163-172.
[60] J.Q. Su, T.W. Nelson, R.S. Mishra, M. Mahoney, Microstructural investigation of friction stir welded 7050-T651 aluminium, Acta Mater., 51 (2003), pp. 713-729.
[61] K. Elangovan, V. Balasubramanian, Influences of post-weld heat treatment on tensile properties of friction stir-welded AA6061 aluminum alloy joints, Mater. Charact., 59 (2008), pp. 1168-1177.
[62] Z.Y. Ma, R.S. Mishra, M.W. Mahoney, Superplastic deformation behavior of friction stir processed 7075Al alloy, Acta Mater., 50 (2002), pp. 4419-4430.
[63] T. Andrews, W.T. Roberts, P.M.B. Rodrigues, D.V. Wilson, Warm forming of Al alloy sheet, in: Proceedings of the Aluminum Technology’86, Institute of Metals, London, (1986), pp. 581–588.
[64] J.H. Hollomon, Tensile deformation, Trans. AIME, 162 (1945), pp. 268-290.
[65] P. Ludwik, "Elemente der Technologischen Mechanik", Springer Verlag, Germany, (1909).
[66] H.W. Swift, Plastic instability under plane stress, J. Mech. Phys. Solid, 1 (1952), pp. 1-18.
[67] E. Voce, The relationship between stress and strain for homogeneous deformation, J. Inst. Met., 74 (1948), pp. 537-562.
[68] E. Martín, A. Forn, R. Nogué, Strain hardening behaviour and temperature effect on Al-2124/SiCp, J. Mater. Process. Technol., 143-144 (2003), pp. 1-4.
[69] C.H. Caceres, T. Din, A.K.M.B. Rashid, J. Campbell, Effect of aging on quality index of an Al–Cu casting alloy, Mater. Sci. Technol., 15 (1999), pp. 711-716.
[70] R. Reed-Hill, W. Cribb, S. Monteiro, Concerning the analysis of tensile stress-strain data using log dσ/dεp versus log σ diagrams, Metall. Mater. Trans B, 4 (1973), pp. 2665-2667.
[71] D.C. Ludwigson, Modified stress-strain relation for fcc metals and alloys, Metall. Mater. Trans. B, 2 (1971), pp. 2825-2828.
[72] G.I. Taylor, "Analysis of plastic strain in a cubic crystal", in: Stephen Timoshenko 60th Anniversary Volume, Macmillan, New York, USA, (1938), pp. 218-224.
[73] G.Y. Chin, W.L. Mammel, Computer solutions of the Taylor analysis for axisymmetric flow, Trans. Metall. Soc. AIME,, 239 (1967), pp. 1400-1405.
[74] G.I. Taylor, Plastic strain in metals, J. Inst. Met., 62 (1938), pp. 307-324.
[75] M.F. Ashby, D.H.R. Jones, "Engineering Materials: An Introduction to Their Properties and Application", Pergamon Press, Oxford, UK, (1980).
[76] J.W. Wyrzykowski, M.W. Grabski, Hall-Petch relation in aluminum and its dependence on the grain boundary structure, Philos. Mag. A, 53 (1986), pp. 505-520.
[77] T.N. Baker, "Determination of the Friction Stress from Microstructural Measurements", in: T.N. Baker (Ed.), "Yield, Flow and Fracture of Polycrystals", Applied Science Publishers Ltd., Barking, England, (1983), pp. 235-273.
[78] R.W. Armstrong, "The Yield and Flow Stress Dependence on Polycrystal Grain Size", in: T.N. Baker (Ed.), "Yield, Flow and Fracture of Polycrystals", Applied Science Publishers Ltd., Barking, England, (1983), pp. 1-31.
[79] H. Hasegawa, S. Komura, A. Utsunomiya, Z. Horita, M. Furukawa, M. Nemoto, T.G. Langdon, Thermal stability of ultrafine-grained aluminum in the presence of Mg and Zr additions, Mater. Sci. Eng. A 265 (1999), pp. 188-196.
[80] N. Hansen, Effect of grain size and strain on the tensile flow stress of aluminum at room temperature, Acta Metall., 25 (1977), pp. 863-869.
[81] H. Fujita, T. Tabata, The effect of grain size and deformation substructure on mechanical properties of polycrystalline aluminum, Acta Mater., 21 (1973), pp. 355-365.
[82] C. Kwan, Z. Wang, S.B. Kang, Mechanical behavior and microstructural evolution upon annealing of the accumulative roll-bonding (ARB) processed Al alloy 1100, Mater. Sci. Eng. A 480 (2008), pp. 148-159.
[83] J.W. Edington, K.N. Melton, C.P. Cutler, Superplasticity, Prog. Mater. Sci., 21 (1976), pp. 61-158.
[84] J.P. Poirier, "Creep of Crystals, High-Temperature Deformation Process in Metals, Ceramics and Minerals", Press Syndicate of the University of Camberidge, Cambridge, UK, (1985).
[85] T.G. Nieh, J. Wadsworth, O.D. Sherby, "Superplasticity in Metals and Ceramics", Press Syndicate of the University of Camberidge, Cambridge, UK, (1997).
[86] A.K. Mukherjee, J.E. Bird, J.E. Dorn, Experimental correlations for high-temperature creep, Trans. A.S.M., 62 (1969), pp. 155-179.
[87] T.R. Bieler, A.K. Mukherjee, The high strain rate superplastic deformation mechanisms of mechanically alloyed aluminum IN90211, Mater. Sci. Eng. A 128 (1990), pp. 171-182.
[88] T. Chen, J. Huang, Observations of grain-boundary sliding and surface topography in an 8090 al alloy after uniaxial and biaxial superplastic deformation, Metall. Mater. Trans. A, 30A (1999), pp. 53-64.
[89] R.S. Mishra, T.R. Bieler, A.K. Mukherjee, Superplasticity in powder metallurgy aluminum alloys and composites, Acta Metall. Mater., 43 (1995), pp. 877-891.
[90] R.C. Gifkins, Grain-boundary sliding and its accommodation during creep and superplasticity, Metall. Mater. Trans. A, 7A (1976), pp. 1225-1232.
[91] R. Raj, M.F. Ashby, On grain boundary sliding and diffusional creep, Metall. Mater. Trans. B, 2 (1971), pp. 1113-1127.
[92] S.S. Bhattacharya, K.A. Padmanabhan, On the apparent activation energies for superplastic flow, Mater. Sci. Forum, 243-245 (1997), pp. 65-70.
[93] W.J. Kim, High-strain-rate superplastic deformation behavior of a powder metallurgy-processed 2124 Al alloy, J. Mater. Sci., 35 (2000), pp. 2779-2784.
[94] M.F. Ashby, R.A. Verrall, Diffusion-accommodated flow and superplasticity, Acta Metall., 21 (1973), pp. 149-163.
[95] Z.Y. Ma, F.C. Liu, R.S. Mishra, Superplastic deformation mechanism of an ultrafine-grained aluminum alloy produced by friction stir processing, Acta Mater., 58 (2010), pp. 4693-4704.
[96] Z.Y. Ma, R.S. Mishra, M.W. Mahoney, R. Grimes, Effect of friction stir processing on the kinetics of superplastic deformation in an Al-Mg-Zr alloy, Metall. Mater. Trans. A, 36A (2005), pp. 1447-1458.
[97] F.J. Humphreys, M. Hatherly, "Recrystallization and Related Annealing Phenomenon", Elsevier Science Ltd., Oxford, UK, (1995).
[98] H.J. McQueen, C.A.C. Imbert, Dynamic recrystallization: plasticity enhancing structural development, J. Alloy. Compd., 378 (2004), pp. 35-43.
[99] D. Rittel, P. Landau, A. Venkert, Dynamic recrystallization as a potential cause for adiabatic shear failure Phys. Rev. Lett., 101 (2008), pp. 1-4.
[100] R.W.K. Honeycombe, "The Plastic Deformation of Metals", 2 ed., Edward Arnold, London, UK, (1984).
[101] K.V. Jata, S.L. Semiatin, Continuous dynamic recrystallization during friction stir welding of high strength aluminum alloys, Scripta Mater., 43 (2000), pp. 743-749.
[102] K.N. Krishnan, On the formation of onion rings in friction stir welds, Mater. Sci. Eng. A 327 (2002), pp. 246-251.
[103] C.S. Paglia, K.V. Jata, R.G. Buchheit, The influence of artificial aging on the microstructure, mechanical properties, corrosion, and environmental cracking susceptibility of a 7075 friction-stir-weld, Mater. Corros., 58 (2007), pp. 737-750.
[104] U.F.H.R. Suhuddin, S. Mironov, Y.S. Sato, H. Kokawa, Grain structure and texture evolution during friction stir welding of thin 6016 aluminum alloy sheets, Mater. Sci. Eng. A 527 (2010), pp. 1962-1969.
[105] O. Engler, V. Randle, "Introduction to Texture Analysis: Macrotexture, Microtexture, and Orientation Mapping", 2 ed., CRC Press, Taylor and Francis group, Boca Raton, FL, USA, (2010).
[106] J.F.W. Bishop, R. Hill, A theory of the plastic distortion of a polycrystalline aggregate under combimed stresses, Phil. Mag., 42 (1951), pp. 414-427.
[107] J.F.W. Bishop, R. Hill, A theoretical derivation of the plastic properties of a polycrytalline face-centered metal, Phil. Mag., 42 (1951), pp. 1298-1307.
[108] B. Bacroix, T. Chauveau, J.F. Duarte, A. Barata da Rocha, J. Gracio, The respective influences of grain size and texture on the formability of a 1050 aluminium alloy, Int. J. Eng. Sci., 37 (1999), pp. 509-526.
[109] N. Saito, I. Shigematsu, T. Komaya, T. Tamaki, G. Yamauchi, M. Nakamura, Grain refinement of 1050 aluminum alloy by friction stir processing, J. Mater. Sci. Lett., 20 (2001), pp. 1913-1915.
[110] Y.J. Kwon, I.S. I., N. Saito, Mechanical property improvements in aluminum alloy through grain refinement using friction stir process, Mater. Trans., 45 (2004), pp. 2304-2311.
[111] C. Badini, F. Marino, E. Verné, Calorimetric study on precipitation path in 2024 alloy and its SiC composite, Mater. Sci. Eng. A, 191 (1995), pp. 185-191.
[112] I.N.A. Oguocha, S. Yannacopoulos, A calorimetric study of S′ and θ′ precipitation in Al2O3 particle-reinforced AA2618, J. Mater. Sci., 34 (1999), pp. 3335-3340.
[113] M. Nganbe, A. Fahim, Equicohesion: intermediate temperature transition of the grain size effect in the nickel-base superalloy PM 3030, J. Mater. Eng. Perform., 19 (2010), pp. 395-400.
[114] D.L. Holt, W.A. Backofen, Superplasticity in the Al-Cu eutectic alloy, ASM Trans Quart., 59 (1966), pp. 755-768.
[115] M. Eddahbi, F. Carreño, O.A. Ruano, Microstructural changes during high temperature deformation of an Al-Li(8090) alloy, Scripta Mater., 38 (1998), pp. 1717-1723.
[116] K. Higashi, M. Uno, S. Matsuda, T. Ito, S. Tanimura, "Dynamic Recrystallization of Superplastic Aluminium Alloy", presented at the Recrystallization '90, Wollongong, Australia, (1990).
[117] C. Herring, Diffusional viscosity of a pollycrystalline solid, J. Appl. Phys., 21 (1950), pp. 437-445.
[118] F.R.N. Nabarro, Steady state diffusional creep, Philos. Mag. , 16 (1967), pp. 231-237.
[119] V.P. Poida, V.V. Bryukhovetskii, A.V. Poida, R.I. Kuznetsova, V.F. Klepikov, D.L. Voronov, Morphology and mechanisms of the formation of fiber structures upon high-temperature superplastic deformation of aluminum alloys, Phys. Met. Metallogr. (USSR), 103 (2007), pp. 414-423.
[120] M.G. Zelin, On micro-superplasticity, Acta Mater., 45 (1997), pp. 3533-3542.
[121] C. Lea, C. Molinari, Magnesium diffusion, surface segregation and oxidation in AI-Mg alloys, J. Mater. Sci., 19 (1984), pp. 2336-2352.
[122] W.B. Alexander, L.M. Slifkin, Diffusion of solutes in aluminum and dilute aluminum alloys, Phys. Rev. B, 1 (1970), pp. 3274-3282.
[123] N.L. Peterson, S.J. Rothman, Impurity diffusion in aluminum, Phys. Rev. B, 1 (1970), pp. 3264-3273.
[124] W.J.D. Shaw, Microsuperplastic behavior, Mater. Lett., 4 (1985), pp. 1-4.
[125] Y. Takayama, T. Tozawa, H. Kato, Superplasticity and thickness of liquid phase in the vicinity of solidus temperature in a 7475 aluminum alloy, Acta Mater., 47 (1999), pp. 1263-1270.
[126] M. Mabuchi, H.G. Jeong, K. Hiraga, K. Higashi, Partial melting at interfaces and graln boundaries for high-strain-rate superplastic materials, Interface Sci., 4 (1997), pp. 357-368.
[127] K. Higashi, T.G. Nieh, J. Wadsworth, Effect of temperature on the mechanical properties of mechanically-alloyed materials at high strain rates, Acta Metall. Mater., 43 (1995), pp. 3275-3282.
[128] H.G. Jeong, K. Hiraga, M. Mabuchi, K. Higashi, The role of partial melting on superplasticity of Si3N4p/Al-Cu-Mg composite, Scripta Mater., 42 (2000), pp. 479-485.
[129] R. Kaibyshev, F. Musin, D. Gromov, T.G. Nieh, D.R. Lesuer, Effect of liquid phase on superplastic behavior of a modified 6061 aluminum alloy, Scripta Mater., 47 (2002), pp. 569-575.
[130] J. Koike, M. Mabuchi, K. Higashi, In situ observation of partial melting in superplastic aluminum alloy composites at high temperatures, Acta Metall. Mater., 43 (1995), pp. 199-206.
[131] I. Charit, R.S. Mishra, Low temperature superplasticity in a friction-stir -processed ultrafine grained Al-Zn-Mg-Sc alloy, Acta Mater., 53 (2005), pp. 4211-4223.