簡易檢索 / 詳目顯示

研究生: 李紀緯
Lee, Chi-Wei
論文名稱: 生物性介面活性劑對院內感染菌株生物膜之抑制效能評估
Evaluation of Biosurfactant Efficiency in Removal of Nosocomial Microbes in Biofilm
指導教授: 蘇慧貞
Su, Huey-Jen
學位類別: 碩士
Master
系所名稱: 醫學院 - 環境醫學研究所
Department of Environmental and Occupational Health
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 87
中文關鍵詞: 綠膿桿菌金黃色葡萄球菌院內感染生物性介面活性劑生物膜
外文關鍵詞: Staphylococcus aureus, Nosocomial infection, biofilm, Pseudomonas aeruginosa, biosurfactant
相關次數: 點閱:125下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 根據台灣疾病管制局的資料顯示,病患平均住院一天受院內感染機率約4‰,而在加護病房的病患中,平均住院一天感染機率更高達15‰的可能性,其中又以生物膜造成之感染率最被關注。有鑒於此,許多滅菌及消毒法均廣泛的被應用於醫療器材及環境上之微生物控制處理。然而,這些傳統方法亦隱含其缺點,倘若處理不當,未完全去除之部分微生物便很容易再次滋長,如利用UV紫外線殺菌之法;更可能導致微生物具有抗藥性,如利用化學處理法等。本研究擬利用測試生物性介面活性劑對院內感染常見菌種生物膜之殺菌及抑菌效果,並進一步評估其應用於院內感染環境控制之可行性。研究中選擇了兩株臨床菌株Psedomonas aeruginosa 91P8以及Staphylococcus aureus 920作為實驗菌株,並且將其培養成生物膜,隨後再添加介面活性劑進行生物膜崩解作用,活性劑則選用Rhamnolipid,測試的項目包括不同活性劑濃度以及不同的抑制時間。此外,亦使用一般院內常用殺菌劑如povidone iodine、alcohol、bleach進行生物膜殺菌測試,並檢測殺菌劑與生物性介面活性劑一同作用時之殺菌效能為何。結果顯示,兩株菌之生物膜於16μg/ml Rhamnolipid抑制作用下,均可達到最高減少量約有69.9%以及57%之多;而當同時添加alcohol-Rhamnolipid混合劑對於抑制生物膜比單一使用alcohol約可使其存活度多降低約8%。相同的,使用iodine-Rhamnolipid和hypochlorite-Rhamnolipid 混合劑亦比單一抑制劑作用多降低生物膜存活度約7%及10%。本研究發現當添加生物性介面活性劑與殺菌劑同時抑制生物膜時,對於殺菌與去除生物膜的能力有一定程度的增加,此結果將可提供未來應用於控制院內微生物滋長傳播之可行性,以期減低院內感染之發生。

    Taiwan’s CDC (Center for Disease Control and Prevention) has reported that nosocomial infection rate is around 4 % when hospitalized for one day, and up to 15% in the intensive care units while the risk resulting from the contact with biofilm is considered most noteworthy. Although various measures have been adopted to sterilize and disinfect microbes in different pathways, they have not been considered complete and free of concerns. This study was aimed to evaluate the biosurfactant, a redeveloped biological substance, in the inhibition of the microbial growth and to establish a simple system for controlling and monitoring microbes attributable to nosocomial infection. Two clinical strains used in the study, Pseudomonas aeruginosa 91P8 and Staphylococcus aureus 920, were cultivated as biofilm for testing. Rhamnolipid, a biosurfactant, was added into biofilm to evaluate the inhibition efficiency under different concentrations and for different durations. Other disinfectants commonly used in hospital including povidone iodine, alcohol, and hypochlorite, were also used to examine the disinfection capability with co-existence of biosurfactants. In inhibition assay, P. aeruginosa and S. aureus biofilm were reduced by 69.9% and 57.0% of biofilm growth respectively when using 16 μg/ml Rhamnolipid. Use of iodine and biosurfactant mixture reduced the survival percentage of biofilm to zero, in comparison to use only iodine as a single disinfectant. Application of alcohol and hypochlorite decreased the biofilm survival percentage by 7% and 10%, respectively. Our study showed that using the biosurfactant could effectively increase disinfection capability, and therefore reduce the risk of nosocomial infection caused by biofilms in hospitals.

    Abstract IV 1.1 Nosocomial infection 1 1.2 Nosocomial-infection microorganisms 1 1.3 Data of nosocomial infection in America and Taiwan 3 1.4 The transmission pathway of nosocomial infection from medical devices 4 1.5 The processes of biofilm formation 5 1.6 The biofilm life cycle 5 1.7 Resistance of biofilms to antimicrobial agents 6 1.8 Conventional methods of removal biofilm 7 1.9 Conventional methods and indoor air quality 7 1.10 Precaution of using biocides 8 1.11 Application of surfactants 9 1.12 Biosurfactants 9 2-1 Objective 10 2-2 Flow chart 11 Chapter 2 12 Material and Method 12 2.1 Pilot test 12 2.2 Bacteria strains 12 2.3 Biofilm formation 13 2.5 Microscopic analysis of biofilms 14 2.6 Crystal violet biofilm susceptibility assay by using disinfectants 15 2.7 Biofilm XTT reduction assay by using disinfectants 16 2.8 Biofilm inhibition assay by using Rhamnolipid 16 2.9 Biofilm inhibition assay by using disinfectants and Rhamnolipid mixture 16 Chapter 3 18 Results 18 3.1 Growth curves of biofilms 18 3.2 Microscopic analysis of biofilms 19 3.3 Crystal violet biofilm susceptibility assay by using conventional disinfectants 20 3.4 Biofilm XTT reduction assay by using conventional disinfectants 21 3.5 Crystal violet biofilm susceptibility assay by using Rhamnolipid 22 3.6 Biofilm XTT reduction assay by using Rhamnolipid 22 3.7 Crystal violet biofilm inhibition assay with disinfectants and Rhamnolipid mixture 23 3.8 Biofilm XTT reduction assay using disinfectants and Rhamnolipid mixture 24 3.9 The best reaction conditions by adding different concentration of Rhamnolipid and disinfectants 25 Chapter 4 26 Discussion 26 4.1 The growth curves of biofilm 26 4.2 Microscopic analysis 27 4.3 Crystal violet biofilm susceptibility assay and XTT reduction assay 28 4.4 Biofilm inhibition assay by using conventional disinfectants 28 4.5 Biofilm inhibition assay by using the biosurfactant 29 4.6 Biofilm inhibition assay by using disinfectants-Rhamnolipid mixture 30 Chapter 5 31 Conclusion 31 Reference 32

    1. Abalos A, Pinazo A, Infante MR, et al. Physicochemical and Antimicrobial Properties of New Rhamnolipids Produced by Pseudomonas aeruginosa AT10 from Soybean Oil Refinery Wastes. Langmuir 17:1367-71. 2001.
    2. Adair CG, Gorman SP, Feron BM, et al. Implications of endotracheal tube biofilm for ventilator-associated pneumonia. Milligan Intensive Care Medicine 25:1072-6. 1999.
    3. Allison DG and Sutherland IW. Role of exopolysaccharides in adhesion of freshwater bacteria. J Gen Microbiol 133:1319-27. 1987.
    4. Alp E, Güven M, Yıldız O, et al. Incidence, risk factors and mortality of nosocomial pneumonia in Intensive Care Units: A prospective study. Ann Clin Microbiol Antimicrob 3:1-7. 2004.
    5. Anwar H, van Biesen T, Dasgupta M, et al. Interaction of biofilm bacteria with antibiotics in a novel in vitro chemostat system. Antimicrob Agents Chemother 33:1824-6. 1989.
    6. Azeredo J and Oliveura R. The role of exopolymers in the attachment of Sphingomonas paucimobilis. Biofouling 16:59-67. 2000.
    7. Banat IM, Makkar RS and Cameotra SS. Potential commercial applications of microbial surfactants. Appl Microbiol Biotechnol 53: 495-508. 2000.
    8. Baran J Jr, Muckatira B, Khatib R. Candidemia before and during the fluconazole era: prevalence, type of species and approach to treatment in a tertiary care community hospital. Scand J Infect Dis 33:137–9. 2001.
    9. Bie X, Lu Z, Lu F and Zeng X. Screening the Main Factors Affecting Extraction of the Antimicrobial Substance from Bacillus sp. fmbJ using the Plackett–Burman Method. World J. Microbiol Biotechnol 21:925-8. 2005.
    10. Bonaventura C, Johnson FM. Healthy environments for healthy people: bioremediation today and tomorrow. Environ Health Perspect. 105:5-20. 1997.
    11. Bueno-Cavanillas A, Delgado-Rodriguez M, Lopez-Luque A, et al. Influence of nosocomial infection on mortality rate in an intensive care unit. Crit Care Med 22:55-60. 1994.
    12. Centers for Disease Control and Prevention. Annual report of nosocomial infection in a university hospital in Taiwan from 1999 to 2002. Available at: http://www.cdc.gov.tw/ 203.65.72.42/iimdownload/92report.doc. Accessed 13 May 2005.
    13. Cerca N, Martins S, Cerca F, et al. Comparative assessment of antibiotic susceptibility of coagulase-negative staphylococci in biofilm versus planktonic culture as assessed by bacterial enumeration or rapid XTT colorimetry. J Antimicrob Chemother 56:331–6. 2005.
    14. Champion JT, Gilkey JC, Lamparski H, et al. Electron Microscopy of Rhamnolipid (Biosurfactant) Morphology Effects of pH, Cadmium, and Octadecane. J Colloid Interface Sci 170:569-74. 1995.
    15. Chandra J, Mukherjeel PK, Leidichl SD, Faddoul FF, Hoyer LL, Douglas LJ, and Ghannouml MA. Antifungal resistance of Candidal biofilms formed on denture acrylic in vitro. J Dent Res 80(3):903-8. 2001.
    16. Cicalini S, Palmieri F, Petrosillo N. Clinical review: New technologies for prevention of intravascular catheter-related infections. Crit Care 8:157–62. 2004.
    17. Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science 284:1318–22. 1999.
    18. Davey ME, Caiazza NC, O’Toole, GA. Rhamnolipid surfactant production affects biofilm structure in Pseudomonas aeruginosa PAO1. J Bacteriol 185:1027-36. 2003.
    19. Desai M, Bühler T, Weller PH, et al. Increasing resistance of planktonic and biofilm cultures of Burkholderia cepacia to ciprofloxacin and ceftazidime during exponential growth. J Antimicrob Chemother 42:153–60. 1998.
    20. Digiovine B., Chenoweth C., Watts C., et al. The attributable mortality and costs of primary nosocomial bloodstream infections in the intensive care unit. Am J Respir Crit Care Med 160:976-81. 1999.
    21. Donlan RM. Biofilm Formation: A Clinically Relevant Microbiological Process. Clin Infect Dis 33:1387-92. 2001.
    22. Doyle RJ, Rosenberg M. Microbial Cell Surface Hydrophobicity. American Society for microbiology. Washington DC 335-59. 1990.
    23. Doyle RJ. Contribution of the hydrophobic effect to microbial infection. Microbes Infect 2:391-400. 2000.
    24. du Preez HH, Heath RGM, Sandham LA, et al. Methodology for the assessment of human health risks associated with the consumption of chemical contaminated freshwater fish in South Africa. Water SA 29:69-90. 2003.
    25. Fiechter A. Biosurfactants: moving towards industrial application. Trends Biotechnol 10:208-17. 1992.
    26. Gerberding JL. Hospital-onset infections: a patient safety issue. Ann Intern Med 137:665-70. 2002.
    27. Gilbert P, Allison D, Brading M, et al. In biofilm community interactions: chances or necessity. Cardiff: BioLine 11-22. 2001.
    28. Gilbert P, Allison DG, McBain AJ. Biofilms in vitro and in vivo: do singular mechanisms imply cross-resistance? J. Appl Microbiol 92:98S–110S. 2002.
    29. Gristina AG, Shibata Y, Giridhar G, et al. The glycocalyx, biofilm, microbes, and resistant infection. Semin Arthroplasty 5:160–70. 1994.
    30. Haba E, Pinazo A, Jauregui O, et al. Physicochemical Characterization and Antimicrobial Properties of Rhamnolipids Produced by Pseudomonas aeruginosa 47T2 NCBIM 40044 Biotechnol Bioeng 81:316–22. 2003.
    31. Hawser S. Comparisons of the susceptibilities of planktonic and adherent Candida albicans to antifungal agents: a modified XTT tetrazolium assay using synchronised C. albicans cells. J Med Vet Mycol 34:149-52 1996.
    32. Hostynek J, Patrick E, Younger B, Maibach H. Hypochlorite sensitivity in man. Contact Dermat 20(1):32-7. 1989.
    33. Hyde J, Darouiche R, Costerton J. Strategies for prophylaxis against prosthetic valve endocarditis: a review article. J Heart Valve Dis 7:313–5. 1998.
    34. Ibelings MMS, Bruining HA Methicillin-Resistant Staphylococcus Aureus: Acquisition and Risk of Death in Patients in the Intensive Care Unit. Eur J Surg 164: 411–8 1998.
    35. Jarvis F, Johnson M. A glycol-lipid produced by Pseudomonas aeruginosa. J Am Chem Soc 71:4124-6. 1949.
    36. Kadurugamuwa J, Sin L, Yu J, Francis K.P, Kimura R., Purchio T. and Contag P. Rapid Direct Method for Monitoring Antibiotics in a Mouse Model of Bacterial Biofilm Infection. AAC 47(10):3130–7. 2003.
    37. Kane L, Alarie Y. Sensory irritation to formaldehyde and acrolein during single and repeated exposures to mice. Am Indust Hyg Assoc J 38:509-22. 1977
    38. Keren I., Kaldalu N, Spoering A, Wang Y, Lewis K. Persister cells and tolerance to antimicrobials. FEMS Microbiol Lett 230:13-8. 2004.
    39. Kitamoto D, Yanagishita H, Shinbo T, Makane T, Kamisawa C, Nakahara T. () Surface active properties and antimicrobial activities of mannosylerythritol lipids as biosurfactant produced by Candida antarctica. J Biotechnol 29: 91-6. 1993.
    40. Kobayashi H. Airway biofilm disease. IJAA 17:351–6. 2001.
    41. Kocharova N, Hatano K, Shaskov A, et al. The structure and serologic distribution of an extracellular neutral polysaccharide from Pseudomonas aeruginosa immunotype 3. J Biol Chem 1989; 264(26):15569-73.
    42. Kuiper I, Lagendijk E, Pickford R, et al. Characterization of two Pseudomonas putida lipopeptide biosurfactants, putisolvin I and II, which inhibit biofilm formation and break down existing biofilms. Mol Microbiol 51(1):97–113. 2004.
    43. Labeling Requirements for Pesticides and Devices, Toxicity Category U.S. Environmental Protection Agency 40 CFR 156.62.
    44. Lawrence J, Swerhone G, Leppard G, Araki T, Zhang X, West M, Hitchcock A. Scanning Transmission X-Ray, Laser Scanning, and Transmission Electron Microscopy Mapping of the Exopolymeric Matrix of Microbial Biofilms. AEM 69(9):5543–54. 2003.
    45. Lens P, Moran A. Biofilms in medicine, industry and environmental biotechnology:characteristics, analysis and control. IWA publishing, Lodon, UK, 2003.
    46. Leriche V, Sibille P, Carpentier B. Use of an Enzyme-Linked Lectinsorbent Assay To Monitor the Shift in Polysaccharide Composition in Bacterial Biofilms. AEM 66(5):1851-6. 2000.
    47. Lewis K. Riddle of biofilm resistance. AAC 45:999–1007. 2001.
    48. Lyczaka J, Cannonb C, Piera G. Establishment of Pseudomonas aeruginosa infection: lessons from a versatile opportunist. Microbes and Infection 2:1051−60. 2000.
    49. Macher J. Bioaerosols: Assessment and Control U.S.A. ACGIH 1999.
    50. Mah T-FC, O’Toole GA. Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 9(1):34–9. 2001.
    51. Maier RM, Soberón-Chávez G. Pseudomonas aeruginosa rhamnolipids: biosynthesis and potential applications. Appl Microbiol Biotechnol 54:625-33. 2000.
    52. Mehtar S. New strategies for the use of mupirocin for the prevention of serious infection. J Hosp Infect 40:S39-S44. 1998.
    53. Meiller TF, De Paola LG, Kelley JI, et al. Dental unit waterlines: biofilm, disinfection and recurrence. J Am Dent Assoc 130:65–72. 1999.
    54. Morgan KT. A brief review of formaldehyde carcinogenesis in relation to rat nasal pathology and human health risk assessment. Toxicol Pathol 25:291-307. 1997.
    55. Morris NS, Stickler DJ, McLean RJ. The development of bacterial biofilms on indwelling urethral catheters. World J Urol 17:345–50. 1999.
    56. Mueller LN, de Brouwer JFC, Almeida JS, et al. Analysis of a marine phototrophic biofilm by confocal laser scanning microscopy using the new image quantification software PHLIP. BMC Ecology 6:1-15 2006.
    57. Nancharaiah YV, Venugopalan VP, Wuertz S, et al. Compatibility of the green fluorescent protein and a general nucleic acid stain for quantitative description of a Pseudomonas putida biofilm. J Microbiol Methods 60:179– 87. 2005.
    58. Nataro JP, Blaser MJ, Cunningham-Rundles S, et al. Persistent bacterial infections. Washington, DC: ASM Press: 432–9. 2000.
    59. Neu TR. Significance of bacterial surface-active compounds in interaction of bacteria with interfaces. Microbiol Rev 60:151–66. 1996.
    60. Nichols RL. Preventing Surgical Site Infections. Clin Med Res. 2:115-8. 2004.
    61. Oliveira R, Azeredo J, Teixeira P, et al. In Biofilm Community Interations; Chances or Necessity (ed. Gilbert P, Allison D, Branding J, et al.), BioLine UK 11-22. 2001.
    62. Olson ME, Ceri H, Morck DW, Buret AG , Read RR. Biofilm bacteria: formation and comparative susceptibility to antibiotics. Can J Vet Res 66:86-92. 2002.
    63. Pirnay JP, Vos D De, Cochez C, Bilocq F, Pirson J, Struelens M. Molecular epidemiology of Pseudomonas aeruginosa colonization in a burn unit: persistence of a multidrug-resistant clone and a silver sulfadiazine-resistant clone. J Clin Microbiol 41(3):1192-202. 2003.
    64. Pitts B, Hamilton MA, Zelver N, Stewart PS. A microtiter-plate screening method for biofilm disinfection and removal. J Microbiol Methods 54: 269– 76. 2003.
    65. Poremba K, Gunkel W, Lang S, Wagner F. Marine biosurfactants, III. Toxicity testing with marine microorganisms. Z Naturforsch 46:210-6. 1991.
    66. Poremba K, Gunkel W, Lang S, Wagner F. Toxicity testing of synthetic and biogenic surfactants on marine microorganisms. Environ Toxicol Water Qual 6:157-63 1991.
    67. Ramage G, Walle KV, Wickes BL, López-Ribot JL. Standardized Method for In Vitro Antifungal Susceptibility Testing of Candida albicans. Antimicrob Agents Chemother 45(9):2475-9. 2001.
    68. Richards MJ, Edwards JR, Culver DH, Gaynes RP Nosocomial Infections in Pediatric Intensive Care Units in the United States. Pediatrics 103:1-7. 1999.
    69. Richards MJ, Edwards JR, Culver DH, Gaynes RP. Nosocomial Infections in Pediatric Intensive Care Units in the United States. Pediatrics 103(4):1-7. 1999.
    70. Rutala WA. APIC guidelines for selection and use of disinfectants. Am J Infect Control 24(4):313–42. 1996.
    71. Sekelsky AM, Shreve GS. Kinetic model of biosurfactant-enhanced hexadecane biodegradation by Pseudomonas aeruginosa. Biotechnol Bioeng 63:401-9. 1999.
    72. Sekelsky AM, Shreve GS. Kinetic Model of Biosurfactant-Enhanced Hexadecane Biodegradation by Pseudomonas aeruginosa. Biotechnol Bioeng 63(4): 401-9. 1999.
    73. Sheng WH, Chie WC, Chen YC, et al. Impact of nosocomial infections on medical costs, hospital stay, and outcome in hospitalized patients. J Formos Med Assoc 104:318-26. 2005.
    74. Shreve GS, Inguva S, Gunnam S. Rhamnolipid biosurfactant enhancement of hexadecane biodegradation by Pseudomonas aeruginosa. Mol Mar Biol Biotech 4:331–7. 1995.
    75. Sopwith W, Hart T, Garner P. Preventing infection from reusable medical equipment: a systematic review. BMC Infect Dis 2(4):1-10. 2002.
    76. Spengler JD, Samet JM, McCarthy JF. Indoor air quality handbook The McGraw-Hill companies. New York, United States, 2000.
    77. Stepanovic S, Djukic V, Djordjevik V, Djukic S. Influence of the incubation atmosphere on the production of biofilm y staphylococci. Clin Microbiol Infect 9:955-8. 2003.
    78. Stewart PS, Costerton JW. Antibiotic resistance of bacteria in biofilms. Lancet 358:35–8. 2001.
    79. Stewart PS, Costerton JW. Antibiotic resistance of bacteria in biofilms. Lancet 358:135–8. 2001.
    80. Stewart PS. Mechanisms of antibiotic resistance in bacterial biofilms. Int J Med Microbiol 292:107–13. 2002.
    81. Stone PW, Larson E, Kawar LN. A systematic audit of economic evidence linking nosocomial infections and infection control interventions: 1990-2000. Am J Infect Control 2002; 30:145-52.
    82. Strüber M. What is the role of surfactant and inhaled nitric oxide in lung transplantation? Crit Care 6:186-7. 2002.
    83. Struelens MJ, Denis O, Rodriguez-Villalobos H. Microbiology of nosocomial infections: progress and challenges. Microbes Infect 6:1043-8. 2004.
    84. Struelens MJ. Molecular typing: a key tool for the surveillance and control of nosocomial infection. Curr Opin Infect Dis 15:383–5. 2002.
    85. Sutherland IW. The biofilm matrix – an immobilizedbut dynamic microbial environment. Trends Microbiol 9:222-7. 2001.
    86. Tesch, S, Schubert H. Influence of increasing viscosity of the aqueous phase on the short-term stability of protein stabilized emulsions. J Food Eng 52:305-12. 2002.
    87. Toltzis P, Dul MJ, Hoyen C, Salvator A, Walsh M, Zetts L. Molecular epidemiology of antibiotic-resistant Gram-negative bacilli in a neonatal intensive care unit during a nonoutbreak period. Pediatrics 108:1143–8. 2001.
    88. Tunney MM, Ramage G, Field TR, Moriarty TF, Storey DG. Rapid Colorimetric Assay for Antimicrobial Susceptibility Testing of Pseudomonas aeruginosa. Antimicrob Agents Chemother 48:1879-81 2004.
    89. Van Loosdrecht MCM, Norde W, Lyklema L, Zehnder J. Hydrophobic and electrostatic parameters in bacterial adhesion. Aquat Sci 51:103-14. 1990.
    90. Vickery K, Pajkos A, Cossart Y. Removal of biofilm from endoscopes: evaluation of detergent efficiency. Am J Infect Control 32(3):170-6. 2004.
    91. Wang X, Gong L, Liang S, Xiurong Han X, Zhu C, Li Y. Algicidal activity of rhamnolipid biosurfactants produced by Pseudomonas aeruginosa Harmful Algae 4:433–43. 2005.
    92. Weinstein RA. Nosocomial infection update. Emerging Infect Dis 4(3): 416-21. 1998.
    93. Weist K, Pollege K, Schulz I, Ruden H, Gastmeier P. How many nosocomial infections are associated with cross-transmission? A prospective cohort study in a surgical intensive care unit. Infect Control Hosp Epidemiol 23:127–32. 2002.
    94. Wingender J, Neu TR, Flemming HC. Microbial Extracellular Polymeric substances. Springer-Verlag Berlin 1-19. 1999.
    95. Wirtanen G, Salo S, Helander IM, Mattila-Sandholm T. Microbiological methods for testing disinfectant efficiency on Pseudomonas biofilm. Colloids Surf B Biointerfaces 20:37-50. 2001.
    96. Wolkoff P, Schneider T, Kildeso J, Degerth R, Jaroszewski M, Schunk H. Risk in cleaning: chemical and physical exposure. Sci Total Environ 215:135-56. 1998.
    97. Yao S, Gao X, Fuchsbauer N, Hillen W, Vater J, Wang J. Cloning, Sequencing, and Characterization of the Genetic Region Relevant to Biosynthesis of the Lipopeptides Iturin A and Surfactin in Bacillus subtilis. Curr Microbiol 47:272-7. 2003.
    98. Yarwood JM, Bartels DJ, Volper EM, Greenberg EP. Quorum Sensing in Staphylococcus aureus Biofilms. J Bacteriol 186:1838-50. 2004.
    99. Yun MA, Yeon KM, Park JS, Lee CH, Chun J, and Lim DJ. Characterization of biofilm structure and its effect on membrane permeability in MBR for dye wastewater treatment. Water Res 40:45-52. 2006.
    100. Zhang, Y, Miller RM. Effect of a Pseudomonas rhamnolipid biosurfactant on cell hydrophobicity and biodegradation of octadecane. Appl Environ Microbiol 60:2101–6. 1994.

    下載圖示 校內:2007-08-28公開
    校外:2007-08-28公開
    QR CODE