| 研究生: |
楊民安 Yang, Min-an |
|---|---|
| 論文名稱: |
GTAW 與LBW 鎳基690 合金銲件之沿晶腐蝕研究 The Study of Intergranular Corrosion on Alloy 690 by GTAW and LBW Processes |
| 指導教授: |
李驊登
Lee, Hwa-Teng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 71 |
| 中文關鍵詞: | 雷射銲接 、沿晶應力腐蝕破壞 、熱循環歷程 、鎳基690合金 、惰性氣體鎢棒電弧銲 |
| 外文關鍵詞: | Inconel 690 Alloy, welding heat cycle, Laser Beam Welding, Intergranular stress corrosion cracking, Inert Gas Tungsten Arc Welding |
| 相關次數: | 點閱:173 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要是在探討鎳基690合金,在經過GTAW與LBW銲接製程後,銲件對於耐蝕性質以及抗應力腐蝕的影響,從銲接熱循環歷程、溫度分布及材料敏化等因素來探討銲接製程對於兩者所造成的影響。實驗方面使用化學試驗法及電化學試驗法來探討材料耐蝕性的差異,使用慢應變速率拉伸試驗來評估銲件抗應力腐蝕破壞的能力。
銲接過程溫度量測結果顯示,相較於GTAW製程,LBW有極高的加熱速率(3309˚C/sec)與冷卻速率(90~157˚C/sec),其銲件熱影響區於冷卻通過敏化溫度區間經歷時間僅1.5~1.9秒,此有助於抑制晶界碳化鉻析出使銲件保持良好抗蝕能力。GTAW銲件通過敏化溫度區間經歷時間超過19秒,沿晶界有碳化鉻連續狀態析出,導致銲件抗沿晶腐蝕能力下降形成銲接衰化區。鎳基690合金經GTAW與LBW後之銲件,在銲道及銲接衰化區皆造成耐蝕性的降低,LBW銲件在腐蝕初期造成銲道微量枝晶間腐蝕,以及銲接衰化區的沿晶腐蝕,其腐蝕情況並不隨時間增加而加深;GTAW銲件在銲道及銲接衰化區的腐蝕情形會隨著時間增加而加深。電化學試驗在極化曲線量測,鎳基690合金經過銲接後之銲件,其鈍態電流密度皆有升高趨勢,而GTAW所造成的影響較LBW明顯;在雙環動電位再活化法則顯示,GTAW銲件的衰化區有沿晶腐蝕的發生,明顯顯示鎳基690合金之GTAW製程敏化現象較嚴重。慢應變速率拉伸試驗結果,LBW銲件之銲道強度高於母材,且於銲接衰化區所造成之沿晶腐蝕並未因拉伸造成開裂;GTAW銲件的銲道沿晶腐蝕導致斷裂提早發生,且在銲接衰化區的沿晶腐蝕明顯拉伸造成開裂情形,仍有在此區域發生沿晶應力腐蝕破壞的可能。
This research mainly focuses on the effect on corrosion resistance and stress corrosion resistance of Inconel 690 Alloy after Inert Gas Tungsten Arc Welding(GATW) and Laser Beam Welding(LBW) process. The effect on both characteristic caused by variables such as measurement of welding heat cycle and sensitization was discussed. Modified Huey’s test and electrochemical test were used in experiment in order to probe into the difference of corrosion resistance. Meanwhile, slow strain rate test(SSRT) was used to evaluate stress corrosion cracking(SCC) resistance of weldment by GTAW and LBW processes.
The temperature measurements showed that the heating rate (3309˚C/sec) and cooling rate (90~157˚C/sec) of the weldment in LBW process were much higher than in GTAW process. During cooling procedure the LBW process, it only took 1.5~1.9 seconds for the LBW weldment to pass through the sensitization range which is much shorter than the 19 seconds needed in GTAW process. The high cooling rate is favorable for depressing Cr-carbides precipitation along the grain boundary which improves the corrosion resistance of weldments. The corrosion resistances of fusion zone and weld decay zone have all decreased after GTAW and LBW process. LBW weldment will cause less corrosion in fusion zone and intergranular corrosion cracking(IGC) in weld decay zone during the early stage of corrosion, the state of corrosion will not worsen in time; On the contrary, the state of corrosion in fusion zone and weld decay zone will worsen as the time duration increases. Polarization of weldments by GTAW and LBW processes both of their current density for passivation increased. The effect caused by GTAW process is more obvious than which caused by LBW. The result of double-loop electrochemical potentiokinetic reactivation(DL-EPR)showed that IGC has occurred in the weld decay zone of GTAW weldment. The result of SSRT showed that the tensile strength in fusion zone of LBW weldment is higher than base metal, and the IGC in weld decay zone did not crack because of the stretch;IGC in fusion zone of GTAW weldment leads to early fracture, and the IGC in weld decay zone clearly stretched and cause the material to crack. Intergranular stress corrosion cracking(IGSCC) in this section is still possible.
01. U. S. Department of Energy, 2005-Annual Energy Review, 2006.
02. U. S. Department of Energy, 2007-Annual Energy Outlook, 2007.
03. 財團法人國家政策研究基金會, 核能發電之必要性(譯自The Need of Nuclear Power), 國政研究報告, 2000.
04. T. Ishihiara, "Corrosio n Failure and Its Prevention in Light Water Reactor", Welding International, 1989(3) , pp. 209-216.
05. U. S. Nuclear Regulatory Commission, “Jet Pump Hold-Down Beam Failure”. 1993, NRC Information Notice, pp. 93-101.
06. 葉宗洸, 余明昇, "國內外沸水式反應器壓力槽內部組件的劣化問題", 核研季刊, Vol. 22, 1997, pp. 49-69.
07. 梁仲賢, “壓水式核反應器材料的腐蝕與防治對策”, 核研季刊, Vol. 26, 1999, pp. 8-12.
08. 游章雄, “核電廠管路系統之可靠度分析及預防維護策略研究”, 國立台灣大學機械工程研究所博士論文. 2002.
09. J.R. Crum & R.C. Scarberry, "Corrosion Testing of Inconel Alloy 690 for PWR Steam Generators", Journal Material for Energy Systems, Vol. 4(3), 1982, pp. 125-130.
10. W. D. Fletcher and D. D. Malinowski, “Operating Experience with Westinghouse Steam Generators”, Nuclear Technology, Vol. 28, No. 3, 1976, pp. 356-373.
11. D. Van Rooyen, “Review of the Stress Corrosion Cracking of Inconel 600”, Corrosion, Vol. 31, No. 9, 1975, pp. 327-337.
12. T. S. Bulischeck and D. Van Rooyen, “Effect of Environmental Variables on the Stress Corrosion Cracking of Inconel 600 Steam Generator Tubing”, Nuclear Technology, Vol. 55, 1981, pp. 383-393.
13. J. Weber and P. Sury, Mater. Perform, “Intergranular Stress Corrosion Cracking of Nickel Alloys in Pressurized Water”, Vol. 15, No. 2, 1976, pp. 34-43.
14. H. C. Burghard and A. J. Bursle, Final Report, Project 02-5839-01 southwest Research Institute, San Antonio, TX, December, 1978.
15. Newsletter on Three Mile Island Unti q, Nuclear News, Vol. 25, 1982, p. 47.
16. S. J. Green, “Stream Generator Failure or Degradation” in Metals Handbook 9th ed., ASM, Vol. 13, 1988 , p. 937.
17. 核能實務與理論, 行政院原子能委員會, 1993, p. 55.
18. R.N. Parkins, “Mechanisms of SCC”, in Corrosion, L.L. Shreir, Editor, Newnes-Butterworths, 1976.
19. J.J. Kai, G.P. Yu, C.H. Tsai, M.N. Liu, & S.C. Yao, "The Effects of Heat Treatment on the Chromium Depletion, Precipitate Evolution, and Corrosion Resistance of Inconel Alloy 690", Metall. Trans. A, Vol. 20A, 1989, pp. 2057-2067.
20. R.Y. Xue, "Corrosion Test of Plugging Procedure for Steam Generator of Qinshan Nuclear Power Plant", Nuclear Power Engineering, Vol. 14, 1993, pp. 304-343.
21. K. Stiller, J. Nilsson, & K. Norring, “Structure, Chemistry, and Stress Corrosion Cracking of Grain Boundaries in Alloys 600 and 690”, Metall. Trans. A, Vol. 27A, 1996, pp. 327-341.
22. R.A. Page & A. McMinn, "Relative Stress Corrosion Susceptibilities of Alloys 690 and 600 in Simulated Boiling Water Environment", Metall. Trans. A, 1986, pp. 877-887.
23. Inconel Alloy 690, Special Metals Corporation, 2002.
24. W.L. Mankins & A. McMinn, "Nickel and Nickel Alloys", in Metals Handbook, ASM International, 1992, pp. 428-445.
25. C.M. Brown & W.J. Mills, "Effect of Water on Mechanical Properties and Stress Corrosion Behavior of Alloy 600, Alloy 690, EN82H, and EN52 Welds", Corrosion, Vol. 55(2), 1999, pp. 173-186.
26. 蔡文達, 鎳基690合金之應力腐蝕及腐蝕疲勞性質研究, 行政院國家科學委員會專題研究計畫報告, 1996.
27. J.C. Thornley, "Effect of Heat Input on Properties of Inconel Filler Metal 82 Weld Deposits", Welding Journal, Vol.8 , 1973, pp.355-358.
28. W.J. Mills & C.M. Brown, "Fracture Toughness of Alloy 600 and an EN82H Weld in Air and Water", Metallurgical and Materials Transactions A, Vol. 32A(5), 2001, pp. 1161-1174.
29. R.A. Page, "Stress Corrosion Cracking of Alloys 600 and 690 and Nos. 82 and 182 Weld Metals in High Temperature Water", Corrosion, Vol. 39(10), 1983, pp. 409-421.
30. 蘇子可等, Inconel 690合金銲接特性之研究, 行政院原委會81年度研究報告, 1992.
31. M.B.C. Quigley, "High Power Density Welding", in The Physics of Welding, J.F. Lancaster, Editor. 1986, Pergamon Press.
32. 曾光宏, “不銹鋼銲件變形與殘留應力之研究”, 國立交通大學機械工程研究所博士論文, 2001.
33. W.M. Steen, “Laser Material Processing”, Springer-Verlag, 1991.
34. A. Yokoyama, T. Nagashima, O. Matsumto, Y. Nagura, & T. Ishide. "YAG Laser Welding Sleeving Technology for Steam Generator Tubes in Nuclear Power Plants", in The 5th International Symposium of the Japan Welding Society. 1990.
35. T. Nagashima, A. Yokoyama, T. Akaba, Y. Nagura, O. Matsumoto, & T. Ishide, "Development of YAG Laser Welding Robot System for Repairing Heat Exchange Tubes", Welding in the World, Vol. 34, 1994, pp. 133-138.
36. 郭聰源, 李驊登, 葉東昌, 杜青駿, 鄭勝隆, “鎳基690 合金銲件之顯微組織與機械性質研究”, 金屬熱處理, Vol. 57, 1998, pp. 15-22.
37. 葉東昌, 李驊登, 鄭勝隆, 郭聰源. "時效熱處理對鎳基690 合金銲件之微觀組織影響之研究", 中國機械工程學會第十六屆學術研討會. 1999.
38. 李驊登, 郭聰源, 鄭勝隆, “銲材合金Nb 的添加對鎳基690 與304L 不銹鋼銲件之機械性質與耐蝕性之影響”, 中國機械工程學會第十五屆學術研討會, 1998.
39. 李驊登, 郭聰源, 鄭勝隆, “鎳基690 與304L 不銹鋼的異種銲接特性與顯微組織研究”, 中華民國銲接協會年會論文, 1998.
40. 楊仲霖, “電子束銲接製程參數對690合金與304L不銹鋼異種銲接之影響”, 國立成功大學機械工程研究所碩士論文, 2002.
41. 范文傑, “Nd-YAG雷射銲接製程參數對鎳基690與304L不銹鋼異種銲接之影響”, 國立成功大學機械工程研究所碩士論文, 2005.
42. http://www.fortunecity.com/village/lind/247/weld_book/fig10-32.gif.
43. 王振欽, "銲接學", 2nd ed. 2003, 高立圖書.
44. E. C. Brian, R. H. Abron and T. J. M. Rutherford, Trans. Am. Soc. Steel Treat., Vol. 21, 1933, p. 481.
45. E. L. Hall and C. L. Briant, Metal. Trans. Am. Soc. Metal, Vol. 54, 1961, p. 362.
46. R. E. Hanneman and K. T. Aust, Scripta Metall., Vol. 2, 1968, pp. 235-238.
47. J. S. Armijo, “Impurity Adsorption and Intergranular Corrosion of Austenitic Stainless Steel in Boiling HNO3-K2Cr2O7 Solutions”, Corros. Sci., Vol. 7, 1967, pp. 143-150.
48. J. S. Armijo, “Intergranular Corrosion of Nonsensitized Austenitic Stainless Steels”, Corros. Sci., Vol. 24, 1984, pp. 24-30.
49. A. B. Kinzell, Trans. Met. Soc. AIME, Vol. 194, 1952, p. 469.
50. R. Stickler and A. Vinckier, Corros. Sci., “Electron Microscope Investigation of the Intergranular Corrosion Fracture Surface in a Sensitized Austenitic Stainless Steel”, Vol. 3, 1963, p. 1.
51. A. B. Kinzell, J. Metals, N. Y., Vol. 4, 1952, p. 469.
52. J. C. Charbonnier, Rapport interne IRSID, 1974, p. 466.
53. F. Duffaut, J. P. Pouzet and P. Lacombe, “Potentiostatic Study of Structural Modifications Caused in a Ni-Cr-Fe Alloy by Heat Treatment at 650˚C”, Corros. Sci., Vol. 6, 1966, pp. 83-85.
54. W. L. Clarke, V. M. Romero and J. C. Danko, “Detecting of Sensitization in Stainless Steels Using Electrochemical Techniques”, CORROSION/77, Paper No. 180, San Francisco, Calif., 1977.
55. General Electric Report GEAP-21328, Aug. 1976, U. S. Nuclear Regulatory Commission NUREG-0251-1, available from National Technical Information Service, U. S. Department of Commerce.
56. W. L. Clarke, R. L. Cowan and W. L. Walker, “Intergranular Corrosion of Stainless Alloys”, ASTM STP 656, 1978, p. 99.
57. Annual Book of ASTM Standards, Designation G108, ASTM, Philadelphia, 1994, p. 450.
58. V. Čihal, “Intergranular Corrosion of Stainless Steels and Alloys”, Materials Science Monographs, Vol. 18, Elsevier Science Pub. Co., 1984, pp. 97-100.
59. V. Čihal, “A Potentiokinetic Reactivation Method for Predicting the ICC and IGSCC Sensitivity of Stainless Steels and Alloys”, Corros. Sci., Vol. 20, pp.737-744.
60. Annual Book of JIS Standards, Designation G0580, JIS, Tokyo, 1986, p. 440.
61. 郭聰源, “鎳基690合金銲接特性研究”, 國立成功大學機械工程研究所博士論文, 1999.
62. "Welding Handbook", 7th ed, ed. C. Weisman. Vol. 1, 1976, American Welding Society.
63. D. Radaj, "Heat effects of welding". 1992, Springer-Verlag.
64. M.G. Fontana, "Corrosion Engineering", 3rd ed., 1986, New York, McGraw Hill.
65. Inconel Alloy 600. 2002, Special Metals Corporation.
66. S. Kuo, “Welding Metallurgy”, Wiley, 1987.
67. K. E. Easterling, “Introduction to the Physical Metallurgy of Welding”, Butterworth Heinemann, 1922.
68. 吳宗峰, “鎳基600合金之敏化及電化學再活化特性研究”, 國立成功大學 材料科學及工程研究所博士論文, 2001.
69. A. A. Hermas, M. S. Morad and K. Ogura, Corros. Sci., Vol. 41, 1999, pp. 2251-2266.
70. Metals Handbook 9th ed., ASM, Vol. 13, p. 123, 1988.
71. T. Y. Kuo, “Effect of Pulsed and Continuous Nd-YAG Laser Beam Waves on the Welding of Inconel Alloy”, Science and Technology of Welding and Joining, Vol. 10(5), 2005, pp. 557-565.
72. 李孟軒, “GTAW與LBW製程對鎳基690合金對接銲之殘留應力研究”, 國立成功大學機械工程研究所碩士論文, 2007.