簡易檢索 / 詳目顯示

研究生: 林宛萓
Lin, Wan-yi
論文名稱: 發展室內PM2.5濃度推估模式-以台南住家為例
Development of a prediction model for indoor PM2.5 concentrations – the case in Tainan households
指導教授: 蘇慧貞
Su, Huey-Jen
學位類別: 碩士
Master
系所名稱: 醫學院 - 環境醫學研究所
Department of Environmental and Occupational Health
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 111
中文關鍵詞: 細懸浮微粒住家Kriging空間內插法土地使用型態
外文關鍵詞: Fine particulate matter, Indoor, Household, Kriging method, Multiple Linear Regression model
相關次數: 點閱:62下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 過去研究證實,室內PM2.5的暴露會增加人體的健康危害風險,因此量測室內PM2.5濃度變化及其影響因子,有助於找出室內PM2.5的污染來源與評估適當的改善策略,進而降低室內人員的暴露風險。然而,室內PM2.5濃度資料不易取得,且近年研究發展的室內PM2.5濃度推估模式,都是以溫帶國家的建築特性、人為活動特性和污染源種類為基礎,但不同氣候帶的建築結構、室內人員活動特性和PM2.5來源均不同,使得不同參數對室內PM2.5濃度的影響程度亦不相同;再者,過去研究多是建立日平均室內PM2.5濃度推估模式,不利於室內PM2.5污染之短期預警系統的發展。
    有鑒於此,本研究利用2008年8月至2009年9月間,在台南地區蒐集的93戶一般住宅的室內人員活動特性與建築結構、每小時的室內外溫濕度、每小時的室內外空氣污染物濃度和土地使用型態等資料,並以多變項線性迴歸模式建立室內PM2.5濃度的推估模式,並探討影響室內PM2.5濃度的因子。前述研究住家之每小時室外PM2.5濃度,來自Kriging空間內插法 推估研究住家鄰近的環保署空氣品質監測站量測得的PM2.5濃度;土地使用型態的資料包含Points of Interest (POI) 資料庫和交通部運輸研究所路網數值圖等圖檔,並以ArcGIS觀察環域 (Buffer) 範圍內的土地利用情況。
    結果顯示模式的解釋力為74%,室外PM2.5濃度與穿透因子為影響室內PM2.5濃度的重要參數。內部資料驗證和外部資料驗證結果顯示,解釋力分別落在60%-82%與36%-85%。本研究建議未來發展室內PM2.5濃度的推估模式時,應將上述因素納入模式中,以提高模式的推估能力;此外,本研究建立的推估模式可推求每小時的室內PM2.5濃度,有助於做為未來PM2.5污染問題之短期預警系統的發展。

    Long-term PM2.5 exposures may contribute to elevated incidence of multiple organs’ damage. However, people spend approximately 90% of their time staying indoors, over- or under-estimates of health risks might be caused due to the difference of PM2.5 level between indoors and outdoors. Therefore, it is necessary to clarify the relationship between indoor and outdoor PM2.5 concentrations; especially, this study using preliminary database to clarify the relationship between indoor and outdoor PM2.5 concentrations. From August 2008 to September 2009, study households contained 93 preschool children's bedroom were selected from Tainan. Research material involved indoor human actives, building characteristic, meteorological data, land use variables and indoor outdoor PM2.5 concentrations. The ambient PM2.5 concentrations were collected from air quality monitoring station and interpolated by Kriging method to be outdoor PM2.5 concentrations. Finally, the Multiple Linear Regression model was used to establish a predictive model for indoor PM2.5 concentrations. And model validation was conducted by using cross validation and external validation to ensure the accuracy of the model. After establishing the predict model, we can find that outdoor PM2.5 concentrations can explain most of the indoor PM2.5 concentrations. In addition, the remaining predictive power is regarding to the infiltration rate. So, if any research wants to establish a model to find the correlation between indoor and outdoor environment in the future, these variables cannot be ignored.

    摘要 II 致謝 VII 目錄 IX 圖目錄 XVIII 表目錄 XIX 第一章 緒論 2 1-1 研究背景與現況 2 1-2 研究目的 3 第二章 文獻回顧 4 2-1 懸浮微粒之特性 4 2-2 懸浮微粒的來源、生成機制和種類 4 2-3 暴露PM2.5所產生的健康效應 5 2-4 室內PM2.5 9 2-5 室內PM2.5的暴露與健康危害 9 2-6 室內PM2.5的污染來源 12 2-7 室內PM2.5濃度量測與推估方法 17 2-3-1 室內PM2.5濃度量測方法 17 2-3-2 室內PM2.5濃度推估方法 20 第三章 材料與方法 24 3-1 研究架構 24 3-2 研究住家的來源與篩選依據 25 3-3 模式所需參數的種類與蒐集方式 26 3-3-1 室內外環境參數 26 3-3-2 土地使用型態資料 28 3-3-3 建築特性與人為活動 31 3-4 統計方法 32 3-4-1 常態分佈與相關性分析 32 3-4-2 多變項迴歸分析 32 3-5模式驗證 33 第四章 結果 35 4-1 研究資料之描述性統計 35 4-2 室內外環境資料描述 35 4-3 建築特性的描述 36 4-4 家中建材使用描述 38 4-5 室內人員活動特性調查 40 4-6 土地使用型態 43 4-7 變項與室內PM2.5濃度之相關性 46 4-8 室內PM2.5濃度之模式建立 52 4-9 模式驗證 55 4-10 內部驗證 55 4-11 外部驗證 58 第五章 討論 61 5-1 住家PM2.5濃度分布 61 5-2 探討各變項對室內PM2.5濃度的影響 64 5-3 室內PM2.5濃度推估模式在不同時間與空間的應用 67 5-4 各國研究的比較 68 5-5 研究優勢與限制 74 5-6 研究優勢 74 5-7 研究限制 75 第六章 結論與建議 77 6-1 結論 77 6-2 建議 78 第七章 參考文獻 79 附錄一、環境調查問卷 88 附錄二、人員行為問卷 89

    Amato F, Rivas I, Viana M, Moreno T, Bouso L, Reche C, et al. 2014. Sources of indoor and outdoor PM2. 5 concentrations in primary schools. Science of the Total Environment 490: 757-65.
    Apte K, Salvi S. 2016. Household air pollution and its effects on health. F1000Research 5.
    Bae M-S, Demerjian KL, Schwab JJ. 2006. Seasonal estimation of organic mass to organic carbon in PM 2.5 at rural and urban locations in New York state. Atmospheric Environment 40: 7467-79.
    Bayraktar H, Turalioglu FS. 2005. A Kriging-based approach for locating a sampling site—in the assessment of air quality. Stochastic Environmental Research and Risk Assessment 19: 301-5.
    Bell ML, Belanger K, Ebisu K, Gent JF, Lee HJ, Koutrakis P, et al. 2010. Prenatal exposure to fine particulate matter and birth weight: variations by particulate constituents and sources. Epidemiology (Cambridge, Mass.) 21: 884.
    Bell ML, Ebisu K, Leaderer BP, Gent JF, Lee HJ, Koutrakis P, et al. 2013. Associations of PM2. 5 constituents and sources with hospital admissions: analysis of four counties in Connecticut and Massachusetts (USA) for persons≥ 65 years of age. Environmental health perspectives 122: 138-44.
    Bergen S, Sheppard L, Sampson PD, Kim S-Y, Richards M, Vedal S, et al. 2013. A national prediction model for PM2. 5 component exposures and measurement error–corrected health effect inference. Environmental health perspectives 121: 1017.
    Bornehag C-G, Sundell J, Sigsgaard T. 2004. Dampness in buildings and health (DBH): Report from an ongoing epidemiological investigation on the association between indoor environmental factors and health effects among children in Sweden. Indoor Air 14: 59-66.
    Brauer M, Hoek G, Van Vliet P, Meliefste K, Fischer PH, Wijga A, et al. 2002. Air pollution from traffic and the development of respiratory infections and asthmatic and allergic symptoms in children. Am J Respir Crit Care Med 166: 1092-8.
    Breen MS, Long TC, Schultz BD, Williams RW, Richmond-Bryant J, Breen M, et al. 2015. Air pollution exposure model for individuals (EMI) in health studies: evaluation for ambient PM2. 5 in central North Carolina. Environmental science & technology 49: 14184-94.
    Brook RD, Rajagopalan S, Pope CA, 3rd, Brook JR, Bhatnagar A, Diez-Roux AV, et al. 2010. Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association. Circulation 121: 2331-78.
    Chen C, Zhao B. 2011. Review of relationship between indoor and outdoor particles: I/O ratio, infiltration factor and penetration factor. Atmospheric Environment 45: 275-88.
    Chen C, Xu D, He MZ, Wang Y, Du Z, Du Y, et al. 2018a. Fine Particle Constituents and Mortality: A Time-Series Study in Beijing, China. Environmental science & technology 52: 11378-86.
    Chen Fe, Lin Z, Chen R, Norback D, Liu C, Kan H, et al. 2018b. The effects of PM2.5 on asthmatic and allergic diseases or symptoms in preschool children of six Chinese cities, based on China, Children, Homes and Health (CCHH) project. Environmental Pollution 232: 329-37.
    Chen S-C, Wong R-H, Shiu L-J, Chiou M-C, Lee H. 2008. Exposure to Mosquito Coil Smoke May be a Risk Factor for Lung Cancer in Taiwan. Journal of Epidemiology 18: 19-25.
    Cheng Q, Yang CY, Guo BY, Wei X, Liu M. 2017. Analysis of mechanism of PM2.5 and house dust mite antigen Der p1 in attack stage of child asthma. Eur Rev Med Pharmacol Sci 21: 2458-62.
    Cheng Y-H. 2008. Comparison of the TSI Model 8520 and Grimm Series 1.108 portable aerosol instruments used to monitor particulate matter in an iron foundry. Journal of Occupational and Environmental Hygiene 5: 157-68.
    Chou C-K, Lee C, Cheng M, Yuan C, Chen S, Wu Y, et al. 2010. Seasonal variation and spatial distribution of carbonaceous aerosols in Taiwan. Atmospheric Chemistry and Physics 10: 9563-78.
    Chow JC. 1995. Measurement methods to determine compliance with ambient air quality standards for suspended particles. Journal of the Air & Waste Management Association 45: 320-82.
    Chow JC, Watson JG, Edgerton SA, Vega E. 2002. Chemical composition of PM 2.5 and PM 10 in Mexico City during winter 1997. Science of the Total Environment 287: 177-201.
    Clark NA, Allen RW, Hystad P, Wallace L, Dell SD, Foty R, et al. 2010a. Exploring variation and predictors of residential fine particulate matter infiltration. International journal of environmental research and public health 7: 3211-24.
    Clark NA, Allen RW, Hystad P, Wallace L, Dell SD, Foty R, et al. 2010b. Exploring variation and predictors of residential fine particulate matter infiltration. Int J Environ Res Public Health 7: 3211-24.
    2012. Indoor air quality in Asian Countries.
    Deng G, Li Z, Wang Z, Gao J, Xu Z, Li J, et al. 2017. Indoor/outdoor relationship of PM2. 5 concentration in typical buildings with and without air cleaning in Beijing. Indoor and Built Environment 26: 60-8.
    Di Q, Kloog I, Koutrakis P, Lyapustin A, Wang Y, Schwartz J. 2016. Assessing PM2. 5 exposures with high spatiotemporal resolution across the continental United States. Environmental science & technology 50: 4712-21.
    Didan K. 2015. MOD13Q1 MODIS/Terra vegetation indices 16-day L3 global 250m SIN grid V006. NASA EOSDIS Land Processes DAAC.
    Elbayoumi M, Ramli NA, Yusof NFFM, Yahaya ASB, Al Madhoun W, Ul-Saufie AZ. 2014. Multivariate methods for indoor PM10 and PM2. 5 modelling in naturally ventilated schools buildings. Atmospheric environment 94: 11-21.
    Eum Y, Song I, Kim H-C, Leem J-H, Kim S-Y. 2015. Computation of geographic variables for air pollution prediction models in South Korea. Environmental health and toxicology 30.
    Fan Z, Lioy P, Weschler C, Fiedler N, Kipen H, Zhang J. 2003. Ozone-initiated reactions with mixtures of volatile organic compounds under simulated indoor conditions. Environ Sci Technol 37: 1811-21.
    Feng F-L, Kao J-T. 1999. Applying Kriging Interpolation Model in Precipitation Properties Mapping. Journal of the Experimental Forest of National Taiwan University 13: 155-63.
    Ferro AR, Kopperud RJ, Hildemann LM. 2004. Elevated personal exposure to particulate matter from human activities in a residence. Journal of Exposure Science and Environmental Epidemiology 14: S34.
    Galea KS, Hurley JF, Cowie H, Shafrir AL, Sánchez Jiménez A, Semple S, et al. 2013. Using PM2.5 concentrations to estimate the health burden from solid fuel combustion, with application to Irish and Scottish homes. Environmental health : a global access science source 12: 50-.
    Gharibvand L, Lawrence Beeson W, Shavlik D, Knutsen R, Ghamsary M, Soret S, et al. 2017. The association between ambient fine particulate matter and incident adenocarcinoma subtype of lung cancer. Environ Health 16: 71.
    Goel A, Wathore R, Chakraborty T, Agrawal M. 2017. Characteristics of exposure to particles due to incense burning inside temples in Kanpur, India. Aerosol Air Qual. Res 17: 608-15.
    Gonzalez-Barcala FJ, Pertega S, Garnelo L, Castro TP, Sampedro M, Lastres JS, et al. 2013. Truck traffic related air pollution associated with asthma symptoms in young boys: a cross-sectional study. Public Health 127: 275-81.
    Gould CF, Chillrud SN, Phillips D, Perzanowski MS, Hernández D. 2018. Soot and the city: Evaluating the impacts of Clean Heat policies on indoor/outdoor air quality in New York City apartments. PLoS ONE 13: e0199783.
    Han Y, Qi M, Chen Y, Shen H, Liu J, Huang Y, et al. 2015. Influences of ambient air PM2. 5 concentration and meteorological condition on the indoor PM2. 5 concentrations in a residential apartment in Beijing using a new approach. Environmental pollution 205: 307-14.
    He C, Morawska L, Hitchins J, Gilbert D. 2004. Contribution from indoor sources to particle number and mass concentrations in residential houses. Atmospheric environment 38: 3405-15.
    He K, Yang F, Ma Y, Zhang Q, Yao X, Chan CK, et al. 2001. The characteristics of PM 2.5 in Beijing, China. Atmospheric Environment 35: 4959-70.
    Heine GW. 1986. A controlled study of some two-dimensional interpolation methods. COGS Computer Contributions 3: 60-72.
    Heydari G, Taghizdeh F, Fazlzadeh M, Jafari AJ, Asadgol Z, Mehrizi EA, et al. 2019. Levels and health risk assessments of particulate matters (PM2.5 and PM10) in indoor/outdoor air of waterpipe cafes in Tehran, Iran. Environ Sci Pollut Res Int.
    1999. Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles 2nd Edition: WILEY-INTERSCIENCE.
    2012. Aerosol technology: properties, behavior, and measurement of airborne particles: John Wiley & Sons.
    Ho K, Lee S, Chan CK, Jimmy CY, Chow JC, Yao X. 2003. Characterization of chemical species in PM 2.5 and PM 10 aerosols in Hong Kong. Atmospheric Environment 37: 31-9.
    Holstius DM, Pillarisetti A, Smith K, Seto E. 2014. Field calibrations of a low-cost aerosol sensor at a regulatory monitoring site in California. Atmospheric Measurement Techniques 7: 1121-31.
    Hsu C-Y, Chiang H-C, Lin S-L, Chen M-J, Lin T-Y, Chen Y-C. 2016. Elemental characterization and source apportionment of PM 10 and PM 2.5 in the western coastal area of central Taiwan. Science of the Total Environment 541: 1139-50.
    Huang L, Pu Z, Li M, Sundell J. 2015. Characterizing the Indoor-Outdoor Relationship of Fine Particulate Matter in Non-Heating Season for Urban Residences in Beijing. PLoS ONE 10: e0138559.
    Huang Y-L, Chen H-W, Han B-C, Liu C-W, Chuang H-C, Lin L-Y, et al. 2014. Personal exposure to household particulate matter, household activities and heart rate variability among housewives. PloS one 9: e89969.
    GBD Compare Viz Hub. [update; cited Available from: https://vizhub.healthdata.org/gbd-compare/.
    Janssen N, Fischer P, Marra M, Ameling C, Cassee F. 2013. Short-term effects of PM2. 5, PM10 and PM2. 5–10 on daily mortality in the Netherlands. Science of the Total Environment 463: 20-6.
    Ji W, Zhao B. 2015. Contribution of outdoor-originating particles, indoor-emitted particles and indoor secondary organic aerosol (SOA) to residential indoor PM2. 5 concentration: a model-based estimation. Building and Environment 90: 196-205.
    Jiménez E, Linares C, Rodríguez L, Bleda M, Díaz J. 2009. Short-term impact of particulate matter (PM2. 5) on daily mortality among the over-75 age group in Madrid (Spain). Science of the total environment 407: 5486-92.
    John W, Wall SM, Ondo JL, Winklmayr W. 1990. Modes in the size distributions of atmospheric inorganic aerosol. Atmospheric Environment. Part A. General Topics 24: 2349-59.
    Jung C-C, Wu P-C, Tseng C-H, Chou CC, Su H-J. 2018. Contribution of Indoor-and Outdoor-Generated Fine and Coarse Particles to Indoor Air in Taiwanese Hospitals. Aerosol and Air Quality Research 18: 3234-42.
    Kao M-C, Lung S-C. 2000. Personal particulate exposures in Buddhist temples. Chinese Journal of Public Health 19: 138-43.
    Kashima S, Yorifuji T, Tsuda T, Doi H. 2009. Application of land use regression to regulatory air quality data in Japan. Science of the Total Environment 407: 3055-62.
    Kim JY, Magari SR, Herrick RF, Smith TJ, Christiani DC, Christiani DC. 2004. Comparison of fine particle measurements from a direct-reading instrument and a gravimetric sampling method. Journal of occupational and environmental hygiene 1: 707-15.
    Kioumourtzoglou M-A, Schwartz JD, Weisskopf MG, Melly SJ, Wang Y, Dominici F, et al. 2015. Long-term PM2. 5 exposure and neurological hospital admissions in the northeastern United States. Environmental health perspectives 124: 23-9.
    Klepeis NE, Nelson WC, Ott WR, Robinson JP, Tsang AM, Switzer P, et al. 2001. The National Human Activity Pattern Survey (NHAPS): a resource for assessing exposure to environmental pollutants. Journal of Exposure Science and Environmental Epidemiology 11: 231.
    Kloog I, Ridgway B, Koutrakis P, Coull BA, Schwartz JD. 2013. Long-and short-term exposure to PM2. 5 and mortality: using novel exposure models. Epidemiology (Cambridge, Mass.) 24: 555.
    Kohavi R. A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proceedings of the Ijcai, 1995, Vol. 14. Montreal, Canada, 1137-45.
    López ML, Ceppi S, Palancar GG, Olcese LE, Tirao G, Toselli BM. 2011. Elemental concentration and source identification of PM10 and PM2. 5 by SR-XRF in Córdoba City, Argentina. Atmospheric Environment 45: 5450-7.
    Landrigan PJ, Fuller R, Acosta NJ, Adeyi O, Arnold R, Baldé AB, et al. 2018. The Lancet Commission on pollution and health. The Lancet 391: 462-512.
    Leech JA, Nelson WC, Burnett RT, Aaron S, Raizenne ME. 2002. It's about time: a comparison of Canadian and American time-activity patterns. Journal of Exposure Science and Environmental Epidemiology 12: 427.
    Li T, Cao S, Fan D, Zhang Y, Wang B, Zhao X, et al. 2016. Household concentrations and personal exposure of PM2. 5 among urban residents using different cooking fuels. Science of the Total Environment 548: 6-12.
    Li Y-C, Shu M, Ho SSH, Wang C, Cao J-J, Wang G-H, et al. 2015. Characteristics of PM2. 5 emitted from different cooking activities in China. Atmospheric Research 166: 83-91.
    Li Z, Wen Q, Zhang R. 2017. Sources, health effects and control strategies of indoor fine particulate matter (PM2. 5): A review. Science of the Total Environment 586: 610-22.
    Lim JM, Jeong JH, Lee JH, Moon JH, Chung YS, Kim KH. 2011. The analysis of PM2. 5 and associated elements and their indoor/outdoor pollution status in an urban area. Indoor Air 21: 145-55.
    Lim SS, Fullman N, Murray CJ, Mason-Jones AJ. 2016. Measuring the health-related Sustainable Development Goals in 188 countries:: a baseline analysis from the Global Burden of Disease Study 2015. The Lancet: 1-38.
    Lin YC, Cheng MT, Chio CP, Kuo CY. 2009. Carbonaceous aerosol measurements at coastal, urban, and inland sites in central Taiwan. Environmental Forensics 10: 7-17.
    Liu C, Henderson BH, Wang D, Yang X, Peng Z-r. 2016. A land use regression application into assessing spatial variation of intra-urban fine particulate matter (PM2.5) and nitrogen dioxide (NO2) concentrations in City of Shanghai, China. Science of The Total Environment 565: 607-15.
    Liu W, Zhang J, Hashim JH, Jalaludin J, Hashim Z, Goldstein BD. 2003. Mosquito coil emissions and health implications. Environmental health perspectives 111: 1454.
    Logue JM, Price PN, Sherman MH, Singer BC. 2011. A method to estimate the chronic health impact of air pollutants in US residences. Environmental Health Perspectives 120: 216-22.
    Long CM, Suh HH, Catalano PJ, Koutrakis P. 2001. Using time-and size-resolved particulate data to quantify indoor penetration and deposition behavior. Environmental Science & Technology 35: 2089-99.
    Lukwa N, Chandiwana S. 1998. Efficacy of mosquito coils containing 0.3% and 0.4% pyrethrins against An. gambiae sensu lato mosquitoes. The Central African journal of medicine 44: 104-7.
    Lung S-CC, Kao M-C. 2003. Worshippers’ exposure to particulate matter in two temples in Taiwan. Journal of the Air & Waste Management Association 53: 130-5.
    MacNaughton P, Eitland E, Kloog I, Schwartz J, Allen J. 2017. Impact of particulate matter exposure and surrounding “greenness” on chronic absenteeism in Massachusetts public schools. International journal of environmental research and public health 14: 207.
    MacNeill M, Wallace L, Kearney J, Allen R, Van Ryswyk K, Judek S, et al. 2012. Factors influencing variability in the infiltration of PM2. 5 mass and its components. Atmospheric Environment 61: 518-32.
    Madureira J, Paciência I, Fernandes EdO. 2012. Levels and indoor–outdoor relationships of size-specific particulate matter in naturally ventilated Portuguese schools. Journal of Toxicology and Environmental Health, Part A 75: 1423-36.
    Matz CJ, Stieb DM, Davis K, Egyed M, Rose A, Chou B, et al. 2014. Effects of age, season, gender and urban-rural status on time-activity: CanadianHuman Activity Pattern Survey 2 (CHAPS 2). International journal of environmental research and public health 11: 2108-24.
    McBratney A, Webster R. 1986. Choosing functions for semi‐variograms of soil properties and fitting them to sampling estimates. Journal of soil Science 37: 617-39.
    McNamara ML, Noonan CW, Ward TJ. 2011. Correction factor for continuous monitoring of wood smoke fine particulate matter. Aerosol and air quality research 11: 315.
    Meng QY, Spector D, Colome S, Turpin B. 2009. Determinants of Indoor and Personal Exposure to PM(2.5) of Indoor and Outdoor Origin during the RIOPA Study. Atmospheric environment (Oxford, England : 1994) 43: 5750-8.
    Meng X, Chen L, Cai J, Zou B, Wu C-F, Fu Q, et al. 2015. A land use regression model for estimating the NO2 concentration in shanghai, China. Environmental Research 137: 308-15.
    Oliver MA, Webster R. 1990. Kriging: a method of interpolation for geographical information systems. International Journal of Geographical Information System 4: 313-32.
    1988. Human activity patterns: a review of the literature for estimating time spent indoors, outdoors, and in transit: US Environmental Protection Agency.
    Pakkanen TA, Loukkola K, Korhonen CH, Aurela M, Mäkelä T, Hillamo RE, et al. 2001. Sources and chemical composition of atmospheric fine and coarse particles in the Helsinki area. Atmospheric Environment 35: 5381-91.
    Park S, Kim M, Kim M, Namgung H-G, Kim K-T, Cho KH, et al. 2018. Predicting PM10 concentration in Seoul metropolitan subway stations using artificial neural network (ANN). Journal of hazardous materials 341: 75-82.
    Pekey B, Bozkurt Z, Pekey H, Doğan G, Zararsız A, Efe N, et al. 2010. Indoor/outdoor concentrations and elemental composition of PM10/PM2. 5 in urban/industrial areas of Kocaeli City, Turkey. Indoor Air 20: 112-25.
    Putaud J-P, Van Dingenen R, Alastuey A, Bauer H, Birmili W, Cyrys J, et al. 2010. A European aerosol phenomenology–3: Physical and chemical characteristics of particulate matter from 60 rural, urban, and kerbside sites across Europe. Atmospheric Environment 44: 1308-20.
    Qian J, Ferro AR. 2008. Resuspension of dust particles in a chamber and associated environmental factors. Aerosol Science and Technology 42: 566-78.
    Qin Y, Kim E, Hopke PK. 2006. The concentrations and sources of PM 2.5 in metropolitan New York City. Atmospheric Environment 40: 312-32.
    Querol X, Alastuey A, Rodriguez S, Plana F, Ruiz CR, Cots N, et al. 2001. PM10 and PM2. 5 source apportionment in the Barcelona Metropolitan area, Catalonia, Spain. Atmospheric Environment 35: 6407-19.
    Rajput P, Sarin M, Sharma D, Singh D. 2016. Characteristics and emission budget of carbonaceous species from post-harvest agricultural-waste burning in source region of the Indo-Gangetic Plain. eds. Air Quality. Apple Academic Press, 271-92.
    Repace JL, Jiang R-T, Acevedo-Bolton V, Cheng K-C, Klepeis NE, Ott WR, et al. 2011. Fine particle air pollution and secondhand smoke exposures and risks inside 66 US casinos. Environmental Research 111: 473-84.
    Rogula-Kozłowska W, Klejnowski K, Rogula-Kopiec P, Ośródka L, Krajny E, Błaszczak B, et al. 2014. Spatial and seasonal variability of the mass concentration and chemical composition of PM2. 5 in Poland. Air Quality, Atmosphere & Health 7: 41-58.
    K-fold cross-validation [update; cited Available from: http://karlrosaen.com/ml/learning-log/2016-06-20/.
    Ryan PH, LeMasters GK. 2007. A review of land-use regression models for characterizing intraurban air pollution exposure. Inhal Toxicol 19 Suppl 1: 127-33.
    Saucy A, Röösli M, Künzli N, Tsai M-Y, Sieber C, Olaniyan T, et al. 2018. Land Use Regression Modelling of Outdoor NO(2) and PM(2.5) Concentrations in Three Low Income Areas in the Western Cape Province, South Africa. International Journal of Environmental Research and Public Health 15: 1452.
    See SW, Balasubramanian R. 2006. Physical characteristics of ultrafine particles emitted from different gas cooking methods. Aerosol Air Qual. Res. 6: 82-92.
    Semple S, Apsley A, Ibrahim TA, Turner SW, Cherrie JW. 2015. Fine particulate matter concentrations in smoking households: just how much secondhand smoke do you breathe in if you live with a smoker who smokes indoors? Tobacco control 24: e205-e11.
    Shao Z, Bi J, Ma Z, Wang J. 2017. Seasonal trends of indoor fine particulate matter and its determinants in urban residences in Nanjing, China. Building and Environment 125: 319-25.
    Shi S, Chen C, Zhao B. 2015. Air infiltration rate distributions of residences in Beijing. Building and Environment 92: 528-37.
    Straif K, Cohen A, Samet J. 2013. Air pollution and cancer. IARC scientific publication 161.
    Sze-To GN, Wu CL, Chao CY, Wan MP, Chan TC. 2012. Exposure and cancer risk toward cooking-generated ultrafine and coarse particles in Hong Kong homes. HVAC&R Research 18: 204-16.
    Takeuchi S, Tanaka-Kagawa T, Saito I, Kojima H, Jin K, Satoh M, et al. 2018. Differential determination of plasticizers and organophosphorus flame retardants in residential indoor air in Japan. Environ Sci Pollut Res Int 25: 7113-20.
    Talbot N, Kubelova L, Makes O, Cusack M, Ondracek J, Vodička P, et al. 2016. Outdoor and indoor aerosol size, number, mass and compositional dynamics at an urban background site during warm season. Atmospheric Environment 131: 171-84.
    Tang CH, Garshick E, Grady S, Coull B, Schwartz J, Koutrakis P. 2018. Development of a modeling approach to estimate indoor-to-outdoor sulfur ratios and predict indoor PM 2.5 and black carbon concentrations for Eastern Massachusetts households. Journal of Exposure Science and Environmental Epidemiology 28: 125.
    Tie X, Brasseur GP, Zhao C, Granier C, Massie S, Qin Y, et al. 2006. Chemical characterization of air pollution in Eastern China and the Eastern United States. Atmospheric Environment 40: 2607-25.
    Travers MJ, Nayak NS, Annigeri VB, Billava NN. 2015. Indoor air quality due to secondhand smoke: Signals from selected hospitality locations in rural and urban areas of Bangalore and Dharwad districts in Karnataka, India. Indian journal of cancer 52: 708.
    Tsai H-H, Yuan C-S, Hung C-H, Lin C, Lin Y-C. 2011. Influence of sea-land breezes on the tempospatial distribution of atmospheric aerosols over coastal region. Journal of the Air & Waste Management Association 61: 358-76.
    van Loenhout J, le Grand A, Duijm F, Greven F, Vink N, Hoek G, et al. 2016. The effect of high indoor temperatures on self-perceived health of elderly persons. Environmental research 146: 27-34.
    Wan M-P, Wu C-L, To G-NS, Chan T-C, Chao CY. 2011. Ultrafine particles, and PM2. 5 generated from cooking in homes. Atmospheric environment 45: 6141-8.
    Wang L, Zheng X, Stevanovic S, Xiang Z, Liu J, Shi H, et al. 2018. Characterizing pollutant emissions from mosquito repellents incenses and implications in risk assessment of human health. Chemosphere 191: 962-70.
    Wang X, Bi X, Sheng G, Fu J. 2006. Hospital indoor PM10/PM2. 5 and associated trace elements in Guangzhou, China. Science of the Total Environment 366: 124-35.
    Wanjun T, Qingxiang C. 2018. Dust distribution in open-pit mines based on monitoring data and fluent simulation. Environmental monitoring and assessment 190: 632.
    Wei X, Lyu S, Yu Y, Wang Z, Liu H, Pan D, et al. 2017. Phylloremediation of air pollutants: exploiting the potential of plant leaves and leaf-associated microbes. Frontiers in plant science 8: 1318.
    WHO. 2016. Ambient air pollution: a global assessment of exposure and burden of disease. eds. Ambient air pollution: a global assessment of exposure and burden of disease.
    WHO WHO. 2013. Metrics: disability-adjusted life year (DALY). Health statistics and health information systems WHO.
    WHO WHO. 2014a. Household air pollution and health. Fact sheet 292.
    WHO WHO. 2014b. 7 million premature deaths annually linked to air pollution. World Health Organization, Geneva, Switzerland.
    Wu C-D, McNeely E, Cedeño-Laurent J, Pan W-C, Adamkiewicz G, Dominici F, et al. 2014. Linking student performance in Massachusetts elementary schools with the “greenness” of school surroundings using remote sensing. PloS one 9: e108548.
    Wu J, Yao F, Li W, Si M. 2016. VIIRS-based remote sensing estimation of ground-level PM2. 5 concentrations in Beijing–Tianjin–Hebei: A spatiotemporal statistical model. Remote Sensing of Environment 184: 316-28.
    Yuchi W, Gombojav E, Boldbaatar B, Galsuren J, Enkhmaa S, Beejin B, et al. 2019. Evaluation of random forest regression and multiple linear regression for predicting indoor fine particulate matter concentrations in a highly polluted city. Environmental Pollution 245: 746-53.
    Zhang N, Han B, He F, Xu J, Zhao R, Zhang Y, et al. 2017. Chemical characteristic of PM2.5 emission and inhalational carcinogenic risk of domestic Chinese cooking. Environmental Pollution 227: 24-30.
    Zhang Q, Gangupomu RH, Ramirez D, Zhu Y. 2010. Measurement of ultrafine particles and other air pollutants emitted by cooking activities. International Journal of Environmental Research and Public Health 7: 1744-59.
    Zhang R, Jing J, Tao J, Hsu S-C, Wang G, Cao J, et al. 2013. Chemical characterization and source apportionment of PM 2.5 in Beijing: seasonal perspective. Atmospheric Chemistry and Physics 13: 7053-74.
    Zhang T, Gong W, Wang W, Ji Y, Zhu Z, Huang Y. 2016a. Ground level PM2. 5 estimates over China using satellite-based geographically weighted regression (GWR) models are improved by including NO2 and enhanced vegetation index (EVI). International journal of environmental research and public health 13: 1215.
    Zhang Y, Cao S, Xu X, Qiu J, Chen M, Wang D, et al. 2016b. Metals compositions of indoor PM2.5, health risk assessment, and birth outcomes in Lanzhou, China. Environ Monit Assess 188: 325.
    Zhao M, Zhang Y, Ma W, Fu Q, Yang X, Li C, et al. 2013. Characteristics and ship traffic source identification of air pollutants in China's largest port. Atmospheric environment 64: 277-86.
    Zhou Z, Bohac D, Boyle RG. 2016. Continuous weeklong measurements of indoor particle levels in a Minnesota Tribal Casino Resort. BMC public health 16: 870-.
    細懸浮微粒 Suspended particulates (PM2.5) [update; cited Available from:
    行政院環境保護署. 2012. 室內空氣品質標準.
    屈海燕, 赵懿桓, 陆秀君. 2017. 植物消减 PM2. 5 等大气颗粒物的试验研究方法综述. 江苏农业科学 5: 005.
    羅文聖. 2017. 溫度變化對室內人員行為及 PM2. 5 濃度之影響及介入改善評估. 成功大學環境醫學研究所學位論文: 1-72.
    蘇慧貞. 2009. 室內鄰苯二甲酸酯類暴露與兒童健康之相關性--室內鄰苯二甲酸酯暴露與兒童過敏性呼吸道疾病之相關性及影響機制探討. 台北市: 行政院科技部.

    下載圖示 校內:2024-02-15公開
    校外:2024-02-15公開
    QR CODE