簡易檢索 / 詳目顯示

研究生: 余榮仁
Yu, Jung-Jen
論文名稱: 以Eringen非局部彈性力學理論分析多層奈米梁之自然振動行為
Free Vibration Analysis of Multi-walled Nanobeams using Eringen’s Nonlocal Elasticity Theory
指導教授: 吳致平
Wu, Chih-Ping
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 42
中文關鍵詞: 奈米碳管Eringen非局部彈性理論虛位移原理Reissner混合變分理論Timoshenko梁理論振動
外文關鍵詞: carbon nanotubes, Eringen’s nonlocal elasticity theory, principle of virtual displacements, Reissner’s mixed variational theorem, Timoshenko beam theory, vibration
相關次數: 點閱:148下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文探討矩形奈米梁與單層(Single-Walled, SW)、雙層(Double-Walled, DW)、乃至於多層(Multi-Walled, MW)奈米碳管(Carbon Nanotubes, CNTs)在不同的邊界條件束制下的自然振動行為,其邊界條件包含簡支承、自由端、固定端等組合邊界,該CNT結構亦考慮嵌入或非嵌入於彈性介質之中。文中分別基於虛位移原理(The Principle of Virtual Displacements, PVD)和Reissner混合變分理論(Reissner’s Mixed Variational Theorem, RMVT)推衍非局部Timoshenko梁理論下相應之強型式和弱型式Euler-Lagrange運動方程式並將其應用於SW、DW和MWCNT之自然振動分析。

    This article is intended to present free vibration analysis of single-, double-, and multi-walled (SW-, DW-, and MW-) carbon nanotubes (CNTs) with combinations of simply-supported, free, and clamped edge conditions embedded or non-embedded in an elastic medium. Based on the principle of virtual displacements (PVD) and Reissner’s mixed variational theorem (RMVT), the corresponding strong- and weak-form formulations of the local Timoshenko beam theory(TBT) are reformulated for the free vibration analysis of SW-, DW-, and MW-CNTs, and presented for illustrative purposes.

    摘要 I Extended AbstractII 誌謝 IX 表目錄 XI 圖目錄 XII 第一章 緒論 1 第二章 Eringen’s非局部彈性理論 4 第三章 凡德瓦爾交互作用力 5 3.1 He et al.之理論模型 5 3.2 Ru et al.之理論模型 6 第四章 奈米碳管與其周圍介質之交互作用 7 4.1 Winkler模型 7 4.2 Pasternak模型 7 第五章 非局部梁理論 9 5.1 Reissner混合變分理論 12 5.1.1 RMVT之強型式數學方程式 12 5.1.2 RMVT之弱型式數學方程式 14 5.2 虛位移原理17 5.2.1 虛位移原理之強型式數學方程式 17 5.2.2 虛位移原理之弱型式數學方程式 17 5.3 應用與分析比較 19 5.3.1 SWCNTs 19 5.3.2 DWCNTs和MWCNTs 20 第六章 結論23 參考文獻24

    [1] S. Iijima, Helica microtubes of graphitic carbon”, Nature 354 (1991) 56-58.
    [2] C. Li, E.T. Thostenson, T.W. Chou, Sensors and actuators based on carbon nanotubes
    and their composites: A review, Compos. Sci. Technol. 68 (2008) 1227-1249.
    [3] C. Gao, Z. Guo, J.H. Liu, X.J. Huang, The new age of carbon nanotubes: an updated review of functionalized carbon nanotubes in elec trochemical sensors, Nanoscale, 4 (2012) 1948-1963.
    [4] Q. Wang, B. Arash, A review on applications of carbon nanotubes and graphenes as nano-resonator sensors, Comput. Mater. Sci. 82 (2014) 350-360.
    [5] W.X. Chen, J.P. Tu, L.Y. Wang, H.Y. Gan, Z.D. Xu, X.B. Zhang, Tribological application of carbon nanotubes in a metal-based composite coating and composites, Carbon 41 (2003) 215-222.
    [6] G. Mittal, V. Dhand, K.Y. Rhee, S.J. Park, W.R. Lee, A review on carbon nanotubes and graphenes as fillers in reinforced polymer nanocomposites, J. Industrial Eng. Chem. 21 (2015) 11-25.
    [7] D. Janas, K.K. Koziol, A review of production methods of carbon nanotube and graphene thin films for electrothermal applications, Nanoscale 6 (2014) 3037-3045.
    [8] L. Ma, X. Dong, M. Chen, L. Zhu, C. Wang, F. Yang, Y. Dong, Fabrication and water treatment applications of carbon nanotubes (CNTs)-based composite membranes: A review, Membranes, 7 (2017), 21 pages.
    [9] X. Ren, C. Chen, M. Nagatsu, X. Wang, Carbon nanotubes as adsorbents in environmental pollution management: A review, Chem. Eng. J. 170 (2011) 395-410.
    [10] O. Gohardani, M.C. Elola, C. Elizetxea, Potential and prospective implementation of carbon nanotubes on next generation aircraft and space vehicles: A review of current and expected applications in aerospace sciences, Progress Aerospace Sci. 70 (2014) 42-68.
    [11] R. Khare, S. Bose, Carbon nanotube based composites-A review, J. Miner. Mater. Character. Eng. 4 (2005) 31-46.
    [12] K.W. Ng, W.H. Lam, S. Pichiah, A review on potential applications of carbon nanotubes in marine current turbines, Renewable and Sustainable Energy Reviews 28 (2013) 331-339.
    [13] J.M. Tan, P. Arulselvan, S. Fakurazi, H. Ithnin, M.Z. Hussein, A review on characterization and biocompatibility of functionalized carbon nanotubes in drug delivery design, J. Nanomater. 2014 (2014) 917024 (20 pages).
    [14] Z.A. Alothman, S.M. Wabaidur, Application of carbon nanotubes in extraction and chromatographic analysis: A review, Arabian J. Chem. (2018) https://doi.org/10.1016/j.arabjc.2018.05.012.
    [15] A. Bianco, K. Kostarelos, M. Prato, Applications of carbon nanotubes in drug delivery, Current Opinion Chem. Biology 9 (2005) 674-679.
    [16] C.D.L. Casas, W. Li, A review of application of carbon nanotubes for lithium ion battery anode material, J. Power Sources 208 (2012) 74-85.
    [17] V. Datsyuk, M. Kalyva, K. Papagelis, J. Parthenios, D. Tasis, A. Siokou, I. Kallitsis, C. Galiotis, Chemical oxidation of multiwalled carbon nanotubes, Carbon 46 (2008) 833-840.
    [18] A. Jakubus, M. Paszkiewicz, P. Stepnowski, Carbon nanotubes application in the extraction techniques of pesticides: A review, Critical Rev. Analyt. Chem. 47 (2017) 76-91.
    [19] C. Luo, L. Xie, Q. Wang, G. Luo, C. Liu, A review of the application and performance of carbon nanotubes in fuel cells, J. Nanomater. 2015 (2015) 560392 (10 Pages).
    [20] Y.T. Ong, A.L. Ahmad, S.H.S. Zein, S.H. Tan, A review on carbon nanotubes in an environmental protection and green engineering perspective, Brazilian J. Chem. Eng. 27 (2010) 227-242.
    [21] P.J.F. Harris, P.J.F. Carbon Nanotube Science: Synthesis, Properties and Applications, Cambridge University Press, UK (2009).
    [22] E.T. Thostenson, Z. Ren, T.W. Chou, Advances in the science and technology of carbon nanotubes and their composites: a review, Compos. Sci. Technol. 61 (2001) 1899-1912.
    [23] M.F.L. De Volder, S.H. Tawfick, R.H. Baughman, A.J. Hart, Carbon nanotubes: present and future commercial applications, Sci. 339 (2013) 535-539.
    [24] A.C. Eringen, On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves, J. Appl. Phys. 54 (1983) 4703-4710.
    [25] A.C. Eringen, Nonlocal Continuum Field Theories, Springer-Verlag, New York, USA (2002).
    [26] A.C. Eringen, D.G.B.Edelen, On nonlocal elasticity, Int. J. Eng. Sci. 10 (1972) 233-248.
    [27] R. Ansari, S. Sahmani, Small scale effect on vibrational response of single-walled carbon nanotubes with different boundary conditions based on nonlocal beam models, Commun. Nonlinear Sci. Numer. Simult. 17 (2012) 1965-1979.
    [28] K. Kiani, B. Mehri, Assessment of nanotube structures under a moving nanoparticle using nonlocal beam theories, J. Sound Vib. 329 (2010) 2241-2264.
    [29] J.N. Reddy, S.D. Pang, Nonlocal continuum theories of beams for the analysis of carbon nanotubes, J. Appl. Phys. 103 (2008) 023511 (16 pages).
    [30] H.S. Shen, C.L. Zhang, Nonlocal beam model for nonlinear analysis of carbon nanotubes on elastomeric substrates, Comput. Mater. Sci. 50 (2011) 1022-1029.
    [31] M. Simsek, Vibration analysis of a single-walled carbon nanotube under action of a moving harmonic load based on nonlocal elasticity theory, Physica E 43 (2010) 182-191.
    [32] R. Ansari, R. Gholami, M.A. Darabi, Thermal buckling analysis of embedded single-walled carbon nanotubes with arbitrary boundary conditions using the nonlocal Timoshenko beam theory, J. Therm. Stresses 4 (2011) 1271-1281.
    [33] A. Benzair, A. Tounsi, A. Besseghier, H. Heireche, N. Moulay, L. Boumia, The thermal effect on vibration of single-walled carbon nanotubes using nonlocal Timoshenko beam theory, J. Phys. D: Appl. Phys. 41 (2008) 225404 (10 pages).
    [34] L. Boumia, M. Zidour, A. Benzair, A. Tounsi, A Timoshenko beam model for vibration analysis of chiral single-walled carbon nanotubes, Physica E 59 (2014) 186-191.
    [35] S. Hosseini-Hashemi, R. Nazemnezhad, M. Bedroud, Surface effects on nonlinear free vibration of functionally graded nanobeams using nonlocal elasticity, Appl. Math. Modell. 38 (2014) 3538-3553.
    [36] H.L. Lee, W.J. Chang, Surface effects on frequency analysis of nanotubes using nonlocal Timoshenko beam theory, J. Appl. Phys. 108 (2010) 093503 (9 pages).
    [37] C.P. Wu, W.W. Lai, Free vibration of an embedded single-walled carbon nanotube with various boundary conditions using the RMVT-based nonlocal Timoshenko beam theory and DQ method, Physica E 68 (2015) 8-21.
    [38] C.P. Wu, W.W. Lai, Reissner’s mixed variational theorem-based nonlocal Timoshenko beam theory for a single-walled carbon nanotube embedded in an elastic medium and with various boundary conditions, Compos. Struct. 122 (2015) 390-404.
    [39] J. Yang, L.L. Ke, S. Kitipornchai, Nonlinear free vibration of single-walled carbon nanotubes using nonlocal Timoshenko beam theory, Physica E 42 (2010) 1727-1735.
    [40] L. Behera, S. Chakraverty, Recent researches on nonlocal elasticity theory in the vibration of carbon nanotubes using beam models: A review, Arch. Computat Mechods Eng. 24 (2017) 481-494.
    [41] F. Ebrahimi, E. Salari, Thermo-mechanical vibration analysis of a single-walled carbon nanotube embedded in an elastic medium based on higher-order shear deformation beam theory, J. Mech. Sci. Technol. 29 (2015) 3797-3803.
    [42] M. Maachou, M. Zidour, H. Baghdadi, N. Ziane, A. Tounsi, A nonlocal Levinson beam model for free vibration analysis of zigzag single-walled carbon nanotubes including thermal effects, Solid State Commun. 151 (2011) 1467-1471.
    [43] Y.L. Kuo, Nonlinear finite element analysis of nonlocal elastic nanobeams with large-amplitude vibrations, J. Comput. Theoretical Nanosci. 10 (2013) 488-495.
    [44] P. Ribeiro, O. Thomas, Nonlinear modes of vibration and internal resonances in nonlocal beams, J. Comput. Nonlinear Dyn. 12 (2017) 031017.
    [45] S.C. Pradhan, Nonlocal finite element analysis and small scale effects of CNTs with Timoshenko beam theory, Fin. Elem. Anal. Des. 50 (2012) 8-20.
    [46] S. Adali, Variational principles for transversely vibrating multiwalled carbon nanotubes based on nonlocal Euler-Bernoulli beam model, Nano Lett. 9 (2009) 1737-1741.
    [47] R. Ansari, H. Ramezannezhad, R. Gholami, Nonlocal beam theory for nonlinear vibrations of embedded multiwalled carbon nanotubes in thermal environment, Nonlinear Dyn. 67 (2012) 2241-2254.
    [48] A.G. Arani, H. Rabbani, S. Amir, Z.K. Maraghi, M. Mohammadimehr, E. Haghparast, Analysis of nonlinear vibrations for multi-walled carbon nanotubes embedded in an elastic medium, J. Solid Mech. 3 (2011) 258-270.
    [49] B. Fang, Y.X. Zhen, C.P. Zhang, Y. Tang, Nonlinear vibration analysis of double-walled carbon nanotubes based on nonlocal elasticity theory, Appl. Math. Modell. 37 (2013) 1096-1107.
    [50] A. Khosrozadeh, M.A. Hajabasi, Free vibration of embedded double-walled carbon nanotubes considering nonlinear interlayer van der Waals forces, Appl. Math. Modell. 36 (2012) 997-1007.
    [51] P. Lu, H.P. Lee, C. Lu, P.Q. Zhang, Application of nonlocal beam models for carbon nanotubes, Int. J. Solids Struct. 44 (2007) 5289-5300.
    [52] A. Shakouri, R.M. Lin, T.Y. Ng, Free flexural vibration studies of double-walled carbon nanotubes with different boundary conditions and modeled as nonlocal Euler beams via the Galerkin method, J. Appl. Phys. 106 (2009) 094307 (9 pages).
    [53] B. Wang, Z. Deng, K. Zhang, J. Zhou, Dynamic analysis of embedded curved double-walled carbon nanotubes based on nonlocal Euler-Bernoulli beam theory, Multidisc. Model Mater. Struct. 8 (2012) 432-453.
    [54] Y. Yan, W. Wang, L. Zhang, Applied multiscale method to analysis of nonlinear vibration for double-walled carbon nanotubes, Appl. Math. Modell. 35 (2011) 2279-2289.
    [55] R. Ansari, R. Gholami,M.A. Darabi, Nonlinear free vibration of embedded double-walled carbon nanotubes with layerwise boundary conditions, Acta Mech. 223 (2012) 2523-2536.
    [56] R. Ansari, R. Gholami, S. Sahmani, A. Norouzzadeh, M. Bazdid-Vahdati, Dynamic stability analysis of embedded multi-walled carbon nanotubes in thermal environment, Acta Mech. Solida Sinica, 28 (2015) 659-667.
    [57] M.C. Ece, M. Aydogdu, Nonlocal elasticity effect on vibration of in-plane loaded double-walled carbon nano-tubes, Acta Mech. 190 (2007) 185-195.
    [58] L.L. Ke, Y. Xiang, J. Yang, S. Kitipornchai, Nonlinear free vibration of embedded double-walled carbon nanotubes based on nonlocal Timoshenko beam theory, Comput. Mater. Sci. 47 (2009) 409-417.
    [59] I. Kucuk, I.S. Sadek, S. Adali, Variational principles for multiwalled carbon nanotubes undergoing vibrations based on nonlocal Timoshenko beam theory, J. Nanomater. 2010 (2010) 461252 (7 pages).
    [60] P. Soltani, P. Bahar, A. Farshidianfar, An efficient GDQ model for vibration analysis of a multiwall carbon nanotube on Pasternak foundation with general boundary conditions, Proc. IMechE Part C: J. Mech. Eng. Sci. 225 (2011) 1730-1741.
    [61] C.M. Wang, V.B.C. Tan, Y.Y. Zhang, Timoshenko beam model for vibration analysis of multi-walled carbon nanotubes, J. Sound Vib. 294 (2006) 1060-1072.
    [62] C.P. Wu, Y.H. Chen, Z.L. Hong, C.H. Lin, Nonlinear vibration analysis of an embedded multi-walled carbon nanotube, Adv. Nano Res. 6 (2018) 163-182.
    [63] M. Aydogdu, Effects of shear deformation on vibration of doublewalled carbon nanotubes embedded in an elastic medium, Arch. Appl. Mech. 78 (2008) 711-723.
    [64] R. Ansari, R. Rajabiehfard, B. Arash, Thermal buckling of multiwalled carbon nanotubes using a semi-analytical finite element approach, J. Therm. Stresses 34 (2011) 817-834.
    [65] C.P. Wu, C.H. Lin, Y.M. Wang, Nonlinear finite element analysis of a multi-walled carbon nanotube resting on a Pasternak foundation, Mech. Adv. Mater. Struct. (2018) DOI: 10.1080/15376494.2018.1444222.
    [66] E. Reissner, On a certain mixed variational theorem and a proposed application, Int. J. Numer. Methods Eng. 20 (1984) 1366-1368.
    [67] E. Reissner, On a mixed variational theorem and on a shear deformable plate theory, Int. J. Numer. Methods Eng. 23 (1986) 193-198.
    [68] Q. Wang, C. Wang, The constitutive relation and small scale parameter of nonlocal continuum mechanics for modelling carbon nanotubes, Nanotechnol. 18 (2007) 075702 (4 pages).
    [69] A.Q. He, S. Kitipornchai, C.M. Wang, K.M. Liew, Modeling of van der Waals force for infinitesimal deformation of multi-walled carbon nanotubes treated as cylindrical shells, Int. J. Solids Struct. 42 (2005) 6032-6047.
    [70] X.Q. He, S. Kitipornchai, K.M. Liew, Buckling analysis of multi-walled carbon nanotubes: a continuum model accounting for van der Waals interaction, J. Mech. Phys. Solids 53 (2005) 303-326.
    [71] C.Q. Ru, Effect of van der Waals forces on axial buckling of a double-walled carbon nanotube, J. Appl. Phys. 87 (2000) 7227-7231.
    [72] C.Q. Ru, Elastic Models for Carbon Nanotubes, Encyclopedia Nanosci. Nanotech. 2 (2004) 731-744.
    [73] C.P. Wu, Z.L. Hong, Y.M. Wang, Geometrically nonlinear static analysis of an embedded multi-walled carbon nanotube and the van der Waals interaction, J. Nanomech. Micromech. 7 (2017) 04017012 (12 pages).
    [74] J.N. Reddy, J.N. Nonlocal theories for bending, buckling and vibration of beams, Int. J. Eng. Sci. 45 (2007) 288-307.
    [75] H.T. Thai, A nonlocal beam theory for bending, buckling, and vibration of nanobeams, Int. J. Eng. Sci. 52 (2012) 56-64.
    [76] H.T. Thai, T.P. Vo, A nonlocal sinusoidal shear deformation beam theory with application to bending, buckling, and vibration of nanobeams, Int. J. Eng. Sci. 54 (2012) 58-66.
    [77] K. Aissani, M.B. Bouiadjra, M. Ahouel, A. Tounsi, A new nonlocal hyperbolic shear deformation theory for nanobeams embedded in an elastic medium, Struct. Eng. Mech., 55 (2015) 743-763.
    [78] M. Aydogdu, A general nonlocal beam theory: Its application to nanobeam bending, buckling and vibration, Physica E 41 (2009) 1651-1655.
    [79] Y.Y. Zhang, C.M. Wang, N. Challamel, Bending, buckling, and vibration of micro/nanobeams by hybrid nonlocal beam model, J. Eng. Mech. 136 (2010) 562-574.
    [80] M.A. Eltaher, S.A. Emam, F.F. Mahmoud, Static and stability analysis of nonlocal functionally graded nanobeams, Compos. Struct. 96 (2013) 82-88.
    [81] M.A. Eltaher, A.E. Alshorbagy, F.F. Mahmoud, Vibration analysis of Euler-Bernoulli nanobeams by using finite element method, Appl. Math. Modell. 37 (2013) 4787-4797.
    [82] N.T. Nguyen, N.I. Kim, J. Lee, Mixed finite element analysis of nonlocal Euler-Bernoulli nanobeams, Fin. Elem. Anal. Des. 106 (2015) 65-72.
    [83] S.C. Pradhan, U. Mandal, Finite element analysis of CNT’s based on nonlocal elasticity and Timoshenko beam theory including thermal effect, Physica E 53 (2013) 223-232.
    [84] T. Merzouki, M. Ganapathi, O. Polit, A nonlocal higher-order curved beam finite model including thickness stretching effect for bending analysis of curved nanobeams, Mech. Adv. Mater. Struct. (2017) DOI: doi.org/10.1080/15376494.2017.1410903.
    [85] O. Polit, T. Merzouki, M. Ganapathi, Elastic stability of curved nanobeam based on higher-order shear deformation theory and nonlocal analysis by finite element approach, Fin. Elem. Anal. Des. 146 (2018) 1-15.
    [86] J.N. Reddy, S. El-Borgi, Eringen’s nonlocal theories of beams accounting for moderate rotations, Int. J. Eng. Sci. 82 (2014) 159-177.
    [87] J.N. Reddy, S. El-Borgi, J. Romanoff, Nonlinear analysis of functionally graded microbeams using Eringen’s nonlocal differential model, Int. J. Nonlinear Mech. 67 (2014) 308-318.
    [88] E. Carrera, An assessment of mixed and classical theories on global and local response of multilayered orthotropic plates, Compos. Struct. 50 (2000)183-198.
    [89] E. Carrera, An assessment of mixed and classical theories for the thermal stress analysis of orthotropic multilayered plates, J. Therm. Stresses 23 (2000) 797-831.
    [90] E. Carrera, E. Historical review of zig-zag theories for multilayered plates and shells, Appl. Mech. Rev. 56 (2003) 287-308.
    [91] E. Carrera, Assessment of theories for free vibration analysis of homogeneous and multilayered plates, Shock Vib. 11 (2004) 261-270.
    [92] C.P. Wu, H.Y. Li, The RMVT- and PVD-based finite layer methods for the three-dimensional analysis of multilayered composite and FGM plates, Compos. Struct. 92 (2010) 2476_2496.
    [93] C.P. Wu, H.Y. Li, RMVT- and PVD-based finite layer methods for the quasi-3D free vibration analysis of multilayered composite and FGM plates, CMC_Comput. Mater. Continua 19 (2010) 155_198.
    [94] C.P. Wu, K.H. Chiu, Y.M. Wang, A review on the three-dimensional analytical approaches of multilayered and functionally graded piezoelectric plates and shells, CMC_Comput. Mater. Continua 8 (2008) 93_132.
    [95] S. Brischetto, E. Carrera, Refined 2D models for the analysis of functionally graded piezoelectricity plates, J. Intell. Mater. Syst. Struct. 20 (2009) 1783-1797.
    [96] S. Brischetto, E. Carrera, Advanced mixed theories for bending analysis of functionally graded plates, Comput. Struct. 88 (2010) 1474-1483.
    [97] S. Brischetto, E. Carrera, Coupled thermos-electro-mechanical analysis of smart plates embedding composite and piezoelectric layers, J. Therm. Stresses 35 (2012) 766-804.
    [98] C.P. Wu, H.Y. Li, RMVT-based finite cylindrical prism methods for multilayered functionally graded circular hollow cylinders with various boundary conditions, Compos. Struct. 100 (2013) 592-608.
    [99] C.P. Wu, Y.C. Liu, A review of semi-analytical numerical methods for laminated composite and multilayered functionally graded elastic/piezoelectric plates and shells, Compos. Struct., 147 (2016) 1-15.
    [100] C.P. Wu, S.T. Peng, Y.C. Chen, RMVT- and PVD-based finite cylindrical layer methods for the three-dimensional buckling analysis of multilayered FGM cylinders under axial compression, Appl. Math. Modell. 38 (2014) 233-252.
    [101] C.P. Wu, J.Y. Liou, RMVT-based nonlocal Timoshenko beam theory for stability analysis of embedded single-walled carbon nanotubes with various boundary conditions, Int. J. Struct. Stab. Dyn. 16 (2016) 1550068 (29 pages).
    [102] Y.M. Wang, S.M. Chen, C.P. Wu, A meshless collocation method based on the differential reproducing kernel interpolation, Comput. Mech. 45 (2010) 585-606.
    [103] C.W. Bert, M. Malik, Differential quadrature method in computational mechanics: A review, Appl. Mech. Rev. 49 (1996) 1-27.
    [104] H. Du, M.K. Lim, R.M. Lin, Application of generalized differential quadrature method to structural problems, Int. J. Numer. Meth. Eng. 37 (1994) 1881-1896.
    [105] C.P. Wu, C.Y. Lee, Differential quadrature solution for the free vibration analysis of laminated conical shells with variable stiffness, Int. J. Mech. Sci. 43 (2001) 1853-1869.
    [106] G.R. Cowper, The shear coefficient in Timoshenko’s beam theory, J. Appl. Mech. 33 (1966) 335-340.
    [107] S.M. Chen, C.P. Wu, Y.M. Wang, Hermite DRK interpolation-based collocation method for the analysis of Bernoulli-Euler beams and Kirchhoff-Love plates, Comput. Mech. 47 (2011) 425-453.
    [108] J.N. Reddy, An Introduction to the Finite Element Method, McGraw-Hill, New York, USA (1984).
    [109] H. Ehteshami, M.A. Hajabasi, Analytical approaches for vibration analysis of multi-walled carbon nanotubes modeled as multiple nonlocal Euler beams, Physica E 44 (2011) 270-285.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE