簡易檢索 / 詳目顯示

研究生: 王元聰
Wang, Yuan-Chung
論文名稱: 氧化鋁模板輔助氧化鋅奈米陣列成長特性
Growth characterization of ZnO nanowire arrays mediated by AAM template
指導教授: 洪敏雄
Hon, Min-Hsiung
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 英文
論文頁數: 116
中文關鍵詞: 電泳沉積奈米陣列氧化鋁模板
外文關鍵詞: AAM template, electrophoretic deposition, nanowire arrays
相關次數: 點閱:79下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用醋酸鋅及氫氧化鈉粉末均勻混合於異丙醇溶劑中合成氧化鋅膠體,並以電泳沉積技術結合氧化鋁模板輔助方式成長氧化鋅奈米陣列,針對膠體溶液pH值、電泳沉積電壓、模板熱處理溫度及管徑大小改變,探討其對膠體粒徑、界面電位、模板結構及介電特性、奈米陣列尺寸、成長形態及特性之影響。

    研究結果顯示,商用氧化鋁模板為非晶質結構,經300℃或更高溫度熱處理後,模板密度、結晶性及介電常數值隨熱處理溫度增加而增加且結構由原本的非晶質態轉變成兩相共存的氧化鋁水合物結構。以電泳法結合模板輔助技術,藉由製程參數控制可得氧化鋅奈米纖維、奈米管陣列或兩種形態共存的複合產物。在電泳過程中,當外加電場及模板介電特性改變時,除造成陣列沉積形態改變外,亦影響電泳沉積過程之電流變化。

    從XRD分析結果可知,所合成之氧化鋅奈米顆粒及陣列為具纖鋅礦結構。氧化鋅膠體顆粒的粒徑與界面電位值隨溶液pH值及時效處理時間增加而增加。不同膠體溶液pH值(或NaOH添加濃度),除改變膠體顆粒的粒徑及界面電位值外,也將影響其吸收光譜及表面化學特性。

    氧化鋅奈米陣列的沉積形態及成長速率與電泳沉積電壓及膠體溶液特性(粒徑及界面電位值大小)有關。在低電壓進行電泳沉積時,膠體粒子的界面電位值高低對陣列成長速率及沉積形態的影響遠比晶粒尺寸效應更為明顯。在高電壓時,電場效應是影響陣列沉積速率快慢的主要因素。此外,氧化鋅奈米陣列的光致發光特性與膠體顆粒的晶粒大小、結晶性及表面化學特性有關。

    以電泳法結合模板技術可製備出均勻且表面平整之奈米纖維,主要是在電泳沉積過程中電場提供給奈米顆粒的驅動力與模板管壁邊界相(包括管壁電雙層及電滲透流等)間的作用力達平衡所致。其次,在低電壓電泳沉積時( 30V),模板管徑大小對奈米纖維尺寸的影響遠大於外加電場的影響,藉由理論方程式計算即可推算出不同模板管徑下所成長之奈米纖維直徑。

    The ZnO colloidal suspensions were prepared from the zinc acetate in 2-propanol with NaOH. The nanosized ZnO arrays were conducted by template-mediated electrophoretic deposition in the nanochannels of anodic alumina membrane (AAM). This study will focused on the effects of the pH of the suspensions, applied voltages, and thermal treatment and channel size of AAM templates on the size and surface state of the particles in the suspension, the structure and dielectric property of AAM templates, and the deposition characteristics of the deposited ZnO nanowire arrays.

    The results show that the as-received AAM template was amorphous structure. As the annealing temperature increases to 300℃ or higher, the density, crystallinity and dielectric constant of AAM template increases with the increasing annealing temperatures. In addition, the microstructure changes from amorphous into crystalline structure after annealing. By electrophoretic deposition (EPD) process, highly aligned and uniform nanosized ZnO arrays of fibrils, tubules and the mixed products of both could be obtained just by controlling the processing parameters. The variations of the applied voltage and dielectric characteristics of AAM not only change the deposition morphologies of the ZnO nanowire arrays, but also affect the current-time curves during EPD.

    From the XRD analysis, the results reveal that the synthesized ZnO nanoparticles and nanowires are wurtzite phases. The particle size and zeta potential of the ZnO colloids increase with the increasing pH values and aging times of the suspensions. The particle size and surface charge change with the pH of the suspensions, which in turn affect the absorption spectra and chemistry of the particle surface.

    In addition, both the morphology and the deposition rate of ZnO nanowire arrays are influenced by the colloidal characteristics and the applied voltage. At low voltage deposition, the surface charge is more significantly affected than that of the particle size in determining the deposit morphology as well as the consequent array deposition rate. However, with the increasing applied voltage, the difference in the deposition rate between those solutions is not significant. Hence, the electric field effect dominates the deposition rate of ZnO nanowire arrays at higher applied voltages. Besides, the photoluminescence properties of ZnO arrays are largely determined by particle size, crystallinity and surface properties of the nanoparticles comprising the nanowire arrays.

    The smooth and uniform nanofibril arrays are synthesized and locate in the center of the AAM channel by EPD process due to that the net force reaches the equilibrium state between the deposited nanoparticles and stationary phases under the applied electric field. Besides, the effect of channel size on determining the ZnO nanofibril diameters in AAM channel is more significant than that of the applied voltage at lower voltage conditions. Therefore, by calculating the dimensions of the stationary layer relative to the channel diameter, ZnO nanofibril dimension could be determined.

    總目錄 中文摘要………………………………………………………………….I 英文摘要………………………………………………………………….III 總目錄………………………………………………………………….…V 圖目錄…………………………………………………………………….IX 表目錄…………………………………………………………………….XII 符號及中英文名詞對照表……………………………………………….XIV 第一章 緒論………………………………………………………………1 第二章 理論基礎…………………………………………………………13 2-1電動力現象的基本理論……………………………………………13 2-2膠體表面荷電原理…………………………………………………16 2-2-1膠體……………………………………………………………..16 2-2-2膠體顆粒表面電荷來源………………………………………..17 2-3電雙層理論…………………………………………………………19 2-4膠體化學與D.L.V.O.理論…………………………………………21 2-5電泳懸浮液的穩定性………………………………………………24 2-6電泳沉積披覆之原理………………………………………………26 2-6-1電泳沉積之方式………………………………………….…….28 2-6-2電泳懸浮液系統種類…………………………………………..28 2-6-3電泳沉積法之優點與應用………………………………….….29 第三章 實驗方法與步驟………………………………………………30 3-1實驗流程……………………………………………………………30 3-2實驗設計……………………………………………………………31 3-3實驗步驟……………………………………………………………32 3-3-1化學藥品選用……………………………………………………32 3-3-2基板種類…………………………………………………………32 3-3-3氧化鋅膠體溶液之配製…………………………………………33 3-3-4製程參數及步驟…………………………………………………33 3-3-5熱處理……………………………………………………………34 3-4性質量測及分析……………………………………………………34 3-4-1 X射線繞射分析…………………………………………………34 3-4-2掃描式電子顯微鏡分析…………………………………………36 3-4-3穿透式電子顯微鏡分析…………………………………………36 3-4-4紫外光-可見光吸收光譜分析………………………………….36 3-4-5發光光譜分析……………………………………………………37 3-4-6界面電位量測……………………………………………………37 3-4-7介電常數值量測…………………………………………………37 3-4-8氧化鋁模板視密度之量測………………………………………38 第四章 氧化鋁模板結構及介電特性對電泳沉積氧化鋅陣列形態及 特性的影響……………………………………………………….....39 4-1前言…………………………………………………………………39 4-2氧化鋅奈米陣列形態………………………………………………40 4-3氧化鋅奈米陣列之晶體結構………………………………………40 4-4熱處理溫度對AAM模板結構之影響……………………………….42 4-5熱處理溫度對AAM模板介電特性之影響………………………….46 4-6模板熱處理溫度對沉積電流曲線特性之影響……………………48 4-7外加電壓對電流曲線和沉積形態之影響…………………………51 4-8 AAM模板特性及施加電壓對奈米陣列填充特性之影響………..55 4-9小結…………………………………………………………………58 第五章 膠體特性對氧化鋅奈米陣列沉積特性的影響………………60 5-1前言…………………………………………………………………60 5-2實驗方法與步驟…………………………………………………..60 5-3吸收光譜特性與膠體粒徑間的關係………………………………61 5-4膠體溶液pH值與界面電位間的關係………………………………67 5-5膠體特性與施加電壓對陣列沉積形態之影響……………………67 5-6外加電壓對奈米陣列沉積速率的影響……………………………73 5-7奈米陣列顯微結構分析………………………………..…………76 5-8氧化鋅奈米陣列之光致發光特性………………………..………78 5-9小結………………………………………………………….…….80 第六章 模板尺寸效應對奈米陣列沉積直徑之影響…………………82 6-1前言……………………………………………………….…….…82 6-2實驗方法與步驟………………………………………………..…82 6-3氧化鋅奈米纖維顯微結構…………………………………………82 6-4單邊封閉管之電泳沉積……………………………………………83 6-5小結…………………………………………………………………93 第七章 總結論………………………………………………….….…95 參考文獻…………………………………………………………….…97 學歷……………………………………………………………………112 致謝……………………………………………………………………115

    [1] S. Iijima, “Helical microtubules of graphitic carbon”, Nature, 354, 56 (1991).

    [2] D. A. Neamen, Semiconductor Physics & Devices, 2nd ed., p.105 (1992).

    [3] R. S. Wagner and W. C. Ellis, Vapor-liquid-solid mechanism of single crystal growth, Appl. Phys. Lett., 4, 89 (1964).

    [4] J. Zhang, L. D. Zhang, X. F. Wang, C. H. Liang, X. S. Peng and Y. W. Wang, “Fabrication and photoluminescence of ordered GaN nanowire arrays”, J. Chem. Phys., 115, 5714 (2001).

    [5] P. M. Paulus, F. Luis, M. Kröll, G. Schmid and L. J. de Jongh, “Low-temperature study of the magnetization reversal and magnetic anisotropy of Fe, Ni, and Co nanowires”, J. Mag. Mag. Mater., 224, 180 (2001).

    [6] R.Micheletto, H. Fukuda and M. Ohtsu, “A simple method for the production of a two-dimensional, ordered array of small latex particles”, Langmuir, 11, 3333 (1995).

    [7] S. Wernick, R. Pinner and P. G. Sheasby, Anodizing of Aluminium: General Notes and Theory, in Surface treatment finishing of aluminium and its alloys, 2nd ed., Finishing Publications Ltd., Teddington, Middlesex, UK, Vol. 1, Chapter 6, p.289 (1987).

    [8] H. Masuda and K. Fukuda, “Ordered Metal Nanohole Arrays Made by a 2-Step Replication of Honeycomb Structures of Anodic Alumina”, Science, 268, 1466 (1995).

    [9] H. Asoh, K. Nishio, M. Nakao, T. Tamamura and H. Masuda, “Conditions for fabrication of ideally ordered anodic porous alumina using pretexture Al”, J. Electrochem. Soc., 148, B152 (2001).

    [10] H. L. Hartnagel, A. K. Jain and C. Jagadish, “Semiconducting transparent thin films”, Published by institute of physics publication, p. 17 (1995).

    [11] R. Wang, L. H. King and A. W. Sleight, “Highly conducting transparent thin films based on zinc oxide”, J. Master. Res., 11, 1659 (1996).

    [12] H. Hawamoto, R. Konishi, H. Harada and H. Sasakura, “Characteristics of ZnO:Al transparent conductive films”, Springer proceedings in physics, 38, 314 (1989).

    [13] Y. W. Jin, J. E. Jang, W. K. Yi, J. E. Jung, N. S. Lee, J. M. Kim, D. Y. Jeon and J. P. Hong, “Performance of electrophoretic deposited low voltage phosphors for full color field emission display devices”, J. Vac. Sci. Technol. B. 17, 489 (1999).

    [14] M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers”, Science, 292, 1897 (2001).

    [15] C. J. Lee, T. J. Lee, S. C. Lyu, Y. Zhang, H. Ruh and H. J. Lee, “Field emission from well-aligned zinc oxide nanowires grown at low temperature”, Appl. Phys. Lett., 81, 3648 (2002).

    [16] Z. Zhang, X. Sun, M. S. Dresselhaus, J. Y. ying and J. Heremans, “Electronic transport properties of single-crystal bismuth nanowire arrays”, Phy. Rev. B, 61, 4850 (2000).

    [17] K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt and B. E. Gnade, “Mechanisms behind green photoluminescence in ZnO phosphor powders”, J. Appl. Phys., 79, 7983 (1996).

    [18] W. Wang, C. Xu, G. Wang Y. Liu and C. Z heng, “Synthesis and Raman scattering study of rutile SnO2 nanowires”, J. Appl. Phy., 92, 2740 (2002).

    [19] S. Valizadeh, J. M. George, P. Leisner and L. Hultman, “Electrochemical deposition of Co nanowire arrays; quantitative consideration of concentration profiles”, Electrochim. Acta, 47, 865 (2001).

    [20] H. Masuda and M. Satoh, “Fabrication of gold nanodot array using anodic porous alumina as an evaporation mask”, Jpn. J. Appl. Phys. 35, L126 (1996).

    [21] M. Li and C. Wang and H. Li, “Synthesis of ordered Si nanowire arrays in porous anodic aluminum oxide templates”, Chinese Sci. Bull,.46, 1793 (2001).

    [22] M. Nishizawa, K. Mukai, S. Kuwabata, C. R. Martin and H. Yoneyama, “Template synthesis of polypyrrole-coated spinel LiMn2O4 nanotubules and their properties as cathode active materials for lithium batteries”, J. Electrochem. Soc., 144, 1923 (1997).

    [23] E. M. Wong, J. E. Bonevich and P. C. Searson, “Growth kinetics of nanocrystalline ZnO particles from colloidal suspensions”, J. Phys. Chem. B, 102, 7770 (1998).

    [24] P. P. Mardilovich, A. N. Govyadinov, N. I. Mazurenko and R. Paterson, “New and modified anodic alumina membranes Part II. Comparison of solubility of amorphous (normal) and polycrystalline anodic alumina membranes”, J. Membrene Sci., 98, 143 (1995).

    [25] C. A. Mead, The Anodic Behaviour of Metals and Semiconductors, Vol. 1, Marcel Dekker, New York, p.287 (1972).

    [26] 張有義,郭蘭生編著Duncan J. Shaw原著, ”膠體介面化學入門(Introduction to colloid and surface chemistry 4/e)”, 高立圖書有限公司, p. 209 (1999)。

    [27] D. Myers, Surfaces, Interfaces, and Colloids : Principles and Applications , 2nd ed., Wiley-VCH, New York, p. 47, 92, 232 (1999).

    [28] H. Helmholtz, Ann. Phys., 7, 337 (1879).

    [29] G. Gouy, compt. Rend., 149, 654 (1910).

    [30] P. L. Chapman, Philos. Mag., 25, 475 (1913).

    [31] O. Z. Stern, Elektrochem., 30, 508 (1924).

    [32] F. F. Reuss, Memoires de la societe imperiale de naturalists de moscou, 2, 327 (1809).

    [33] L. L. Schramm, Suspensions: Fundamentals and Applications in the Petroleum Industry, Am. Chem. Soc., Washington, 251, 3 (1996).

    [34] M. N. Rahaman, Science of Colloidal Processing, in Ceramic Processing and Sintering, Ed. by M. N. Rahaman, Marcel Dekker, New York, p. 146 (1995).

    [35] 陳正德,”碳化矽的電泳沉積現象探討”,國立中央大學機械工程系碩士論文,p. 19 (2002)。

    [36] P. Sarkar and P. S. Nicholson, “Electrophoretic deposition (EPD): mechanisms, kinetics, and application to ceramics”, J. Am. Ceram. Soc., 79, 1987 (1996).

    [37] D. W. Bahnemann, C. Kormann and M. R. Hoffmann, “Preparation and characterization of quantum size zinc oxide: a detailed spectroscopic study”, J. Phys. Chem., 91, 3789 (1987).

    [38] P. Si, X. Bian, H. Li and Y. Liu, “Synthesis of ZnO nanowhiskers by a simple method”, Mater. Lett., 57, 4079 (2003).

    [39] B. D. Cullity and S. R. Stock, Elements of X-Ray Diffraction, 3rd ed., Prentice Hall, Upper Saddle River, p.170 (2000).

    [40] P. P. Mardilovich, A. N. Govyadinov, N. I. Mukhurov, A. M. Rzhevskii and R. Paterson, “New and modified anodic alumina membranes Part I. thermotreatment of anodic alumina membranes”, J. Membrene Sci., 98, 131 (1995).

    [41] M. M. Lohrengel, “Thin anodic oxide layers on aluminum and other value metals: high field regime”, Mat. Sci. Eng. R, 11, 243 (1993).

    [42] C. M. Martin, “Membrane-based synthesis of nanomaterials”, Chem. Mater., 8, 1739 (1996).

    [43] J. C. Hulteen and C. R. Martin, “A general template-based method for the preparation of nanomaterials”, J. Mater. Chem., 7, 1075 (1997).

    [44] E. W. Wong and P. C. Searson, “ZnO quantum particle thin films fabricated by electrophoretic deposition”, Appl. Phys. Lett., 74, 2939 (1999).

    [45] S. J. Limmer, S. Serji, M. J. Forbess, Y. Wu, T. P. Chou, C. Nguyen and G. Gao, “Synthesis of large monolithic zeolite foams with variable macropore architectures”, Adv. Mater., 13, 1269 (2001).

    [46] P. P. Mardilovich, A. N. Govyadinov, N. I. Mukhurov and R. Paterson, “New and modified anodic alumina membranes Part II. Comparison of solubility of amorphous (normal) and polycrystalline anodic alumina membranes”, J. Membrane Sci., 98, 143 (1995).

    [47] W. A. Belding and W. C. Warfield, Controlling the Properties of Catalyst Substrates using Alumina, Kaiser Aluminum and Chemical Corporation, Pleasanton, CA (1982).

    [48] L. I. Maissel and R. Glang, Handbook of Thin Film Technology, McGraw-Hill, New York, p. 6.12 (1983).

    [49] M. D. Groner, J. W. Elam, F. H. Fabreguette and S. M. George, “Electrical characterization of thin Al2O3 films grown by atomic layer deposition on silicon and various metal substrates”, Thin Solid Films, 413, 186 (2002).

    [50] S. B. Krupanidhi and C.-J. Peng, “Studies on structural and electrical properties of barium strontium titanate thin films developed by metallo-organic decomposition”, Thin Solid Films, 305, 144 (1997).

    [51] P. Ericsson, S. Bengtsson and J. Skarp, “Properties of Al2O3-films deposited on silicon by atomic layer epitaxy”, Microelectron. Eng., 36, 91 (1997).

    [52] J. Kolodzey, E. A. Chowdhury, T. N. Adam, G. Qui, I. Rau, J. O. Olowolafe, J. S. Suehle and Y. Chen, “Electrical conduction and dielectric breakdown in aluminum oxide insulators on silicon”, IEEE Trans. Electron Devices, 47, 121 (2000).

    [53] J. A. Switzer, “Electrochemical synthesis of ceramic films and powders”, Am. Ceram. Soc. Bull., 66, 1521 (1987).

    [54] A. J. Bard and L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nd ed., Wiley, New York, p. 164 (2001).

    [55] D. R. Wolters and S. J. J. Van Der, “Dielectric breakdown in MOS devices, Part I: defect-related and intrinsic breakdown”, Philips J. Res., 40, 115 (1985).

    [56] M. T. Quddus, T. A. Demassa and J. J. Sanchez, “Unified model for QBD prediction for thin gate oxide MOS devices with constant voltage and current stress”, Microelectron. Eng., 51-52, 357 (2000).

    [57] Y. M. Lee, Y. Wu, C. Bae, J. G. Hong and G. Lucovsky, “Structural dependence of breakdown characteristics and electrical degradation in ultrathin RPECVD oxide/nitride gate dielectrics under constant voltage stress”, Solid-State Electron., 47, 71 (2003).

    [58] S. Lombardo, “Intrinsic dielectric breakdown of ultra-thin gate oxides”, Microelectron. Eng., 59, 33 (2001).

    [59] I. Costina and R. Franchy, “Band gap of amorphous and well-ordered Al2O3 on Ni3Al(100)”, Appl. Phys. Lett., 78, 4139 (2001).

    [60] F. A. Kröger, The Chemistry of Imperfect Crystals, North-Holland Publishing Co., Amsterdam, Netherlands, p. 202,1001 (1964).

    [61] H. R. Philipp, “Study of a single dangling bond at the SiO2/Si interface in deep submicron metal-oxide-semiconductor transistors”, J. Phys. Chem. Solids, 32, 1935 (1971).

    [62] W. Cho, Y. Takeuchi and H. Kuwano, “Annealing effects on the electrical properties and microscopic structure of semi-insulating polycrystalline silicon films”, J. Appl. Phys., 75, 7916 (1994).

    [63] J. Y. W. Seto, “The electrical properties of polycrystalline silicon films”, J. Appl. Phys., 46, 5247 (1975).

    [64] T. I. Kamins, “Hall mobility in chemically deposited polycrystalline silicon”, J. Appl. Phys., 42, 4357 (1978).

    [65] M. E. Cowher and T. O. Sedgwick, “Chemical vapor deposited polycrystalline silicon”, J. Electrochem. Soc., 119, 1565 (1972).

    [66] M. Doda, Y. Shida, “Charge trapping and dielectric reliability of SiO2-Al2O3 gate stacks with TiN electrodes”, J. Kawaguchi and Y. Kaneko, IEDM Tech. Did. p. 471 (1993).

    [67] N. Sato, “A theory for breakdown of anodic oxide films on metals”, Electrochim. Acta, 16, 1683 (1971).

    [68] Y. Du, W. L. Cai, C. M. Mo, J. Chen, L. D. Zhang and X. G. Zhu, “Preparation and photoluminescence of alumina membranes with ordered pore arrays”, Appl. Phys. Lett., 74, 2951 (1999).

    [69] J. W. Diggle, T. C. Downie and C. W. Goulding, “Anodic oxide films on aluminum”, Chem. Rev., 69, 365 (1969).

    [70] W. Oepts, D. B. de Mooij, V. Zieren, H. J. Verhagen, R. Coehoorn and W. J. M. de Jonge, “Observation and analysis of breakdown of magnetic tunnel junctions”, J. Magn. Magn. Mater., 198-199, 164 (1999).

    [71] J. S. Reed, Introduction to the Principles of Ceramic Processing, John Wiley & Sons, New York, p.142 (1986).

    [72] J. Ma, R. Zhang, C. H. Liang and L. Weng, “Colloidal characterization and electrophoretic deposition of PZT”, Matt. Lett., 57, 4648 (2003).

    [73] K. S. Seshadri, M. Selvaraj, R. Kesavamoorthy, M. P. Srinivasan, K. Varatharajan, K. B. Lal and V. Krishnasamy, “Estimation and comparison of pore charge on titania and zirconia membranes prepared by sol-gel route using zeta potential measurement”, J. Sol-Gel Sci. Techn., 28, 327 (2003).

    [74] L. E. Brus, “A simple model for the ionization potential, electron affinity, and aqueous redox potentials of small semiconductor crystallites”, J. Chem. Phys., 79, 5566 (1983).

    [75] L. E. Brus, “Structure and electronic states of quantum semiconductor crystallites”, Nanostruct. Mater., 1, 71 (1992).

    [76] S. Sakohara, M. Ishida and M. A. Anderson, “Visible luminescence and surface properties of nanosized ZnO colloids prepared by hydrolyzing zinc acetate”, J. Phys. Chem. B, 102, 10169 (1998).

    [77] L. Spanhel and M. A. Anderson, “Semiconductor clusters in the sol-gel process: quantized aggregation, gelation, and crystal growth in concentrated zinc oxide colloids”, J. Am. Chem. Soc., 113, 2826 (1991).

    [78] P. S. Nicholson and P. Sarkar, Ceramic Processing Science and Technology, ed. H. Hausner, G. L. Messing and S.-I. Hirano, American Ceramic Society, p.469 (1995).

    [79] P. C. Hiemenz, and R. Rajagopalan, Principles of Colloid and Surface Chemistry, 3rd ed., Marcel Dekker, New York, p. 62 (1997).

    [80] M. Holgada, F. Garcia-Santamaria, A. Blanco, M. Ibisate, A. Cintas, H. Miguez, C. J. Serna, C. Molpeceres, J. Requena, A. Mifsud, F. Meseguer and C. Lopez, “Electrophoretic deposition to control artificial opal growth”, Langmuir, 15, 4701 (1999).

    [81] C. Kawai and S. Wakamatsu, “Fabrication of C/SiC composites by an electrodeposition/sintering method and the control of the properties”, J. Mater. Sci., 31, 2165 (1996).

    [82] A. Sussman and T. J. Ward, “Electrophoretic deposition of coatings from glass-isopropanol slurries”, RCA Rev., 42, 178 (1981).

    [83] P. J. Mitchell and G. D. Wilcox, “An electrochemical route to pre-shaped ceramic bodies”, Nature, 357, 395 (1992).

    [84] Y. Li, G. W. Meng, L. D. Zhang and F. Phillipp, “Ordered semiconductor ZnO nanowire arrays and their photoluminescence properties”, Appl. Phys. Lett., 76, 2011 (2000).

    [85] M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber and P. Yang, “Catalytic growth of zinc oxide nanowires by vapor transport”, Adv. Mater., 13, 113 (2000).

    [86] L. Guo, S. Yang, C. Yang, P. Yu. J. Wang. W. Ge and G. K. L. Wong, “Highly monodisperse polymer-capped ZnO nanoparticles: Preparation and optical properties”, Appl. Phys. Lett., 76, 2901 (2000).

    [87] E. M. Wong and P.C. Searson, “ZnO quantum particle thin films fabricated by electrophoretic deposition”, Appl. Phys. Lett., 74, 2939 (1999).

    [88] S. Sakohara, L. D. Tickanen and M. A. Anderson, “Luminescence properties of thin zinc oxide membranes prepared by the sol-gel technique: change in visible luminescence during firing”, J. Phys. Chem., 96, 11086 (1992).

    [89] G. J. Meyer, G. C. Lisensky and A. B. Ellis, “Evidence for adduct formation at the semiconductor-gas interface. photoluminescent properties of cadmium selenide in the presence of amines”, J. Am. Chem. Soc., 110, 4914 (1988).

    [90] M. Anpo, M. Tomonari and M. A. Fox, “In situ photoluminescence of titania as a probe of photocatalytic reactions”, J. Phys. Chem., 93, 7300 (1989).

    [91] K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt and B. E. Gnade, “Mechanisms behind green photoluminescence in ZnO phosphor powders”, J. Appl. Phys., 79, 7983 (1996).

    [92] Y. Lei, L. D. Zhang, G. W. Meng, G. H. Li, X. Y. Zhang, C. H. Liang, W. Chen, Chen and S. X. Wang, “Preparation and photoluminescence of highly ordered TiO2 nanowire arrays”, Appl. Phys. Lett., 78, 1125 (2001).

    [93] X. Y. Zhang, L. D. Zhang, W. Chen, G. W. Meng, M. J. Zheng and L. X. Zhao, “Electrochemical fabrication of highly ordered semiconductor and metallic nanowire arrays”, Chem. Mater., 13, 2511 (2001).

    [94] R. J. Hunter, Zeta Potential in Colloid Science, Academic, New York, p. 131 (1981).

    [95] S. Mattson, “Cataphoresis and the electrical neutralization of colloidal material”, J. Phys. Chem., 32, 1532 (1928).

    [96] C. Bellmann, “Stability of dispersions”, Chem. Ing. Tech., 75, 662 (2003).

    [97] E. J. W. Verwey and J. T. G. Overbeek, Theory of The Stability of Lyophobic Colloids, Elsevier, Amsterdam, New York, (1948).

    [98] R. J. Hunter, Foundations of Colloid Science, Oxford University, New York, Chapter 6 (1985).

    [99] I. Zhitomirsky, “Cathodic electrodeposition of ceramic and organoceramic materials. Fundamental aspects”, Adv. Colloid Interface Sci., 97, 279 (2002).

    [100] R. Xiang and C. Horvath, “Fundamentals of capillary electrochromatography: migration behavior of ionized sample components”, Anal. Chem., 74, 762 (2002).

    [101] T. Okada, “Retention of ions on nonporous charged stationary phases”, Anal. Chem., 72, 1307 (2000).

    [102] M. E. Smith and M. W. Lisse, “A new electrophoresis cell for microscopic observations”, J. Phys. Chem., 40, 399 (1936).

    [103] M. James, Surface and Colloid Science, Vol. 11, Chap. 4, R. J. Good and R. R. Stromberg, Editors, Plenum Press, New York (1969).

    [104] Y. C. Wang, I. C. Leu and M. H. Hon, “Preparation and Characterization of Nanosized ZnO Arrays by Electrophoretic Deposition”, J. Cryst. Growth, 237-239, 564 (2002).

    [105] Y. C. Wang, I. C. Leu and M. H. Hon, “The dielectric property and structure of anodic alumina template and their effects on the electrophoretic deposition characteristics of ZnO nanowire arrays”, J. Appl. Phys., 95, 1444 (2004).

    [106] C. L. Rice and R. Whitehead, “Electrokinetic flow in a narrow cylindrical capillary”, J. Phys. Chem., 69, 4017 (1965).

    下載圖示 校內:2005-05-14公開
    校外:2005-05-14公開
    QR CODE