| 研究生: |
阮停遵 Nguyen, Dinh Tuan |
|---|---|
| 論文名稱: |
QCM作為石墨烯氫氣吸附的直接量測方法 QCM for Direct Measurement of Graphene-based Hydrogen Storage |
| 指導教授: |
謝馬利歐
Mario Hofmann |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 英文 |
| 論文頁數: | 50 |
| 外文關鍵詞: | graphene, hydrogen storage, microbalance, QCM |
| 相關次數: | 點閱:114 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Hydrogen fuel cells are expected to power a new generation of clean, efficient vehicles in the future. One of the major technical obstacles that currently inhibits the popularization of these vehicles is the hydrogen storage problem. Among the candidates for hydrogen storage material, graphene stands out with its superior properties (e.g. huge surface area, stability, decreasing price...). Research into the potential of graphene-based hydrogen storage, however, is limited by our inability to make accurate measurement of hydrogen adsorption in graphene since it only exists in tiny quantities. In this project, we examine the possibility of using a quartz crystal microbalance (QCM) for a direct and simple, yet precise and inexpensive method to monitor hydrogen storage in graphene and similar materials.
1. OECD, Energy for Sustainable Development, in OECD Contribution to United Nations Commission on Sustainable Development 15. 2007.
2. Basic Research Needs for the Hydrogen Economy, in Basic Energy Sciences Workshop on Hydrogen Production, Storage, and Use, M. Dresslhaus, Editor. 2003, Argonne National Laboratory.
3. Abbott, D., Keeping the Energy Debate Clean: How Do We Supply the World's Energy Needs? Proceedings of the Ieee, 2010. 98(1): p. 42-66.
4. Balat, M., Potential importance of hydrogen as a future solution to environmental and transportation problems. International Journal of Hydrogen Energy, 2008. 33(15): p. 4013-4029.
5. Smith, M. Clearing the air about the hydrogen economy. Chemistry World, 2013.
6. Offer, G.J., et al., Comparative analysis of battery electric, hydrogen fuel cell and hybrid vehicles in a future sustainable road transport system. Energy Policy, 2010. 38(1): p. 24-29.
7. Energy, U.S.D.o., Energy Department Launches Public-Private Partnership to Deploy Hydrogen Infrastructure. 2014.
8. Toyota. Toyota Ushers in the Future with Launch of 'Mirai' Fuel Cell Sedan. Toyota Global Newsroom November 18, 2014.
9. Schlapbach, L. and A. Zuttel, Hydrogen-storage materials for mobile applications. Nature, 2001. 414(6861): p. 353-358.
10. Yang, J., et al., High capacity hydrogen storage materials: attributes for automotive applications and techniques for materials discovery. Chemical Society Reviews, 2010. 39(2): p. 656-675.
11. Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan, U.D.o. Energy, Editor. 2012, updated October 2014: Washington, D.C.
12. Eberle, U., B. Muller, and R. von Helmolt, Fuel cell electric vehicles and hydrogen infrastructure: status 2012. Energy & Environmental Science, 2012. 5(10): p. 8780-8798.
13. Romm, J.J., The hype about hydrogen. Issues in Science and Technology, 2004. 20(3): p. 74-81.
14. Eberle, U., M. Felderhoff, and F. Schuth, Chemical and Physical Solutions for Hydrogen Storage. Angewandte Chemie-International Edition, 2009. 48(36): p. 6608-6630.
15. Jorgensen, S.W., Hydrogen storage tanks for vehicles: Recent progress and current status. Current Opinion in Solid State and Materials Science, 2011. 15(2): p. 39-43.
16. Kang, J.E., et al., Refueling hydrogen fuel cell vehicles with 68 proposed refueling stations in California: Measuring deviations from daily travel patterns. International Journal of Hydrogen Energy, 2014. 39(7): p. 3444-3449.
17. Graham, T., On the occlusion of hydrogen gas by metals. Proceedings of the Royal Society of London, 1867. 16: p. 422-427.
18. Durbin, D.J. and C. Malardier-Jugroot, Review of hydrogen storage techniques for on board vehicle applications. International Journal of Hydrogen Energy, 2013. 38(34): p. 14595-14617.
19. Umegaki, T., et al., Boron- and nitrogen-based chemical hydrogen storage materials. International Journal of Hydrogen Energy, 2009. 34(5): p. 2303-2311.
20. Di Profio, P., et al., Comparison of hydrogen hydrates with existing hydrogen storage technologies: Energetic and economic evaluations. International Journal of Hydrogen Energy, 2009. 34(22): p. 9173-9180.
21. Mueller, U., et al., Metal-organic frameworks-prospective industrial applications. Journal of Materials Chemistry, 2006. 16(7): p. 626-636.
22. Cha, M.-H., et al., Iron-Decorated, Functionalized Metal Organic Framework for High-Capacity Hydrogen Storage: First-Principles Calculations. The Journal of Physical Chemistry C, 2010. 114(33): p. 14276-14280.
23. Chen, Y.L., et al., Mechanics of hydrogen storage in carbon nanotubes. Journal of the Mechanics and Physics of Solids, 2008. 56(11): p. 3224-3241.
24. Assfour, B., et al., Packings of Carbon Nanotubes – New Materials for Hydrogen Storage. Advanced Materials, 2011. 23(10): p. 1237-1241.
25. Yang, R.T., Hydrogen storage by alkali-doped carbon nanotubes-revisited. Carbon, 2000. 38(4): p. 623-626.
26. Geim, A.K. and K.S. Novoselov, The rise of graphene. Nature Materials, 2007. 6(3): p. 183-191.
27. Geim, A.K., Graphene: Status and Prospects. Science, 2009. 324(5934): p. 1530-1534.
28. Pumera, M., Graphene-based nanomaterials for energy storage. Energy & Environmental Science, 2011. 4(3): p. 668-674.
29. Tozzini, V. and V. Pellegrini, Prospects for hydrogen storage in graphene. Physical Chemistry Chemical Physics, 2013. 15(1): p. 80-89.
30. Patchkovskii, S., et al., Graphene nanostructures as tunable storage media for molecular hydrogen. Proceedings of the National Academy of Sciences of the United States of America, 2005. 102(30): p. 10439-10444.
31. Dimitrakakis, G.K., E. Tylianakis, and G.E. Froudakis, Pillared Graphene: A New 3-D Network Nanostructure for Enhanced Hydrogen Storage. Nano Letters, 2008. 8(10): p. 3166-3170.
32. Du, A., Z. Zhu, and S.C. Smith, Multifunctional Porous Graphene for Nanoelectronics and Hydrogen Storage: New Properties Revealed by First Principle Calculations. Journal of the American Chemical Society, 2010. 132(9): p. 2876-2877.
33. Zhang, Y., H. Sun, and C. Chen, New template for metal decoration and hydrogen adsorption on graphene-like C3N4. Physics Letters A, 2009. 373(31): p. 2778-2781.
34. Ren, W. and H.-M. Cheng, The global growth of graphene. Nat Nano, 2014. 9(10): p. 726-730.
35. Jurgen Keller, R.S., Volumetry, in Gas Adsorption Equilibria. 2005, Springer US. p. 79-114.
36. Jurgen Keller, R.S., Gravimetry, in Gas Adsorption Equilibria. 2005, Springer US. p. 117-179.
37. Belmabkhout, Y., M. Frère, and G.D. Weireld, High-pressure adsorption measurements. A comparative study of the volumetric and gravimetric methods. Measurement Science and Technology, 2004. 15(5): p. 848.
38. Broom, D.P., The accuracy of hydrogen sorption measurements on potential storage materials. International Journal of Hydrogen Energy, 2007. 32(18): p. 4871-4888.
39. Lan, A. and A. Mukasyan, Hydrogen Storage Capacity Characterization of Carbon Nanotubes by a Microgravimetrical Approach. The Journal of Physical Chemistry B, 2005. 109(33): p. 16011-16016.
40. Kulchytskyy, I., M.G. Kocanda, and T. Xu, Direct mass determination of hydrogen uptake using a quartz crystal microbalance. Applied Physics Letters, 2007. 91(11): p. -.
41. Speight, R.E. and M.A. Cooper, A Survey of the 2010 Quartz Crystal Microbalance Literature. Journal of Molecular Recognition, 2012. 25(9): p. 451-473.
42. Lim, S.C., et al., Dual quartz crystal microbalance for hydrogen storage in carbon nanotubes. International Journal of Hydrogen Energy, 2007. 32(15): p. 3442-3447.
43. Zoric´, I., et al., Localized Surface Plasmons Shed Light on Nanoscale Metal Hydrides. Advanced Materials, 2010. 22(41): p. 4628-4633.
44. Johansson, M., C.W. Ostenfeld, and I. Chorkendorff, Adsorption of hydrogen on clean and modified magnesium films. Physical Review B, 2006. 74(19): p. 4.
45. Si, X., et al., High and selective CO2 uptake, H2storage and methanol sensing on the amine-decorated 12-connected MOF CAU-1. Energy & Environmental Science, 2011. 4(11): p. 4522-4527.
46. Vig, J.R., Quartz Crystal Resonators and Oscillators for Frequency Control and Timing Applications. 2000, U.S. Army Communications-Electronics Command.
47. Johnson, G.R., History of the industrial production and technical development of single crystal cultured quartz. Proceedings of the 2004 IEEE International Frequency Control Symposium And Exhibition (IEEE Cat. No.04CH37553C), 2004: p. 35-45.
48. Lu, C., Chapter 2 - Theory and Practice of the Quartz Crystal Microbalance, in Methods and Phenomena, L.U. C and C. A.W, Editors. 1984, Elsevier. p. 19-61.
49. Loic J. Blum, P.R.C., ed. Biosensor Principles and Applications. 1991, Taylor & Francis.
50. O'Sullivan, C.K. and G.G. Guilbault, Commercial quartz crystal microbalances - theory and applications. Biosensors and Bioelectronics, 1999. 14(8): p. 663-670.
51. Ishizaki, A., H. Sekimoto, and Y. Watanabe, Three-dimensional analysis of spurious vibrations of rectangular AT-cut quartz plates. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 1997. 36(3A): p. 1194-1200.
52. Sauerbrey, G., Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung. Zeitschrift für Physik, 1959. 155(2): p. 206-222.
53. King, W.H., Piezoelectric Sorption Detector. Analytical Chemistry, 1964. 36(9): p. 1735-1739.
54. Nomura, T. and M. Okuhara, Frequency shifts of piezoelectric quartz crystals immersed in organic liquids. Analytica Chimica Acta, 1982. 142(0): p. 281-284.
55. Lu, C.S. and O. Lewis, Investigation of film‐thickness determination by oscillating quartz resonators with large mass load. Journal of Applied Physics, 1972. 43(11): p. 4385-4390.
56. Kanazawa, K.K. and J.G. Gordon, Frequency of a quartz microbalance in contact with liquid. Analytical Chemistry, 1985. 57(8): p. 1770-1771.
57. Prospector®. Acrylic Typical Properties Generic Acrylic (PMMA). 15 Jan 2015]; Available from: http://plastics.ulprospector.com/generics/3/c/t/acrylic-properties-processing.
58. MicroChem, Nano PMMA and Copolymer. 2001.
59. Bajuri, S.N.M., et al. PMMA Characterization and Optimization for Nano Structure Formation. in Proc. of 1st National Conference on Electronic Design. 2005.
60. Wharfe. Quartz Crystal Microbalance with Audio Output. 2010; Available from: http://www.wharfe-education.com/.
61. Ballato, A., Equivalent circuits for resonators and transducers driven piezoelectrically. 1990, DTIC Document.
62. Quartz Crystal Microbalance Theory and Calibration (SRS Application Notes). Available from: http://www.thinksrs.com/downloads/PDFs/ApplicationNotes/QCMTheoryapp.pdf.
63. Vanýsek, P. and L.A. Delia, Impedance Characterization of a Quartz Crystal Microbalance. Electroanalysis, 2006. 18(4): p. 371-377.
64. Statek, The quartz crystal model and its frequency (Technical Note 32). 2006, Statek Corp.
65. Wajid, A., On the accuracy of the quartz-crystal microbalance (QCM) in thin-film depositions. Sensors and Actuators a-Physical, 1997. 63(1): p. 41-46.
66. Arshad, S., M.M. Salleh, and M. Yahaya, The effect of surface microstructure on the response of titanium dioxide coated with cobalt-porphyrin thin films towards gases in quartz crystal microbalance sensor. 2006 IEEE International Conference on Semiconductor Electronics, 2007: p. 281-285.