| 研究生: |
葉子豪 Yeh, Tzu-Hao |
|---|---|
| 論文名稱: |
Epstein-Barr病毒溶裂期蛋白質Zta調控鼻咽癌細胞表現基質金屬胜肽酶-3 Regulation of Matrix Metallopeptidase-3 Expression by the Epstein-Barr Virus Lytic Protein Zta in Nasopharyngeal Carcinoma Cells |
| 指導教授: |
張堯
Chang, Yao |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 微生物及免疫學研究所 Department of Microbiology & Immunology |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 63 |
| 中文關鍵詞: | EB病毒 、鼻咽癌 、溶裂期 、Zta 、基質金屬胜肽酶-3 、細胞移行 、肝素結合表皮生長因子 |
| 外文關鍵詞: | EBV, nasopharyngeal carcinoma, lytic cycle, Zta, MMP-3, cell migration, HB-EGF |
| 相關次數: | 點閱:83 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
EB病毒再活化進入溶裂期與在台灣高盛行率的鼻咽癌具有高度關聯。我們過去的研究顯示EB病毒的溶裂期蛋白質Zta這個轉錄活化因子會調控許多細胞基因而影響免疫細胞。值得注意的是文獻指出鼻咽癌病患體內可偵測到抗EB病毒的Zta蛋白質抗體高度增加而且鼻咽癌中Zta的表現與癌症淋巴結轉移有關。因此,我們推測Zta可能會經由調控細胞基因而影響整個腫瘤微環境,進一步促進癌細胞更加惡性。經由抗體陣列及寡核苷酸微陣列分析,我們發現Zta會調控基質金屬胜肽酶-3 (MMP-3)的表現並釋放到細胞外,已知此分解蛋白質的酵素和腫瘤轉移有高度關聯。我們以qRT-PCR及ELISA確定Zta會誘發MMP-3的mRNA及蛋白質的表現。在被EB病毒感染的鼻咽癌細胞中,刺激病毒再活化時也同樣可以看到MMP-3的上升。另外我們也證明了Zta主要經由MMP-3啟動子上-222到-89之間的三個AP-1結合位來轉活化MMP-3表現,而且Zta的DNA結合能力對於促進MMP-3表現是必需的。此外,我們使用了MMP-3 siRNA證明了Zta所誘發的MMP-3會促進鼻咽癌細胞的移行能力。有趣的是,Zta也會誘發肝素結合表皮生長因子 (HB-EGF),一種可經由MMP-3切割變成游離態的生長因子。我們猜測Zta誘發的MMP-3會切割並釋放出細胞表面的HB-EGF,再經由自泌/旁泌作用刺激生長相關訊息傳遞。和預期不同,Zta誘發HB-EGF的釋放並不需要MMP-3,Zta促進細胞ERK1/2磷酸化也與MMP-3無關。本研究暗示Zta在鼻咽癌細胞中誘發MMP-3產生,可能促進一個讓癌症惡化的微環境。
Epstein-Barr virus (EBV) reactivation into the lytic cycle is highly associated with nasopharyngeal carcinoma (NPC), an endemic epithelial cancer in Taiwan. Our previous studies have indicated that an EBV lytic transcriptional activator Zta can induce several cellular genes to affect immune cells. Notably, antibodies against Zta are highly increased in NPC patients and Zta expression in NPC tumors is associated with lymph node metastasis. Therefore, we hypothesize that Zta may promote aggression of NPC cells by regulating other cellular genes that modulate tumor microenvironment. Using antibody array and oligonucleotide microarray, we found that Zta upregulated expression of matrix metallopeptidase (MMP)-3, an important proteolytic enzyme involved in cancer metastasis. Quantitative RT-PCR and ELISA confirmed Zta-induced MMP-3 expression at both RNA and protein levels. Upregulation of MMP-3 was also observed in EBV-infected NPC cells undergoing viral reactivation. We also identified that Zta transactivated the MMP-3 promoter through three activator protein (AP)-1 sites within -222 to -89 of the promoter, and the DNA-binding domain of Zta was required for MMP-3 induction. In addition, we used MMP-3 siRNA to demonstrate that Zta-induced MMP-3 can promote migration of NPC cells. Interestingly, Zta also upregulated heparin-binding epidermal growth factor (HB-EGF), which can be cleaved and released by MMP-3. We wondered whether Zta-induced MMP-3 cleaved and released surface HB-EGF to promote autocrine/paracrine of NPC cells and to trigger growth signaling. Unexpectedly, MMP-3 was not essential for Zta-induced HB-EGF release and ERK1/2 phosphorylation. This study implies that the EBV lytic protein Zta regulates MMP-3 production in NPC cells to promote a microenvironment that favors cancer progression.
Adamson AL, Kenney S. Epstein-barr virus immediate-early protein BZLF1 is SUMO-1 modified and disrupts promyelocytic leukemia bodies. J Virol, 75(5), 2388-2399 (2001).
Agrawal S, Anderson P, Durbeej M et al. Dystroglycan is selectively cleaved at the parenchymal basement membrane at sites of leukocyte extravasation in experimental autoimmune encephalomyelitis. J Exp Med, 203(4), 1007-1019 (2006).
An X, Wang FH, Ding PR et al. Plasma Epstein-Barr virus DNA level strongly predicts survival in metastatic/recurrent nasopharyngeal carcinoma treated with palliative chemotherapy. Cancer, doi: 10.1002/cncr.25932. (2011).
Arvin A, Campadelli-Fiume G, Mocarski E, et al. Human Herpesviruses: Biology, Therapy, and Immunoprophylaxis. Cambridge University Press. 403-433. (2007).
Baer R, Bankier AT, Biggin MD et al. DNA sequence and expression of the B95-8 Epstein-Barr virus genome. Nature, 310(5974), 207-211 (1984).
Bauer G. Quantitative analysis of the cooperative effect between inducers of Epstein-Barr virus antigen synthesis. J Gen Virol, 64 (Pt 6), 1337-1346 (1983).
Bergbauer M, Kalla M, Schmeinck A et al. CpG-methylation regulates a class of Epstein-Barr virus promoters. PLoS Pathog, 6(9), e1001114 (2010).
Bhende PM, Seaman WT, Delecluse HJ, Kenney SC. The EBV lytic switch protein, Z, preferentially binds to and activates the methylated viral genome. Nat Genet, 36(10), 1099-1104 (2004).
Bhende PM, Seaman WT, Delecluse HJ, Kenney SC. BZLF1 activation of the methylated form of the BRLF1 immediate-early promoter is regulated by BZLF1 residue 186. J Virol, 79(12), 7338-7348 (2005).
Bouvier G, Hergenhahn M, Polack A, Bornkamm GW, de The G, Bartsch H. Characterization of macromolecular lignins as Epstein-Barr virus inducer in foodstuff associated with nasopharyngeal carcinoma risk. Carcinogenesis, 16(8), 1879-1885 (1995).
Brew K, Nagase H. The tissue inhibitors of metalloproteinases (TIMPs): An ancient family with structural and functional diversity. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1803(1), 55-71 (2010).
Chan ATC. Azacitidine Induces Demethylation of the Epstein-Barr Virus Genome in Tumors. Journal of Clinical Oncology, 22(8), 1373-1381 (2004).
Chan QKY, Lam HM, Ng CF et al. Activation of GPR30 inhibits the growth of prostate cancer cells through sustained activation of Erk1/2, c-jun/c-fos-dependent upregulation of p21, and induction of G2 cell-cycle arrest. Cell Death and Differentiation, 17(9), 1511-1523 (2010).
Chang Y, Lee HH, Chen YT et al. Induction of the early growth response 1 gene by Epstein-Barr virus lytic transactivator Zta. J Virol, 80(15), 7748-7755 (2006).
Chakraborti S, Mandal M, Das S, Mandal A, Chakraborti T. Regulation of matrix metalloproteinases: an overview.Mol Cell Biochem, 253(1-2), 269-85 (2003).
Chen CJ, Deng Z, Kim AY, Blobel GA, Lieberman PM. Stimulation of CREB Binding Protein Nucleosomal Histone Acetyltransferase Activity by a Class of Transcriptional Activators. Molecular and Cellular Biology, 21(2), 476-487 (2001).
Chen YJ, Tsai WH, Chen YL et al. Epstein-Barr virus (EBV) Rta-mediated EBV and Kaposi's sarcoma-associated herpesvirus lytic reactivations in 293 cells. PLoS One, 6(3), e17809 (2011).
Chicoine E, Esteve PO, Robledo O, Van Themsche C, Potworowski EF, St-Pierre Y. Evidence for the role of promoter methylation in the regulation of MMP-9 gene expression. Biochem Biophys Res Commun, 297(4), 765-772 (2002).
Chien YC, Chen JY, Liu MY et al. Serologic markers of Epstein-Barr virus infection and nasopharyngeal carcinoma in Taiwanese men. N Engl J Med, 345(26), 1877-1882 (2001).
Couillard J, Demers M, Lavoie G, St-Pierre Y. The role of DNA hypomethylation in the control of stromelysin gene expression. Biochem Biophys Res Commun, 342(4), 1233-1239 (2006).
Countryman JK, Gradoville L, Miller G. Histone hyperacetylation occurs on promoters of lytic cycle regulatory genes in Epstein-Barr virus-infected cell lines which are refractory to disruption of latency by histone deacetylase inhibitors. J Virol, 82(10), 4706-4719 (2008).
Coussens LM, Werb Z. Matrix metalloproteinases and the development of cancer. Chem Biol, 3(11), 895-904 (1996).
Cuniasse P, Devel L, Makaritis A et al. Future challenges facing the development of specific active-site-directed synthetic inhibitors of MMPs. Biochimie, 87(3-4), 393-402 (2005).
Dhillon AS, Hagan S, Rath O, Kolch W. MAP kinase signalling pathways in cancer. Oncogene, 26(22), 3279-3290 (2007).
Dickerson SJ, Xing Y, Robinson AR, Seaman WT, Gruffat H, Kenney SC. Methylation-dependent binding of the epstein-barr virus BZLF1 protein to viral promoters. PLoS Pathog, 5(3), e1000356 (2009).
Dorman G, Cseh S, Hajdu I et al. Matrix metalloproteinase inhibitors: a critical appraisal of design principles and proposed therapeutic utility. Drugs, 70(8), 949-964 (2010).
Edwards RH, Marquitz AR, Raab-Traub N. Epstein-Barr virus BART microRNAs are produced from a large intron prior to splicing. J Virol, 82(18), 9094-9106 (2008).
Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer, 2(3), 161-174 (2002).
Epstein MA, Achong BG, Barr YM. Virus Particles in Cultured Lymphoblasts from Burkitt's Lymphoma. Lancet, 1(7335), 702-703 (1964).
Fang CY, Lee CH, Wu CC et al. Recurrent chemical reactivations of EBV promotes genome instability and enhances tumor progression of nasopharyngeal carcinoma cells. Int J Cancer, 124(9), 2016-2025 (2009).
Farrell PJ, Rowe DT, Rooney CM, Kouzarides T. Epstein-Barr virus BZLF1 trans-activator specifically binds to a consensus AP-1 site and is related to c-fos. EMBO J, 8(1), 127-132 (1989).
Feederle R, Kost M, Baumann M et al. The Epstein-Barr virus lytic program is controlled by the co-operative functions of two transactivators. EMBO J, 19(12), 3080-3089 (2000).
Feng BJ, Jalbout M, Ayoub WB et al. Dietary risk factors for nasopharyngeal carcinoma in Maghrebian countries. Int J Cancer, 121(7), 1550-1555 (2007).
Feng WH, Israel B, Raab-Traub N, Busson P, Kenney SC. Chemotherapy induces lytic EBV replication and confers ganciclovir susceptibility to EBV-positive epithelial cell tumors. Cancer Res, 62(6), 1920-1926 (2002).
Flemington EK, Lytle JP, Cayrol C, Borras AM, Speck SH. DNA-binding-defective mutants of the Epstein-Barr virus lytic switch activator Zta transactivate with altered specificities. Mol Cell Biol, 14(5), 3041-3052 (1994).
Gargouri B, Pelt J, El Feki AEF, Attia H, Lassoued S. Induction of Epstein-Barr virus (EBV) lytic cycle in vitro causes oxidative stress in lymphoblastoid B cell lines. Molecular and Cellular Biochemistry, 324(1-2), 55-63 (2008).
Gialeli C, Theocharis AD, Karamanos NK. Roles of matrix metalloproteinases in cancer progression and their pharmacological targeting. FEBS J, 278(1), 16-27 (2011).
Hagemeier SR, Dickerson SJ, Meng Q, Yu X, Mertz JE, Kenney SC. Sumoylation of the Epstein-Barr virus BZLF1 protein inhibits its transcriptional activity and is regulated by the virus-encoded protein kinase. J Virol, 84(9), 4383-4394 (2010).
Hay RT. SUMO-specific proteases: a twist in the tail. Trends in Cell Biology, 17(8), 370-376 (2007).
Heather J, Flower K, Isaac S, Sinclair AJ. The Epstein-Barr virus lytic cycle activator Zta interacts with methylated ZRE in the promoter of host target gene egr1. J Gen Virol, 90(Pt 6), 1450-1454 (2009).
Henle G, Henle W, Diehl V. Relation of Burkitt's tumor-associated herpes-ytpe virus to infectious mononucleosis. Proc Natl Acad Sci U S A, 59(1), 94-101 (1968).
Henle W, Diehl V, Kohn G, Zur Hausen H, Henle G. Herpes-type virus and chromosome marker in normal leukocytes after growth with irradiated Burkitt cells. Science, 157(792), 1064-1065 (1967).
Higashiyama S, Iwabuki H, Morimoto C, Hieda M, Inoue H, Matsushita N. Membrane-anchored growth factors, the epidermal growth factor family: Beyond receptor ligands. Cancer Science, 99(2), 214-220 (2008).
Hsu M, Wu SY, Chang SS et al. Epstein-Barr virus lytic transactivator Zta enhances chemotactic activity through induction of interleukin-8 in nasopharyngeal carcinoma cells. J Virol, 82(7), 3679-3688 (2008).
Huang SY, Fang CY, Tsai CH et al. N-methyl-N'-nitro-N-nitrosoguanidine induces and cooperates with 12-O-tetradecanoylphorbol-1,3-acetate/sodium butyrate to enhance Epstein-Barr virus reactivation and genome instability in nasopharyngeal carcinoma cells. Chem Biol Interact, 188(3), 623-634 (2010).
Hui KF, Chiang AK. Suberoylanilide hydroxamic acid induces viral lytic cycle in Epstein-Barr virus-positive epithelial malignancies and mediates enhanced cell death. Int J Cancer, 126(10), 2479-2489 (2010).
Islekel H, Oktay G, Terzi C, Canda AE, Fuzun M, Kupelioglu A. Matrix metalloproteinase-9,-3 and tissue inhibitor of matrix metalloproteinase-1 in colorectal cancer: relationship to clinicopathological variables. Cell Biochem Funct, 25(4), 433-441 (2007).
Jenkins PJ, Binne UK, Farrell PJ. Histone acetylation and reactivation of Epstein-Barr virus from latency. J Virol, 74(2), 710-720 (2000).
Joab I, Nicolas JC, Schwaab G et al. Detection of anti-Epstein-Barr-virus transactivator (ZEBRA) antibodies in sera from patients with nasopharyngeal carcinoma. Int J Cancer, 48(5), 647-649 (1991).
Jones RJ, Seaman WT, Feng WH et al. Roles of lytic viral infection and IL-6 in early versus late passage lymphoblastoid cell lines and EBV-associated lymphoproliferative disease. Int J Cancer, 121(6), 1274-1281 (2007).
Kessenbrock K, Plaks V, Werb Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell, 141(1), 52-67 (2010).
Kudoh A, Fujita M, Kiyono T et al. Reactivation of lytic replication from B cells latently infected with Epstein-Barr virus occurs with high S-phase cyclin-dependent kinase activity while inhibiting cellular DNA replication. J Virol, 77(2), 851-861 (2003).
Kutok JL, Wang F. Spectrum of Epstein-Barr virus-associated diseases. Annu Rev Pathol, 1, 375-404 (2006).
Landschulz WH, Johnson PF, McKnight SL. The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins. Science, 240(4860), 1759-1764 (1988).
Lassoued S, Gargouri B, Feki AeF, Attia H, Pelt J. Transcription of the Epstein–Barr Virus Lytic Cycle Activator BZLF-1 During Oxidative Stress Induction. Biological Trace Element Research, 137(1), 13-22 (2009).
Lee CH, Yeh TH, Lai HC et al. Epstein-Barr Virus Zta-Induced Immunomodulators from Nasopharyngeal Carcinoma Cells Upregulate Interleukin-10 Production from Monocytes. J Virol, 85(14), 7333-7342 (2011).
Lee D, Chua D, Wei W, Sham J, Lau A. Induction of matrix metalloproteinases by Epstein–Barr virus latent membrane protein 1 isolated from nasopharyngeal carcinoma. Biomedicine & Pharmacotherapy, 61(9), 520-526 (2007).
Lee S. Role of matrix metalloproteinase-9 in angiogenesis caused by ocular infection with herpes simplex virus. Journal of Clinical Investigation, 110(8), 1105-1111 (2002).
Lee S, Jilani SM, Nikolova GV, Carpizo D, Iruela-Arispe ML. Processing of VEGF-A by matrix metalloproteinases regulates bioavailability and vascular patterning in tumors. J Cell Biol, 169(4), 681-691 (2005).
Lin JC, Wang WY, Chen KY et al. Quantification of plasma Epstein-Barr virus DNA in patients with advanced nasopharyngeal carcinoma. N Engl J Med, 350(24), 2461-2470 (2004).
Liu MY, Chang YL, Ma J et al. Evaluation of multiple antibodies to Epstein-Barr virus as markers for detecting patients with nasopharyngeal carcinoma. J Med Virol, 52(3), 262-269 (1997).
Lo YM, Chan LY, Lo KW et al. Quantitative analysis of cell-free Epstein-Barr virus DNA in plasma of patients with nasopharyngeal carcinoma. Cancer Res, 59(6), 1188-1191 (1999).
Lochter A, Galosy S, Muschler J, Freedman N, Werb Z, Bissell MJ. Matrix metalloproteinase stromelysin-1 triggers a cascade of molecular alterations that leads to stable epithelial-to-mesenchymal conversion and a premalignant phenotype in mammary epithelial cells. J Cell Biol, 139(7), 1861-1872 (1997).
Lu J, Chen SY, Chua HH et al. Upregulation of tyrosine kinase TKT by the Epstein-Barr virus transactivator Zta. J Virol, 74(16), 7391-7399 (2000).
Lu J, Chua HH, Chen SY, Chen JY, Tsai CH. Regulation of matrix metalloproteinase-1 by Epstein-Barr virus proteins. Cancer Res, 63(1), 256-262 (2003).
Mahot S, Sergeant A, Drouet E, Gruffat H. A novel function for the Epstein-Barr virus transcription factor EB1/Zta: induction of transcription of the hIL-10 gene. J Gen Virol, 84(Pt 4), 965-974 (2003).
Maretzky T. ADAM10 mediates E-cadherin shedding and regulates epithelial cell-cell adhesion, migration, and -catenin translocation. Proceedings of the National Academy of Sciences, 102(26), 9182-9187 (2005).
Matsuo T, Heller M, Petti L, O'Shiro E, Kieff E. Persistence of the entire Epstein-Barr virus genome integrated into human lymphocyte DNA. Science, 226(4680), 1322-1325 (1984).
McDonald CM, Petosa C, Farrell PJ. Interaction of Epstein-Barr virus BZLF1 C-terminal tail structure and core zipper is required for DNA replication but not for promoter transactivation. J Virol, 83(7), 3397-3401 (2009).
McQuibban GA, Gong JH, Tam EM, McCulloch CA, Clark-Lewis I, Overall CM. Inflammation dampened by gelatinase A cleavage of monocyte chemoattractant protein-3. Science, 289(5482), 1202-1206 (2000).
McQuibban GA, Butler GS, Gong JH et al. Matrix Metalloproteinase Activity Inactivates the CXC Chemokine Stromal Cell-derived Factor-1. Journal of Biological Chemistry, 276(47), 43503-43508 (2001).
Micheau C, Rilke F, Pilotti S. Proposal for a new histopathological classification of the carcinomas of the nasopharynx. Tumori, 64(5), 513-518 (1978).
Miller G. The switch between latency and replication of Epstein-Barr virus. J Infect Dis, 161(5), 833-844 (1990).
Miller G, El-Guindy A, Countryman J, Ye J, Gradoville L. Lytic cycle switches of oncogenic human gammaherpesviruses. Adv Cancer Res, 97, 81-109 (2007).
Mook OR, Frederiks WM, Van Noorden CJ. The role of gelatinases in colorectal cancer progression and metastasis. Biochim Biophys Acta, 1705(2), 69-89 (2004).
Murata T, Hotta N, Toyama S et al. Transcriptional repression by sumoylation of Epstein-Barr virus BZLF1 protein correlates with association of histone deacetylase. J Biol Chem, 285(31), 23925-23935 (2010).
Noe V, Fingleton B, Jacobs K et al. Release of an invasion promoter E-cadherin fragment by matrilysin and stromelysin-1. J Cell Sci, 114(Pt 1), 111-118 (2001).
Opdenakker G, Van den Steen PE, Van Damme J. Gelatinase B: a tuner and amplifier of immune functions. Trends Immunol, 22(10), 571-579 (2001).
Pathmanathan R, Prasad U, Sadler R, Flynn K, Raab-Traub N. Clonal proliferations of cells infected with Epstein-Barr virus in preinvasive lesions related to nasopharyngeal carcinoma. N Engl J Med, 333(11), 693-698 (1995).
Park JM, Adam RM et al. AP-1 mediates stretch-induced expression of HB-EGF in bladder smooth muscle cells. Am J Physiol, 277(2 Pt 1), C294-301 (1999).
Qian LW, Xie J, Ye F, Gao SJ. Kaposi's Sarcoma-Associated Herpesvirus Infection Promotes Invasion of Primary Human Umbilical Vein Endothelial Cells by Inducing Matrix Metalloproteinases. Journal of Virology, 81(13), 7001-7010 (2007).
Radisky DC, Levy DD, Littlepage LE et al. Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability. Nature, 436(7047), 123-127 (2005).
Ramos JW. The regulation of extracellular signal-regulated kinase (ERK) in mammalian cells. The International Journal of Biochemistry & Cell Biology, 40(12), 2707-2719 (2008).
Redondo-Munoz J, Ugarte-Berzal E, Garcia-Marco JA et al. Alpha4beta1 integrin and 190-kDa CD44v constitute a cell surface docking complex for gelatinase B/MMP-9 in chronic leukemic but not in normal B cells. Blood, 112(1), 169-178 (2008).
Redondo-Munoz J, Ugarte-Berzal E, Terol MJ et al. Matrix metalloproteinase-9 promotes chronic lymphocytic leukemia b cell survival through its hemopexin domain. Cancer Cell, 17(2), 160-172 (2010).
Rennekamp AJ, Wang P, Lieberman PM. Evidence for DNA Hairpin Recognition by Zta at the Epstein-Barr Virus Origin of Lytic Replication. Journal of Virology, 84(14), 7073-7082 (2010).
Rocks N, Paulissen G, El Hour M et al. Emerging roles of ADAM and ADAMTS metalloproteinases in cancer. Biochimie, 90(2), 369-379 (2008).
Schelcher C, Al Mehairi S, Verrall E et al. Atypical bZIP domain of viral transcription factor contributes to stability of dimer formation and transcriptional function. J Virol, 81(13), 7149-7155 (2007).
Sewing A, Wiseman B, Lloyd AC, Land H. High-intensity Raf signal causes cell cycle arrest mediated by p21Cip1. Mol Cell Biol, 17(9), 5588-5597 (1997).
Shanmugaratnamm K, Sobin LH. International histological classification of tumours: no. 19. 2nd ed. Geneva: World Health Organization. 32-33. (1991).
Shih W-L, Liao M-H, Yu F-L, Lin P-Y, Hsu H-Y, Chiu S-J. AMF/PGI transactivates the MMP-3 gene through the activation of Src-RhoA-phosphatidylinositol 3-kinase signaling to induce hepatoma cell migration. Cancer Letters, 270(2), 202-217 (2008).
Shimakage M, Horii K, Tempaku A, Kakudo K, Shirasaka T, Sasagawa T. Association of Epstein-Barr virus with oral cancers. Hum Pathol, 33(6), 608-614 (2002).
Sternlicht MD, Lochter A, Sympson CJ et al. The stromal proteinase MMP3/stromelysin-1 promotes mammary carcinogenesis. Cell, 98(2), 137-146 (1999).
Sternlicht MD, Werb Z. How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol, 17, 463-516 (2001).
Suzuki M, Raab G, Moses MA, Fernandez CA, Klagsbrun M. Matrix metalloproteinase-3 releases active heparin-binding EGF-like growth factor by cleavage at a specific juxtamembrane site. J Biol Chem, 272(50), 31730-31737 (1997).
Tsai PF, Lin SJ, Weng PL et al. Interplay between PKCdelta and Sp1 on histone deacetylase inhibitor-mediated Epstein-Barr virus reactivation. J Virol, 85(5), 2373-2385 (2011).
Tsai SC, Lin SJ, Chen PW et al. EBV Zta protein induces the expression of interleukin-13, promoting the proliferation of EBV-infected B cells and lymphoblastoid cell lines. Blood, 114(1), 109-118 (2009).
Ward MH, Pan WH, Cheng YJ et al. Dietary exposure to nitrite and nitrosamines and risk of nasopharyngeal carcinoma in Taiwan. Int J Cancer, 86(5), 603-609 (2000).
Wei WI, Sham JS. Nasopharyngeal carcinoma. Lancet, 365(9476), 2041-2054 (2005).
Wolf K, Wu YI, Liu Y et al. Multi-step pericellular proteolysis controls the transition from individual to collective cancer cell invasion. Nat Cell Biol, 9(8), 893-904 (2007).
Woods D, Parry D, Cherwinski H, Bosch E, Lees E, McMahon M. Raf-induced proliferation or cell cycle arrest is determined by the level of Raf activity with arrest mediated by p21Cip1. Mol Cell Biol, 17(9), 5598-5611 (1997).
Wu FY, Chen H, Wang SE et al. CCAAT/enhancer binding protein alpha interacts with ZTA and mediates ZTA-induced p21(CIP-1) accumulation and G(1) cell cycle arrest during the Epstein-Barr virus lytic cycle. J Virol, 77(2), 1481-1500 (2003).
Yip TT, Ngan RK, Lau WH et al. A possible prognostic role of immunoglobulin-G antibody against recombinant Epstein-Barr virus BZLF-1 transactivator protein ZEBRA in patients with nasopharyngeal carcinoma. Cancer, 74(9), 2414-2424 (1994).
Yoshizaki T, Sato H, Murono S, Pagano JS, Furukawa M. Matrix metalloproteinase 9 is induced by the Epstein-Barr virus BZLF1 transactivator. Clin Exp Metastasis, 17(5), 431-436 (1999).
Young LS, Rickinson AB. Epstein–Barr virus: 40 years on. Nature Reviews Cancer, 4(10), 757-768 (2004).
Yu F, Liu H, Lee J, Liao M, Shih W. Hepatitis B virus X protein promotes cell migration by inducing matrix metalloproteinase-3. Journal of Hepatology, 42(4), 520-527 (2005).
Zhao X, Benveniste E. Transcriptional Activation of Human Matrix Metalloproteinase-9 Gene Expression by Multiple Co-activators. Journal of Molecular Biology, 383(5), 945-956 (2008).
Zhou J, Marten NW, Bergmann CC, Macklin WB, Hinton DR, Stohlman SA. Expression of Matrix Metalloproteinases and Their Tissue Inhibitor during Viral Encephalitis. Journal of Virology, 79(8), 4764-4773 (2005).
施伶宜. 民國97年癌症登記報告. 行政院衛生署 國民健康局. 台灣 (2011).