簡易檢索 / 詳目顯示

研究生: 嵇煥珮
Ji, Huan-Pei
論文名稱: NiFe薄膜與NiFe/IrMn交換場系統之鐵磁共振現象研究
Study of Ferromagnetic Resonance Effect in NiFe and Exchange-Biased NiFeIrMn Thin Films System
指導教授: 陳宜君
Chen, Yi-Chun
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 98
中文關鍵詞: 鐵磁共振交換場鎳鐵
外文關鍵詞: FMR, exchange bias, NiFe
相關次數: 點閱:67下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究中主要探討鎳鐵(Ni80Fe20)與鎳鐵(Ni80Fe20)/銥錳(Ir20Mn80)薄膜系統的鐵磁共振效應與交換場效應。鐵磁共振訊號的偵測採固定磁場掃描頻率的形式,因此量測電路上採用一具有高傳輸係數的共平面波導管(CPW)覆晶(flip-chip)夾具設計。樣品採濺鍍法製膜,並配合磁光柯爾效應量測薄膜磁滯曲線。單層鎳鐵薄膜分別探討不同膜厚與退火溫度之鐵磁共振效應,鎳鐵/ 銥錳薄膜系統則著重於緩衝層對其交換場(excharge field)與鐵磁共振效應的影響。實驗結果上,擬合鐵
    磁共振頻率顯示單層鎳鐵薄膜的飽和磁化強度隨膜厚
    而增加(12~16 kOe ),而經磁退火只提高飽和磁化強
    度(2~3 kOe)。本實驗製程下鎳鐵/銥錳薄膜系統在不
    具有緩衝層下,即使經過磁退火也不具有交換場現象
    ,同時其飽和磁化強度如同單層的鎳鐵薄膜。但加入
    3nm鎳鐵薄膜作為緩衝層時,薄膜晶相改善且有明顯
    交換場(40~80 Oe),此效應亦使得FMR頻率上升(在50~ 500 Oe間,上升0.7~1.4 GHz)。

    In this study, the ferromagnetic resonance (FMR) effect and exchange field for Ni80Fe20 and Ni80Fe20/Ir20Mn80 thin films were investigated. The FMR signal was detected by a scanning-frequency mode at a fixed external field. A coplanar waveguide (CPW) design was especially proposed for the flip-chip test fixture. The films were fabricated by sputtering system. Magneto-optical Kerr effect (MOKE) was used to measure hysteresis loops for the samples. The ferromagnetic resonance in single-layer Ni80Fe20 films with various thickness was studied at different annealing temperature. Moreover, the effect of adding buffer layer on the Ni80Fe2/Ir20Mn80 system is also discussed and compared in this thesis FMR signals. The fitted results of FMR frequency versus external field dependent show that the saturation magnetization (~12 to 16 kOe) of single layer Ni80Fe20 films increase with film thickness, while the magnetic annealing process increases the magnetization about 2 to 3 kOe. Without buffer layers in no exchange bias effect was abservered the Ni80Fe20/Ir20Mn80 bilayer system has even after the films were annealed and several conditions we tried. The saturation magnetization of Ni80Fe20/Ir20Mn80 bilayer is close to that of the single layer film. With 3-nm Ni80Fe20 buffer layers, the crystalline phases of Ni80Fe20 /Ir20Mn80 films were improved, and the exchange fields of the films were observed. The exchange coupling effect yields the FMR frequency be increased (by 0.7~1.4 GHz in external field 50~500 Oe)

    中文摘要 I Abstract II 致謝 III 目錄 V 表目錄 VII 圖目錄 VIII 符號 XII 正文 第一章 緒論 1 第二章 磁性原理與文獻回顧 3 2-1 物質磁性簡介 3 2-2 磁結構與磁能 11 2-3 坡莫合金(Permalloy)的性質 14 2-4 鐵磁共振效應 19 2-5 交換耦合作用(exchange coupling) 24 第三章 實驗方法 32 3-1 薄膜濺鍍製程 32 3-2 FMR實驗裝置架設 35 3-3 磁光柯爾效應(MOKE) 39 3-4 X光繞射 (X-ray diffraction) 43 第四章 結果與討論 48 4-1 鐵磁共振效應量測線路設計 48 4-1-1 共平面波導管(Coplanar waveguide, CPW) 設計與模擬 48 4-1-2 共平面波導管實際測量 56 4-2 鎳鐵薄膜的FMR效應 59 4-2-1 鎳鐵薄膜的厚度對FMR效應影響 59 4-2-2 磁退火過程對鎳鐵薄膜FMR效應影響 68 4-3 鎳鐵/銥錳系統的交換場效應與FMR效應 72 4-3-1 無緩衝層的[鎳鐵層/銥錳層]薄膜與FMR訊號變化 73 4-3-2 具緩衝層的[鎳鐵層/銥錳層]薄膜與FMR訊號變化 81 第五章 結論 94 參考目錄 97

    [1] 鄭振東,“實用磁性材料學”,全華科技出版社 (1999)
    [2] Robert C.O’Handley, ”Modern Magnetic Materials”, A Wisley Interscience Publication company (2000)
    [3] B.D.Cullity, ”Introduction to Magnetic Materials”, Chapter 9, Addison-Wesley Publishing company (1972)
    [4] 宛德福、馬興隆,“磁性物理學”,電子工業出版社 (1999)
    [5] Robert C.O’Handley, ”Modern Magnetic Materials”, A Wisley Interscience Publication company, p347~352 (2000)
    [6] J. P. Nibarger, R. Lopusnik, Z. Celinski, T. J. Silva, Appl. Phys. Lett. 83, 93 (2003)
    [7] 姜壽庭、李衛,“凝聚態物理”,第七章 (2003)
    [8] 胡裕民、黃榮俊,”鐵磁/反鐵磁金屬薄膜之間的交換磁異向性”物理雙月刊(二六卷六期),五五六頁 (2000)
    [9] W.H. Meiklejohn, C.P. Bean, Phys. Rev. Lett. 78, 366 (1950).
    [10] J. Nogués, Ivan K. Schuller, J. Magn. Magn. Mater. 192, 203 (1999).
    [11] A.E. Berkowitz, Kentaro Takano, J. Magn. Magn. Mater. 200, 552 (1999).
    [12] B. Dieny, V.S. Speriosu et al., Phys. Rev. B 43, 1297 (1991).
    [13] J.C. S. Kools, IEEE Trans. Magn. 32, 3165 (1996).
    [14] M. Lederman, IEEE Trans. Magn. 35, 794 (1999).
    [15] Adrian J. Devasahayam , Mark H. Kryder, IEEE Trans. Magn. 35, 649 (1999).
    [16] W.H. Meiklejohn, J. Appl. Phys. 33, 1328 (1962).
    [17] L. Néel, Ann. Phys.(Paris) 2, 61(1967).
    [18] D. Mauri, H.C. Seigmann et al., J. Appl. Phys. 62,3047 (1987).
    [19] A.P. Malozemoff, Phys. Rev. B 35, 3679(1987).
    [20] H. Umbayashi, Y. Ishikawa, J. Phys. Soc. Japan 21, 1281 (1966).
    [21] K.T.-Y. Kung, L.K. Louie, G.L. Gorman, J. Appl. Phys. 69, 5634 (1991).
    [22] N. Koon, Phys. Rev. Lett. 78, 4865 (1997).
    [23] T.C. Schulthess, W.H. Butler, Phys. Rev. Lett. 81, 4516 (1998).
    [24] C.H. Lai, S.A. Chen, J.C.A. Huang, J. Appl. Phys. 87, 6656 (2000).
    [25] 何信佳,博士論文集,(1994)
    [26] 林天來,碩士論文集,(1994)
    [27] 楊鴻昌“最敏感的感測元件SQUID及其前瞻性應用”物理雙月刊(二五卷五期)
    [28] 呂助增,“雷射原理與應用”,大學科學叢書,(1987)
    [29] http:www.gl.ntu.edu.tw/file/course/94_1/
    10-27-01.doc
    [30] C. Veyres, V. Fouad Hanna, Int J Electronics 48,47~56 (1980)
    [31] F.Giesen, J.Podbielski, T.Korn, D.Grundler, Appl. Phys. Lett. 86, 10A712 (2005)
    [32] Heng Gong, Bin Lu, David E. Laughlin, and David N. Lambeth, J. Appl. Phys. 87,6355 (1999)
    [33] H.N. Fuke, K. Saito, Y. Kamiguchi, H. Iwasaki, M. Sahashi, J. Appl. Phys. 81, 4004 (1997)
    [34] J.C. Eckert, P.D. Sparks, “Giant Magnetoresistance and Excha- nge Bias in Spin Valves with Pico-Scale IrMn Antiferromagnet- ic Layers”, Katherine PerdueHarvey Mudd College (2005)
    [35] J. H. Lee, H. D. Jeong, C. S. Yoon, and C. K. Kim J. Appl. Phys. 91, 1431 (2002)

    下載圖示 校內:2007-09-18公開
    校外:2007-09-18公開
    QR CODE