簡易檢索 / 詳目顯示

研究生: 何旭陞
Ho, Syu-Sheng
論文名稱: 分析填充壓力對於熱延遲史特靈引擎的啓動性影響
Effects of Charge Pressure on the Onset of a Thermal Lag Stirling Engine
指導教授: 鄭金祥
Cheng, Chin-Hsiang
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 95
中文關鍵詞: 熱延遲史特靈引擎再生加熱器填充壓力操作區間
外文關鍵詞: Thermal-lag Stirling engine, Regenerator heater, Charge pressure, Operational range
相關次數: 點閱:32下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究著眼於填充壓力和幾何參數對熱延遲史特靈引擎的輸出功率影響。透過實驗結果發現,熱延遲史特靈引擎會有一個隨填充壓力變化的操作區間,且發現在填充壓力為0.8 bar時對引擎的影響最為劇烈。所得的結果不同於以往傳統史特靈引擎的研究,因此採用非理想熱力結合動力之理論模型來對其進行分析,理論分析結果發現隨者填充壓力的變化在0.9 bar時有者最佳的指示功率同時也有者最大的摩擦損失功率,在兩者的影響下熱延遲史特靈引擎在0.8 bar時存在者最佳的軸功率。
      研究也分析了幾何參數變化對引擎性能的影響,改變的幾何參數包括了中間管管長、再生加熱器孔隙率與死區體積,並得出引擎於常壓大氣中運行及最佳幾何參數配置下,可達到最高5.53W的功率。在進行不同填充壓力的實驗中,為防止氣體洩漏因素,採用軸封來進行密封,而軸封會增加引擎的機械損失,在0.8 bar的填充壓力,引擎展現出的最佳功率為3.32 W。

    This study focuses on the effects of charge pressure and geometric parameters on the output power of a thermal lag Stirling engine. Experimental results reveal that the thermal lag Stirling engine has an operational range that varies with the charge pressure, with the most significant impact occurring at a charge pressure of 0.8 bar. These findings different from traditional Stirling engine research, leading to the adoption of a theoretical model combining non-ideal thermodynamics and dynamics for analysis. Theoretical analysis indicates that at a charge pressure of 0.9 bar, the engine achieves the best indicated power along with the highest friction loss power. Due to the combined effects, the thermal lag Stirling engine achieves optimal shaft power at 0.8 bar.
     The study also examines the impact of geometric parameter variations on engine performance. The geometric parameters altered include the length of the center pipe, the porosity of the regenerator heater, and the dead volume. It is found that under atmospheric pressure and optimal geometric configuration, the engine can reach a maximum power of 5.53 W. During experiments with different charge pressures, shaft seals were used to prevent gas leakage, although these seals increased mechanical losses. At a charge pressure of 0.8 bar, the engine exhibited an optimal power output of 3.32 W.

    摘要 I Extended Abstract II 表目錄 XIV 圖目錄 XV 符號索引 XVII 第一章 前言 1 1.1 研究背景與動機 1 1.2 文獻回顧 2 1.3 熱延遲史特靈引擎 6 1.3.1 簡介 6 1.3.2 機構運作以及原理 7 1.4 研究目的 8 1.5 論文架構 9 第二章 理論模式 10 2.1 機構參數與初始條件 10 2.1.1 初始體積 10 2.1.2 初始溫度 12 2.1.3 初始質量 14 2.2 動力模式 14 2.2.1 系統運動方程式 15 2.2.2 系統動力方程式 17 2.2.3 機械能量守恆 19 2.3 熱力模式 20 2.3.1 質量變化 21 2.3.2 質量流率 22 2.3.3 流體密度與速度 23 2.3.4 流體相關係數 23 2.3.5 壓力修正 24 2.3.6 能量方程式 26 2.3.7 內能變化量 26 2.3.8 焓變化量 26 2.3.9 淨輸入熱 27 2.3.10 淨輸出功 28 2.3.11 各腔室溫度 28 2.3.12 系統平均能量 28 第三章 實驗與設計 30 3.1 實驗設計 30 3.2 實驗設備 30 3.2.1 PID溫度加熱器組 31 3.2.2 恆溫循環水槽 31 3.2.3 真空油泵 31 3.2.4 Labview資料擷取器 32 3.2.5 磁滯煞車器與負載控制器 32 3.2.6 扭力計 32 3.3 量測方法 33 3.4 實驗步驟 33 第四章 結果與討論 35 4.1 不同中間管長度之影響 35 4.2 不同再生加熱器及緩衝室體積之影響36 4.3 不同加熱溫度變化之影響 38 4.4 不同填充壓力之影響 38 第五章 結論 41 參考文獻 42

    [1] Y. Shang, S. Sang, A.K. Tiwari, S. Khan, and X. Zhao, "Impacts of renewable energy on climate risk: A global perspective for energy transition in a climate adaptation framework," Applied Energy, vol. 362, p. 122994, 2024.
    [2] 歐文生, 何明錦, 陳瑞鈴, 陳建富, 和 羅時麒, "台灣太陽能設計用標準日射量之研究," 建築學報, no. 64, p. 103-118, 2008.
    [3] H. Dong, J. Liu, T. Meng, M. Li, X. Chen, N. Li, and H. Alavi, "Energy generation and storing electrical energy in an energy hybrid system consisting of solar thermal collector, Stirling engine and thermoelectric generator," Sustainable Cities and Society, vol. 75, p. 103357, 2021.
    [4] S. B. Rao and N. Ramkumar, "A review on Stirling cycle engine," Journal of Emerging Technologies and Innovative Research, vol. 6, p. 562112, 2019
    [5] D. Erol, H. Yaman, and B. Doğan, "A review development of rhombic drive mechanism used in the Stirling engines," Renewable and Sustainable Energy Reviews, vol. 78, p. 1044-1067, 2017.
    [6] C. Perozziello, L. Grosu, and B. M. Vaglieco, "Free-piston Stirling engine technologies and models: A review," Energies, vol. 14, no. 21, p. 7009, 2021.
    [7] S. Zare, A. R. Tavakolpour-Saleh, A. Aghahosseini, and R. Mirshekari, "Thermoacoustic Stirling engines: A review," International Journal of Green Energy, vol. 20, no. 1, p. 89-111, 2023.
    [8] N.C.J. Chen and C.D. West, "A single-cylinder valveless heat engine," in 22nd Intersociety Energy Conversion Engineering Conference, American Institute of Aeronautics and Astronautics, p. 9070,1987.
    [9] P. L. Tailer, "External combustion Otto cycle thermal lag engine," in Proc. 28th IECEC, vol. 1, 1993.
    [10] C.F.A. Altamirano, S. Moldenhauer, J.G. Bayón, S. Verhelst, and M.De Paepe, "A two control volume model for the Thermal Lag Engine," Energy Conversion and Management, vol. 78, p. 565-573, 2014.
    [11] C. H. Cheng, H. S. Yang, B. Y. Jhou, Y. C. Chen, and Y. J. Wang, "Dynamic simulation of thermal-lag Stirling engines," Applied Energy, vol. 108, p. 466-476, 2013.
    [12] M. Alborzi, F. Sarhaddi, and F. Sobhnamayan, "Optimization of the thermal lag Stirling engine performance," Energy & Environment, vol. 30, no. 1, p. 156-175, 2019.
    [13] D.T. Phung and C.H. Cheng, "Investigating dynamic characteristics and thermal-lag phenomenon in a thermal-lag engine using a CFD-mechanism dynamics model," Applied Thermal Engineering, vol. 236, p. 121926, 2024.
    [14] A.A. Boroujerdi and M. Esmaeili, "Characterization of the frictional losses and heat transfer of oscillatory viscous flow through wire-mesh regenerators," Alexandria Engineering Journal, vol. 54, no. 4, p. 787-794, 2015.
    [15] M. Liu, B. Zhang, D. Han, X. Du, and H. Wang, "Experimental study on regenerative effectiveness and flow characteristics of parallel-plate regenerator in Stirling engine," Applied Thermal Engineering, vol. 217, p. 119139, 2022.
    [16] M. Sheykhi and M. Mehregan, "Improvement of technical performance of heat regenerator of GPU-3 Stirling engine," Energy Reports, vol. 9, p. 607-620, 2023.
    [17] T. Kumaravelu and S. Saadon, "Heat transfer enhancement of a Stirling engine     by using fins attachment in an energy recovery system," Energy, vol. 239, p. 121881, 2022.
    [18] F. Xin, K. Yang, B. Zhao, Y. Yang, W. Liu, and Z. Liu, "Flow and heat transfer characteristics of torsional tube cluster heater in a Stirling engine," Applied Thermal Engineering, vol. 248, p. 123334, 2024.
    [19] F. Xin, M. Yu, W. Liu, and Z. Liu, "Heat transfer characteristics of enhanced cooling tube with a helical wire under oscillatory flow in Stirling engine," Int. J. Therm. Sci., vol. 168, 107063, 2021.
    [20] H. S. Yang, H. Q. Zhu, and X. Z. Xiao, "Comparison of the dynamic characteristics and performance of beta-type Stirling engines operating with different driving mechanisms," Energy, vol. 275, p. 127535, 2023.
    [21] S. Zhu, G. Yu, K. Liang, W. Dai, and E. Luo, "A review of Stirling-engine-based combined heat and power technology," Applied Energy, vol. 294, p. 116965, 2021.
    [22] 周秉毅, “脈衝管史特靈引擎之設計與理論模式,” 國立成功大學航空太空工程學系碩士論文, 2013.
    [23] 林憲鴻, “脈衝管史特靈引擎之理論分析與最佳化設計,” 國立成功大學航空太空工程學系碩士論文, 2014.
    [24] 陳權輝, “應用簡易共軛梯度法於脈衝管史特靈引擎之最佳化設計,” 國立成功大學航空太空工程學系碩士論文, 2015.
    [25] C.H. Cheng and D.T. Phung, "Exchanging data between computational fluid dynamic and thermodynamic models for improving numerical analysis of Stirling engines," Energy Science & Engineering, vol. 9, no. 11, p. 2177-2190, 2021.
    [26] V. Ramamurti, Mechanics of Machines. CRC Press, 2002.
    [27] F. Yu, J. Tang, H. Zhang, L. Zhang, and K. Zhang, "The improvement of wear and corrosion resistance of nickel-graphite coating with modified graphite phase size," Surface and Coatings Technology, p. 130906, 2024.
    [28] W.M. Rohsenow, J.P. Hartnett, and Y.I. Cho, Handbook of Heat Transfer, vol. 3, New York: McGraw-Hill, 1998.
    [29] D. Gedeon and J. G. Wood, "Oscillating-flow regenerator test rig: hardware and theory with derived correlations for screens and felts," NASA Center for Aerspace Information, 1996.
    [30] B.R. Munson, D.F. Young, and T.H. Okiishi, Fundamentals of Fluid Mechanics, Oceanographic Literature Review, vol. 10, no. 42, p. 831, 1995.
    [31] J. R. Senft, Mechanical Efficiency of Heat Engines. Cambridge University Press, 2007.
    [32] A. J. Organ, Stirling and Thermal-Lag Engines: Motive Power Without the CO2. World Scientific, 2022.

    無法下載圖示 校內:2026-08-14公開
    校外:2026-08-14公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE