| 研究生: |
徐源鴻 Xu, Yuan-Hong |
|---|---|
| 論文名稱: |
橢圓長寬比對二維顆粒混合物分層效應影響之研究 On the effects of the aspect ratio on the particle segregation in a spherical granular matter with a tracing elliptic grain in two-dimension vertical vibration |
| 指導教授: |
方中
Fang, Chung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 97 |
| 中文關鍵詞: | 分層效應 、橢圓長寬比 、垂直振動 |
| 外文關鍵詞: | segregation, elliptic aspect ratio, vertical vibration |
| 相關次數: | 點閱:108 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究是有關橢圓長寬比在二維乾燥顆粒混合物中分層現象效應影,顆粒混合物由單一橢圓顆粒(示蹤顆粒)與大量且相同的圓球顆粒(環境顆粒)所組成。數值模擬結果指出,隨著橢圓長寬比的增加,示蹤顆粒上升至混合物頂部的時間變短:並有著增強分離現象。這樣的效應和因顆粒大小導致分層現象的結果相比較,更可以明顯的觀察到。對於橢圓示蹤顆粒的上升運動,結果發現存在著五個物理機制有著許多的貢獻:
(1)拱效應的形成
(2)滲透機制作用
(3)示蹤顆粒的投影面
(4)示蹤顆粒的力矩效應
(5)近示蹤顆粒的環境顆粒之移動軌跡影響
The present study is concerned with the effects of the aspect ratio on the segregation phenomena in a binary dry granular mixture composed of a single elliptic particle ( trace particle ) and a large amount of identical spherical particles ( environmental particles ). Numerical simulations show that as the aspect ratio increases, the time span for the trace particle rising to the top of the mixture becomes shorter: an index for the enhanced segregation phenomena. Such an effect becomes more obvious when compared to the result from the size-induced segregation phenomena. It is found that there exist five physical mechanisms that many contribute to the rising motions of the elliptic trace particle:
(i) the formation of the arch effects ;
(ii) the permeation effects ;
(iii) the projection area of the trace particle ;
(iv) the tilding torque of the trace particle; and
(v) the moving trajectory of the environmental particles near the trace particle.
[1] De Gennes, P. G., Granular matter: a tentative view, Reviews of Modem Physics, Vol. 71, No. 2 (1999)
[2] Reynolds, O., Philosophical Magazine Series 5 50, 469 (1885)
[3] Duran, J., Sands, Powders, and Grains, Springer, France, (1997)
[4] Duran, J., Rajchenbach, J., Cle ́ment E. Arching Effect Model for Particle Size Segregation, Physical Review Letters, Vol. 70, No. 16, (1993)
[5] Janssen, H. A., and Vereins Z., Deutsch Ing, 39.25., 1045 (1895)
[6] James, B. K. et al., Convection in vertically vibrated granular materials, Phil. Trans. R. Soc. Lond. A, 356, 2561~2567, (1998)
[7] James, B. K., Jaeger H. M., and Sidney, R. N., Vibration-Induced Sized Separation in Granular: The Convection Connection, Physical Review Letters, Vol. 70, No. 24, (1993)
[8] Brown, R.L. The fundamental principles of segregation, J. Inst. Fuel 13, 15, (1939)
[9] http://www.quantachrome.com/_landing_pages/Google/rep_sampling.htm, (訪問時間:2010.05.15)
[10] Rosato, A., Katherine, J. S., Prinz, F., Robert, H. S., Why the Brazil Nuts Are on Top: Size Segregation of Particulate Matter by Shaking, Physical Review Letters, Vol. 58, No. 10, (1987)
[11] Breu, A. P. J., Ensner, H. M., Kruelle, C. A., and Rehberg, I., Reversing the Brazil-Nut Effect: Competition between Percolation and Condensation, Physical Review Letters, Vol. 90, No. 1, (2003)
[12] James, B. K. etl., Experimental study of granular convection, Physical Review E, Vol. 54, No. 5, (1996)
[13] Luding, S., Duran J., Cle ́ment E., Rajchenbach J., Segregation of Particulate Solids: Segregation via Convection, (1996).
[14] Cundall, P. A., Strack, O. D. L., A discrete numerical model for granular assemblies, Ge ́otechnique, 29, No. 1, 47~65, (1979)
[15] Andrien, C., de Freitas N., Doucet, A., Jordan, M. I. An introduction to MCMC for machine learning, Kluwer Academic Publishers, Netherlands, (2010)
[16] Perram, J. W., Wertheim, M. S., Lebowitz J. L. Monte Carlo simulations of hard spheroids, Chemical Physics Letters, Vol. 105, Issue 3, 277~280, (1984)
[17] Camp P. J., Allen M. P. Hard ellipsoid rod-plate mixtures: Onsager theory and computer simulation, Physica A, 229, 410~427, (1996)
[18] Shannon, C. E. Von Neumann's contributions to automata theory, Massachusetts Institute of Technology, 123~129 (1958)
[19] Baxter G. W., Behringer R. P., Cellular automata models of granular flow, Physical Review A, Vol. 42, No. 2 (1990)
[20] Ford, B. J. Brownian movement in clarkia pollen: a reprise of the first observations, The Microscope, 40(4), 235~241 (1992)
[21] Dz ̌iugys, A., Peters, B. An approach to simulate the motion of spherical and non-spherical fuel particles in combustion chambers, Granular Matter, 3, 231~265 (2001)
[22] Bathurst R. J., Rothenburg L., Micromechanical aspects of isotropic granular assemblies with linear contact interactions, ASME, Vol. 55, 17~23 (1988)
[23] Zhang, X., Loc Vu-Quoc, Simulation of chute flow of soybeans using an improved tangential force-displacement model, Mechanics of Materials, 32, 115~129 (2000)
[24] Peters, B., Dz ̌iugys, A. Numerical simulation of the motion of granular material using object-oriented techniques, Computer methods in applied mechanics and engineering, 1983~2007 (2002)
[25] http://www.apic.com.tw/products/cax_EDEM.html, (訪問時間:2010.03.21)
[26] Duran, J., Mazozi, T., Cle ́ment, E., and Rajchenbach, J., Size segregation in a two-dimensional sandpile: Convection and arching effects, Physical Review E, Vol. 50, No. 6 (1994)
[27] http://depts.washington.edu/nanolab/ChemE554/Summaries%20ChemE%20554/Introduction%20Tribology.htm, (訪問時間:2010.06.05)
[28] 機械設計手冊編委會, 機械設計手冊, 3版, 機械工業, 北京 (2004)
[29] DEM Solutions, EDEM 2.2.1 User Guide, UK (2008)
[30] http://zh.wikipedia.org/zh-tw/%E6%A9%A2%E5%9C%93, 2010/03/21, (訪問時間:2010.06.06)