| 研究生: |
石維楷 Shih, Wei-Kai |
|---|---|
| 論文名稱: |
尼泊爾埋葬蟲海拔分布界線之形成機制 Mechanisms determining elevational range limits of Nicrophorus nepalensis. |
| 指導教授: |
陳一菁
Chen, I-Ching |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生命科學系 Department of Life Sciences |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 41 |
| 中文關鍵詞: | 分布限制 、種間競爭 、尼泊爾埋葬蟲 、操作性實驗 、爭奪型競爭 、獨佔型競爭 |
| 外文關鍵詞: | elevational range limits, interspecific competition, burying beetles, manipulations, scramble competition, contest competition |
| 相關次數: | 點閱:201 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中文摘要
生物的分布限制代表著生物對物理環境的適應以及與其他生物間的交互作用等複雜的機制在空間上的表現,並且一直是生態、演化、以及保育等研究中非常重要的議題之一。過去達爾文和MacArthur的經典理論認為山區生物分佈,上界由於物種數量較少且環境較嚴峻,因此生物分布大多受非生物因子所限制;而下界由於物種數量較多且物種間交互作用頻繁,因此生物分布大多受生物因子所限制。然而,此假說長久以來頗有爭議,直接藉由操作性實驗驗證亦相對缺乏。本研究以台灣中部山區的尼泊爾埋葬蟲(Nicrophorus nepalensis)為實驗物種,利用一系列的野外操作實驗直接調控多項非生物與生物因子,觀察各項因子對埋葬蟲繁殖表現之影響,探討其於海拔梯度上所受的限制與限制背後的機制。我們分別在不同海拔:(1)以控制埋葬蟲數量並排除競爭者的方式檢驗埋葬蟲生理限制因素;(2)提供額外的腐屍氣味,加快埋葬蟲找到屍體的速度;(3)在屍體下鋪落葉,加快埋葬蟲處理屍體的速度;與(4)屍體加熱或冷卻操控競爭者(麗蠅)的發育速率。結果顯示,排除競爭者後,埋葬蟲在分布範圍外仍可成功繁殖,故其海拔分布並不單純受生理限制。在高海拔地區,加快埋葬蟲找到屍體的速度可顯著提高埋葬蟲的繁殖成功率;而在低海拔地區,加快埋葬蟲處理屍體的速度能顯著提高埋葬蟲的繁殖成功率。此結果顯示尼泊爾埋葬蟲在海拔上、下界的繁殖限制都是受限於種間競爭,但是競爭的機制卻不完全相同。高海拔地區的競爭是在找尋資源的階段,為爭奪型競爭(Scramble competition);而低海拔地區的競爭則在處理資源的階段,為獨佔型競爭(Contest competition)。本研究利用操作實驗證實種間競爭對生物分布的重要性,往後的研究進行生物分布移動的預測時應該更加慎重考慮生物間的交互作用帶來的影響。
關鍵字:分布限制、種間競爭、尼泊爾埋葬蟲、操作性實驗、爭奪型競爭、獨佔型競爭。
SUMMARY
In this research, we assessed elevational range limits of burying beetles (Nicrophorus nepalensis) at both upper and lower range limits by experimentally manipulating abiotic and biotic factors. We transplanted beetles beyond their range edges to test effects of temperature and competition from flies. Then, we manipulated competitive pressures, resources searching time and resources handling time at both upper and lower range edge of the burying beetle. Results of transplant experiments showed that interspecific competition was the major limiting factor. Manipulation experiments showed that at upper range limits, competition occurs mainly at resource searching stage where decreasing searching time significantly increased breeding success of burying beetles. At lower range limits, competition occurs mainly at resource handling stage where decreasing handling time significantly increased breeding success of burying beetles. The results showed that biotic interaction sets range limits of burying beetles but mechanisms differ between upper and lower edges, where scramble and contest competition dominant respectively. Interspecific competition is crucial to determine species range limit. Through investigating burying beetle’s range limits by examining effects of limiting factors on breeding success, I emphasize the importance of interspecific competition on determining species range limit.
Key words: elevational range limits, interspecific competition, burying beetles, manipulations, scramble competition, contest competition
張安瑜。氣候及生物因子對尼泊爾埋葬蟲與紅胸埋葬蟲海拔分布的影響。國立台灣大學生態學與演化生物學研究所。2013。
藍美琪。尼泊爾埋葬蟲(Nicrophorus nepalensis)(Coleoptera: Silphidae)野外個體活動時間、空間分布及親代對子代調節與親疏辨認之研究。國立台南大學環境生態研究所。2010。
Alexander, J.M. & Edwards, P.J. Limits to the niche and range margins of alien species. Oikos, 119, 1377–1386. 2010.
Angert, A.L. The niche, limits to species' distributions, and spatiotemporal variation in demography across the elevation ranges of two monkeyflowers. Proceedings of the National Academy of Sciences of the United States of America, 106, 19693–19698, 2009.
Bozinovic, F., Calosi, P. & Spicer, J.I. Physiological correlates of geographic range in animals. Annual Review of Ecology, Evolution, and Systematics, 42, 155–179. 2011.
Bridle, J.R. & Vines, T.H. Limits to evolution at range margins: when and why does adaptation fail? Trends in Ecology & Evolution, 22, 140–147. 2007.
Briers, R.A. Range limits and parasite prevalence in a freshwater snail. Proceedings of the Royal Society B: Biological Sciences, 270, S178–S180. 2003.
Cahill, A.E., Aiello-Lammens, M.E., Caitlin Fisher-Reid, M., Hua, X., Karanewsky, C.J., Ryu, H.Y., et al. Causes of warm-edge range limits: systematic review, proximate factors and implications for climate change. Journal of Biogeography, 41, 429–442. 2014.
Camm, J.D., Norman, S.K., Polasky, S. & Solow, A.R. Nature reserve site selection to maximize expected species covered. Operations Research, 50, 946–955. 2002.
Cezilly, F. Behavioural Ecology: An Evolutionary Perspective on Behaviour. Oxford: Oxford University Press. New York, United States. 259. 2007.
Chan, W.P., Chen, I.C., Colwell, R.K., Liu, W.C., Huang, C.Y., Shen, S.F. Seasonal and daily climate variation have opposite effects on species elevational range size. Science, 351, 1437–1439. 2016.
Chen, I.C., Shiu, H.J., Benedick, S., Holloway, J.D., Chey, V.K., Barlow, H.S., Hill, J.K., Thomas, C.D. Elevation increases in moth assemblages over 42 years on a tropical mountain. Proceedings of the National Academy of Sciences of the United States of America, 106, 1479–1483. 2009.
Chen, I.C., Hill, J.K., Ohlemüller, R., Roy, D.B. & Thomas, C.D. Rapid range shifts of species of climate warming. Science, 333, 1024–1026. 2011.
Colwell, R.K., Brehm, G., Cardelús, C.L., Gilman, A.C. & Longino, J.T. Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics. Science, 322, 258–261. 2008.
Cowles, R.B. & Bogert, C.M. A preliminary study of the thermal requirements of desert reptiles. Bulletin of the American Museum of Natural History, 83, 263–296. 1944.
Darwin, C. On the Origin of Species by Means of Natural Selection. Murray, London, U. K. 1859.
Diamond, J.M. Ensure survival of as many native distributional ecology of new guinea birds. Advancement of Science, 179, 759–769. 1973.
Eggert, A.K. & Müller, J.K. Joint breeding in female burying beetles. Behavioral Ecology and Sociobiology, 31, 237–242. 1992.
Elith, J. & Leathwick, J.R. Species distribution models: ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution, and Systematics, 40, 677–697. 2009.
Gaston, K.J. Geographic range limits: achieving synthesis. Proceedings of the Royal Society B: Biological Sciences, 276, 1395–406. 2009.
Geber, M.A. Ecological and evolutionary limits to species geographic ranges. The American Naturalist, 178 Suppl, S1–5. 2011.
Gifford, M.E. & Kozak, K.H. Islands in the sky or squeezed at the top? Ecological causes of elevational range limits in montane salamanders. Ecography, 35, 193–203. 2012.
Guisan, A. & Thuiller, W. Predicting species distribution: offering more than simple habitat models. Ecology Letters, 8, 993–1009. 2005.
Hargreaves, A.L., Samis, K.E. & Eckert, C.G. Are species’ range limits simply niche limits writ large? A review of transplant experiments beyond the range. The American Naturalist, 183, 157–173. 2014.
Hill, J.K., Griffiths, H.M. & Thomas, C.D. Climate change and evolutionary adaptations at species’ range margins. Annual review of entomology, 56, 143–59. 2011.
Holt, R.D. & Barfield, M. Trophic interactions and range limits: the diverse roles of predation. Proceedings of the Royal Society B: Biological Sciences, 276, 1435–1442. 2009.
Hutchinson, G.E. Concluding remarks. Cold Spring Harb. Symp. Quant. Biol., 22, 415–427. 1957.
Hwang, W. & Shiao, S.F. Dormancy and the influence of photoperiod and temperature on sexual maturity in Nicrophorus nepalensis (Coleoptera: Silphidae). Insect Science, 18, 225–233. 2011.
Jankowski, J.E., Ciecka, A.L., Meyer, N.Y. & Rabenold, K.N. Beta diversity along environmental gradients: implications of habitat specialization in tropical montane landscapes. Journal of Animal Ecology, 78, 315–327. 2009.
Jankowski, J.E., Londoño, G.A., Robinson, S.K. & Chappell, M.A. Exploring the role of physiology and biotic interactions in determining elevational ranges of tropical animals. Ecography, 36, 001–012. 2013.
Jankowski, J.E., Robinson, S.K. & Levey, D.J. Squeezed at the top: interspecific aggression may constrain elevational ranges in tropical birds. Ecology, 91, 1877–1884. 2010.
Janzen, D.H. Why mountain passes are higher in the tropics. The American Naturalist, 101, 233–249. 1967.
Laurance, W.F., Carolina Useche, D., Shoo, L.P., Herzog, S.K., Kessler, M., Escobar, F., et al. Global warming, elevational ranges and the vulnerability of tropical biota. Biological Conservation, 144, 548–557. 2011.
Lavergne, S., Mouquet, N., Thuiller, W. & Ronce, O. Biodiversity and climate change: integrating evolutionary and ecological responses of species and communities. Annual Review of Ecology, Evolution, and Systematics, 41, 321–350. 2010.
Louthan, A.M., Doak, D.F. & Angert, A.L. Where and when do species interactions set range limits ? Trends in Ecology & Evolution, 30, 780–792. 2015.
MacArthur, R.H. Geographical Ecology. Patterns in the Distribution of Species. Harper and Row, New York, United States. 1972.
Magurran, A.E. Measuring Biological Diversity. Blackwell, Oxford. New York, United States. 2004.
McKnight, M.W., White, P.S., McDonald, R.I., Lamoreux, J.F., Sechrest, W., Ridgely, R.S., et al. Putting beta-diversity on the map: broad-scale congruence and coincidence in the extremes. PLoS Biology, 5, e272. 2007.
Moeller, D.A., Geber, M.A., Eckhart, V.M. & Tiffin, P. Reduced pollinator service and elevated pollen limitation at the geographic range limit of an annual plant. Ecology, 93, 1036–1048. 2012.
Pearman, P.B., Guisan, A., Broennimann, O., Randin, C.F. Niche dynamics in space and time. Trends in Ecology & Evolution, 23, 149–158. 2008.
Pianka, E.R. On r- and K-Selection. The American Naturalist, 104, 592–597. 1970.
Pounds, J.A., Fogden, M.P.L. & Campbell, J.H. Biological response to climate change on a tropical mountain. Nature, 398, 611–615. 1999.
Price, T.D. & Kirkpatrick, M. Evolutionarily stable range limits set by interspecific competition. Proceedings of the Royal Society B: Biological Sciences, 276, 1429–1434. 2009.
Pulliam, H.R. On the relationship between niche and distribution. Ecology Letters, 3, 349–361. 2000.
Pulliam, H.R. Sources, sinks, and population regulation. The American Naturalist, 132, 652–661. 1988.
Purcell, J. & Avilés, L. Gradients of precipitation and ant abundance may contribute to the altitudinal range limit of subsocial spiders: insights from a transplant experiment. Proceedings of the Royal Society B: Biological Sciences, 275, 2617–2625. 2008.
Samis, K.E. & Eckert, C.G. Ecological correlates of fitness across the northern geographic range limit of a Pacific coast dune plant. Ecology, 90, 3051–3061. 2009.
Scott, M.P. Competition with flies promotes communal breeding in the burying beetle, Nicrophorus tomentosus. Behavioral Ecology and Sociobiology, 34, 367–373. 1994
Scott, M.P. & Traniello, J.F.A. Behavioural cues trigger ovarian development in the burying beetle, Nicrophorus tomentosus. Journal of Insect Physiology, 33, 693–696. 1987.
Scott, M.P. & Traniello, J.F.A. Behavioural and ecological correlates of male and female parental care and reproductive success in burying beetles (Nicrophorus spp.). Animal Behaviour, 39, 274–283. 1990.
Schwartz, M.W. Using niche models with climate projections to inform conservation management decisions. Biological Conservation, 155, 149–156. 2012.
Sexton, J.P., McIntyre, P.J., Angert, A.L. & Rice, K.J. Evolution and ecology of species range limits. Annual Review of Ecology, Evolution, and Systematics, 40, 415–436. 2009.
Sheldon, K.S. & Tewksbury, J.J. The impact of seasonality in temperature on thermal tolerance and elevational range size. Ecology, 95, 2134–2143. 2014.
Shi, P., Wang, B., Ayres, M.P., Ge, F., Zhong, L. & Li, B.-L. Influence of temperature on the northern distribution limits of Scirpophaga incertulas Walker (Lepidoptera: Pyralidae) in China. Journal of Thermal Biology, 37, 130–137. 2012.
Southwood, T.R.E. Habitat, the templet for ecological strategies? Journal of Animal Ecology, 46, 336–365. 1977.
Sun, S.J., Rubenstein, D. R., Chen, B.F., Chan, S.F., Liu, J.N., Liu, M., ... & Shen, S.F. Climate-mediated cooperation promotes niche expansion in burying beetles. eLife, 3, e02440. 2014.
Terborgh, J. Distribution on environmental gradients : theory and a preliminary interpretation of distributional patterns in the avifauna of the Cordillera Vilcabamba , Peru. Ecological Society of America, 52, 23–40. 1971.
Trumbo, S.T. Interference competition among burying beetles (Silphidae, Nicrophorus). Ecological Entomology, 15, 347–355. 1990.
Trumbo, S.T. Nesting failure in burying beetles and the origin of communal associations. Evolutionary Ecology, 9, 125–130. 1995.
Ungerer, M.J., Ayres, M.P., Lombardero, M.J. Climate and the northern distribution limits of Dendroctonus frontalis Zimmermann(Coleoptera: Scolytidae). Journal of Biogeography, 26, 1133–1145. 1999.
Warren, M.S., Hill, J.K., Thomas, J.A., Asher, J., Fox, R. & Huntley, B. Rapid responses of British butterflies to opposing forces of climate and habitat change. Nature, 414, 65–69. 2001.
Wethey, D.S. Biogeography , competition , and microclimate : The barnacle Chthamalus fragilis. Integrative and Comparative Biology, 42, 872–880. 2002.
Wilson, D.S., Knollenberg, W.G. & Fudge, J. Species packing and temperature dependent competition among burying beetles (Silphidae, Nicrophorus). Ecological Entomology, 9, 205–216. 1984.
Wilson, R.J., Gutiérrez, D., Gutiérrez, J., Martínez, D., Agudo, R. & Monserrat, V.J. Changes to the elevational limits and extent of species ranges associated with climate change. Ecology letters, 8, 1138–1146. 2005.