簡易檢索 / 詳目顯示

研究生: 李廸融
Li, Di-Rong
論文名稱: 浮動式離岸風場陣列機組之懸浮式動態電纜配置優化分析
Evaluation of Optimized Suspended Inter-Array Dynamic Cable Configurations for Floating Offshore Wind Farm
指導教授: 楊瑞源
Yang, Ray-Yeng
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 104
中文關鍵詞: AQWAOrcaFlex縮尺模型試驗浮動式風機浮動式變電站懸浮式動態電纜電纜張力電纜曲率電纜疲勞電纜佈設深度適應度參數
外文關鍵詞: AQWA, OrcaFlex, Scaled model test, Floating wind turbine, Floating substation, Suspended dynamic cable, Tension, Curvature, Fatigue, Laying depth, Fitness
相關次數: 點閱:98下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 因應淨零碳排政策,政府積極發展綠色能源,隨著未來風場逐漸開發,固定式離岸風電受限於水深及地形上的限制逐漸達到裝置極限,未來勢必需要更往深水區發展,浮動式平台具有較不受到水深限制之優勢,是未來的發展趨勢。在發電量逐漸增加的情況下,可預期風場中具有浮動式變電站的設置,能夠減少電力輸送的耗損,而風場機組間動態電纜的配置乃屬重要的議題。目前動態電纜相關研究主要是參考立管經驗進行設計,如緩波型(lazy wave),若將此配置應用到較深水的海域會產生較高的成本,包括埋管佈設的成本,在進行管線的埋設過程因為海床的擾動也容易造成海底汙染,以及施工噪音對於海底生物的影響。因此,本研究選擇兩座半潛式平台分別搭載15MW風機與變電站站體做為目標機組,設計雙浮台機組間懸浮式動態電纜配置,針對不同配置張力、曲率、佈設深度與疲勞損傷進行分析,並提出適用於臺灣新竹海域之最佳化配置。
    本研究使用AQWA及OrcaFlex軟體建置兩座浮動式平台,平台距離為850公尺,並設計雙浮球段、三浮球段與四浮球段懸浮式動態電纜配置與緩波型(lazy wave)對照配置,先行以DNV國際規範進行驗證,確認平台響應與繫纜張力皆符合規範限制。並以1/49縮尺模型試驗進行數值模擬計算驗證,針對平台自由衰減特性、50年回歸期海況與1年回歸期海況之平台運動姿態、電纜張力與電纜曲率進行驗證。由模型實驗之時序列比對結果說明在各參數於不同海況下之響應範圍與數值結果趨勢吻合,頻域能譜比對結果說明與數值模擬在不同海況下之響應能量密度峰值皆位於相近之頻率範圍,藉此驗證數值模擬計算吻合性。
    最後,本研究採用適應度參數評估最佳化配置。藉由計算動態電纜於50年回歸期極端條件下之最大張力與最大曲率,分析是否能夠於極端海況下存活,之後計算動態電纜於常態海況下電纜佈設深度,評估船隻航行通過安全問題,並使用中央氣象局所提供浮標長期波浪浮標進行疲勞損傷計算,評估電纜使用年限。由適應度參數結果說明,本研究所設計三組優化懸浮式電纜配置中,四浮球段具有較佳適應度且與緩波型對照配置相比差距最小。顯示在本研究選定850公尺之雙浮台距離下,四浮球段配置為應用在臺灣新竹海域之最佳懸浮式動態電纜配置。
    透過以上之研究,本文研究成果可提供未來浮動式風場機組間動態電纜配置運動行為之研析基礎,將可作為我國未來浮動式機組間懸浮式動態電纜設計之參考。

    The purpose of this study is to design the suspended inter-array dynamic cable configuration between floating wind turbine and floating substation located in the Hsinchu offshore area, Taiwan. This study has been verified with OrcaFlex numerical simulation and a 1/49 scaled model experiment. The platform motion, cable tension and cable curvature under the 50- year return period and the 1- year return period environmental conditions are measured by model experiment and compared with the numerical simulation results. The comparison of time series results from model experiment and numerical simulation shows great consistency on the response range of each parameter under different sea states, and the comparison of the power spectral density (PSD) also indicates the response energy density peaks of the numerical simulation under different sea states are at the approximative frequency. Therefore, the accuracy of numerical simulation calculations is validated.
    In this study, the fitness parameter is used to evaluate the optimal configurations. Calculations through the maximum tension and curvature of the dynamic cable under the 50-year return period extreme environmental condition with 0- degrees and 90- degrees incident angle are conducted to examine the survival in extreme sea conditions. The cable laying depth under normal sea conditions is also covered to see whether it affects the navigation of ships. Finally, the fatigue damage of the dynamic cable is conducted under different sea states according to the long-term buoy data from the Central Weather Bureau to evaluate the survival life of the cable. Based on the results of fitness parameters, among the three groups of optimized suspension cable configurations designed in this research, the four-buoyancy sections have better fitness and only slightly worse than lazy wave configuration, which shows that the four-buoyancy sections configuration selected in this research is the most suitable suspended dynamic cable configuration applied in Taiwan Hsinchu offshore area.

    摘要 I 致謝 VII 目錄 VIII 圖目錄 XI 表目錄 XV 第一章 前言 1 1-1 研究動機 1 1-2 文獻回顧 2 1-2-1 浮動式平台 2 1-2-2 風機簡介 3 1-2-3 變電站簡介 4 1-2-4 動態電纜 8 1-2-5 陣列機組間動態電纜 10 1-3 研究架構 12 第二章 研究方法 13 2-1 Ansys AQWA 13 2-1-1 勢流理論 13 2-1-2 三維勢流解 14 2-1-3 水動力計算理論 16 2-2 Orcina OrcaFlex 19 2-2-1 座標系統 19 2-2-2 波浪理論 21 2-2-3 運動方程式 22 2-2-4 結構物受力分析 22 2-3 疲勞計算 26 2-3-1 ε-N曲線 27 2-3-2雨流計數法 28 2-3-3 Miner線性累積損傷法(Miner's rule) 29 2-4 縮尺試驗 29 2-4-1 模型律 29 2-4-2試驗場地與設備 30 2-5 最佳化配置分析數值模型建置 32 2-5-1 浮動式風機 32 2-5-2 浮動式變電站 33 2-5-3 繫纜系統 34 2-5-4 動態電纜系統 36 2-5-5 環境條件 38 2-6 驗證試次數值與試驗配置 40 2-6-1模型縮尺 40 2-6-2 試驗場地佈置與量測 45 2-6-3 環境條件 47 第三章 數值模擬與實驗分析驗證 48 3-1 自由衰減驗證 48 3-2 規則波驗證 49 3-2-1 平台RAO驗證 50 3-2-2 電纜張力RAO驗證 51 3-2-3 電纜曲率RAO驗證 54 3-3 不規則波驗證 56 3-3-1 造波條件率定 56 3-3-2 平台運動驗證 57 3-3-3 動態電纜張力驗證 61 3-3-4 動態電纜曲率驗證 67 3-4 小結 68 第四章 陣列機組最佳配置分析與討論 69 4-1 自由衰減 69 4-1-1 無繫纜自由衰減 70 4-1-2 有繫纜自由衰減 72 4-2 浮動式平台與繫纜規範檢核 74 4-2-1 平台規範檢驗 74 4-2-2 繫纜規範檢驗 75 4-3 規則波分析 76 4-3-1 浮動式風機RAO 76 4-3-2 浮動式變電站RAO 77 4-3-3 動態電纜張力RAO 77 4-3-4 動態電纜曲率 RAO 79 4-4 不規則波分析 80 4-4-1 電纜張力分析 81 4-4-2 電纜曲率分析 86 4-4-3 電纜佈設深度 88 4-4-4 疲勞分析 89 4-5 適應度參數 94 第五章 結論與建議 98 5-1 結論 98 5-2 建議 99 參考文獻 101

    1. 經濟部水利署第二河川局(2005)。新竹港南海岸環境保護及營造計畫規劃報告。
    2. 呂學信、楊敏雄、邱冠融(2012)。懸垂理論在錨碇系統之應用實例分析,第34 屆海洋工程研討會,台南,2012年11月。
    3. 台灣電力股份有限公司(2018)。再生能源發電系統併聯技術要點。
    4. 台灣電力股份有限公司(2018)。海上變電站機電配置規劃。
    5. 趙偉廷、楊智傑(2020)。台灣離岸風場於極端氣候條件下之極端波浪特性探討,第42屆海洋工程研討會,基隆,2020年11月。
    6. 趙偉廷、楊智傑(2021)。離岸風場季風及颱風下之極端風速條件分析研究,第43屆海洋工程研討會,桃園,2021年11月。
    7. Allen, C., Viscelli, A., Dagher, H., Goupee, A., Gaertner, E., Abbas, N., ... & Barter, G. (2020). Definition of the UMaine VolturnUS-S reference platform developed for the IEA Wind 15-megawatt offshore reference wind turbine (No. NREL/TP-5000-76773). National Renewable Energy Lab.(NREL), Golden, CO (United States); Univ. of Maine, Orono, ME (United States).
    8. Ansys, A. (2021). Theory manual. ANSYS Inc., Canonsburg, PA, USA.
    9. Bak, C., Zahle, F., Bitsche, R., Kim, T., Yde, A., Henriksen, L. C., Natarajan, A. (2013).The DTU 10-MW reference wind turbine. Paper presented at the Danish wind power research 2013.
    10. Cummins, W. (1962). The impulse response function and ship motions.
    11. CIGRE Working Group B1.40 (2015) Technical Brochure 610 - Offshore Generation Cable Connections, ISBN: 978-2-85873-311-8.
    12. Davidson, B., McMurtry, T., Wolford, R., & Laurie, C. (2020). Accomplishments and Mid-Year Performance Report: Wind Energy Program Fiscal Year 2020 (No. NREL/MP-6A42-76632). National Renewable Energy Lab.(NREL), Golden, CO (United States).
    13. DNV GL(2015). Offshore standard DNVGL-OS-E301, Position mooring. Høvik, Norway.
    14. DNV GL (2015). Offshore standard DNVGL-OS-E302, Offshore mooring chain. Høvik, Norway.
    15. DNV GL(2016). DNVGL-ST-0437: Loads and site conditions for wind turbines. Høvik, Norway.
    16. DNV GL(2018). Standard DNVGL-ST-0119, Floating wind turbine structures. Høvik, Norway.
    17. DNV GL(2019). Offshore standard DNVGL-RP-0286, Recommended Practice: Coupled analysis of floating wind turbines. Høvik, Norway.
    18. DNV GL(2021). DNVGL-ST-0145: Standard: offshore substations. Høvik, Norway.
    19. DOCK90. Background information - Fukushima FORWARD. Retrieved from https://www.dock90.com/en/various-floating-offshore-renewables
    20. Fujii, S., Tateno, Y., Tomikuda, K., Tominaga, Y., Horiguchi, N., Nakano, H., Sakakibara, H. (2013). The Development of the Power Transmission System for Fukushima FORWARD Project. Furukawa Electric Co. Time signal(131).
    21. Gaertner, E., Rinker, J., Sethuraman, L., Zahle, F., Anderson, B., Barter, G. E., Skrzypinski, W. (2020). IEA wind TCP task 37: definition of the IEA 15-megawatt offshore reference wind turbine.
    22. GopiReddy, L. R., Tolbert, L. M., Ozpineci, B., & Pinto, J. O. (2015). Rainflow algorithm-based lifetime estimation of power semiconductors in utility applications. IEEE Transactions on Industry Applications, 51(4), 3368-3375.
    23. GWEC. (2019). The growth of the global offshore wind market driven by Asia. Retrieved from https://gwec.net/the-growth-of-the-global-offshore-wind-market-will-be-driven-by-asia/
    24. Ideol, B. (2019). Ideol and Atlantique Offshore Energy launch the commercialization of the world’s first floating electrical offshore substation. Retrieved from https://www.bw-ideol.com/en/ideol-and-atlantique-offshore-energy-launch-commercialization-worlds-first-floating-electrical
    25. Ikhennicheu, M., Lynch, M., Doole, S., Borisade, F., Wendt, F., Schwarzkopf, M. A., Matha, D., Vicente, R. D., Tim, H., Ramirez L., & Potestio, S. (2020). Review of the State of the Art of Dynamic Cable System Design. COREWIND: Brussels, Belgium.
    26. Ikhennicheu, M., Mattias Lynch, S. D., Borisade, F., Matha, D., Dominguez, J. L., Vicente, R. D., Tim, H., Ramirez, L., Potestio, S., Molins C., & Trubat, P. (2020). D2. 1 Review of the state of the art of mooring and anchoring designs, technical challenges and identification of relevant DLCs. Technical Report. CoreWind Project. Available online: https://corewind. eu/wp-content/uploads/files/publications/COREWIND-D2. 1-Review-of-the-state-of-the-art-of-mooring-and-anchoring-designs. pdf (accessed on 4 October 2022).
    27. James, R., & Ros, M. C. (2015). Floating offshore wind: market and technology review. The Carbon Trust, 439.
    28. Jonkman, J., Butterfield, S., Musial, W., & Scott, G. (2009). Definition of a 5-MW reference wind turbine for offshore system development. Retrieved from
    29. Justad, A. A. (2017). Wind Turbines for the Power Supply for Offshore Fish Farms: A Case Study for the Norwegian West Coast (Master's thesis, Universitetet i Agder; University of Agder).
    30. Karlsen, S., Slora, R., Heide, K., Lund, S., Eggertsen, F., & Osborg, P. A. (2009). Dynamic deep water power cables. Paper presented at the Proceedings of the 9th International Conference and Exhibition for Oil and gas resources development of the Russian Arctic and CIS continental shelf, RAO/CIS Offshore, St Petersburg.
    31. Konispoliatis, D. N., Mavrakos, S. A., Chatjigeorgiou, I. K. Hydrodynamic Loading and Mooring Fatigue Estimation of an Offshore Oscillating Water Column Wave Energy Converter. Proceedings of the 15th International Symposium on Practical Design of Ships and Other Floating Structures PRADS, 28, 2022
    32. Lerch, M., De-Prada-Gil, M., & Molins, C. (2021). A metaheuristic optimization model for the inter-array layout planning of floating offshore wind farms. International Journal of Electrical Power & Energy Systems, 131, 107128.
    33. Matsuishi, M., & Endo, T. (1968). Fatigue of metals subjected to varying stress. Japan Society of Mechanical Engineers, Fukuoka, Japan, 68(2), 37-40.
    34. Miner, M. (1945). Cumulative damage in fatigue journal of applied mechanics 12 (1945) no. 3, pp. A159-A164.
    35. Morison, J., Johnson, J. W., & Schaaf, S. A. (1950). The force exerted by surface waves on piles. Journal of Petroleum Technology, 2(05), 149-154.
    36. National Renewable Energy Laboratory (2020). Floats New Offshore Wind Cost Optimization Vision. Retrieved from https://www.nrel.gov/news/program/2020/nrel-floats-new-offshore-wind-cost-optimization-tool.html
    37. Orcina, L. (2022). OrcaFlex user manual: OrcaFlex version 11.2 a. Daltongate Ulverston Cumbria, UK.
    38. Ou, S. H. (1977). Parametric determination of wave statistics and wave spectrum of gravity waves. Tainan Hydraulics Laboratory of Water Resources Planning Commission-Ministry.
    39. Rentschler, M. U., Adam, F., & Chainho, P. (2019). Design optimization of dynamic inter-array cable systems for floating offshore wind turbines. Renewable and Sustainable Energy Reviews, 111, 622-635.
    40. Robertson, A., Jonkman, J., Masciola, M., Song, H., Goupee, A., Coulling, A., & Luan, C. (2014). Definition of the semisubmersible floating system for phase II of OC4.
    41. Semco. (2022). Floating Substation - Semco Maritime, Inocean and ISC Consulting Engineers join forces. Retrieved from https://www.semcomaritime.com/news/floating-offshore-wind
    42. Shelley, S. A., Boo, S. Y., Kim, D., & Luyties, W. H. (2020). Concept Design of Floating Substation for a 200 MW Wind Farm for the Northeast US. Paper presented at the Offshore Technology Conference.
    43. Shi, L., Yang, W., Chen, K., Yu, G., Jin, C., Ni, L., Hu, Z. (2022). Performance Evaluation of W Shape Dynamic Inter-Array Cable Configuration for Floating Offshore Wind Turbine. Paper presented at the Offshore Technology Conference Asia.
    44. Sobhaniasl, M., Petrini, F., Karimirad, M., & Bontempi, F. (2020). Fatigue life assessment for power cables in floating offshore wind turbines. Energies, 13(12), 3096.
    45. Srinil, N. (2016). Cabling to connect offshore wind turbines to onshore facilities. In Offshore wind farms (pp. 419-440): Elsevier.
    46. Thies, P. R., Johanning, L., & Smith, G. H. (2012). Assessing mechanical loading regimes and fatigue life of marine power cables in marine energy applications. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 226(1), 18-32.
    47. Wichers, J. E. (1979). Slowly oscillating mooring forces in single point mooring systems. Paper presented at the Netherlands Ship Model Basin, Wageningen, Proceedings of the 2nd International Conference on Behaviour of Offshore Structures, BOSS’79, Paper 27, London, England, Volume 1, pp. 357-363, Paper: P1979-4 Proceedings.
    48. Yoshimoto, H., Awashima, Y., Kitakoji, Y., & Suzuki, H. (2013). Development of floating offshore substation and wind turbine for Fukushima FORWARD. Paper presented at the Proceedings of the International Symposium on Marine and Offshore Renewable Energy, Tokyo, Japan.

    無法下載圖示 校內:2027-02-01公開
    校外:2027-02-01公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE