| 研究生: |
許玉錡 Hsu, Yu-Chi |
|---|---|
| 論文名稱: |
核殼結構銅/銀粉末之製備及導電、抗氧化及抗菌性質之研究 A study on the preparation of core-shell structure Cu/Ag particles and their electric conductance, anti-oxidation and anti-bacteria properties |
| 指導教授: |
雷大同
Ray, Dah-Tong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 94 |
| 中文關鍵詞: | 核殼結構 、銅/銀粉 、逐步還原法 、抗氧化 、導電性 、抗菌 |
| 外文關鍵詞: | core-shell structure, Cu/Ag particles, successive reduction, antioxidation, electrical conductivity, antibacteria |
| 相關次數: | 點閱:152 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
微細金屬粉末由於粒徑小、表面積大,具有許多獨特的性質,以銅及銀粉為例,銀粉的導電性、導熱性優良,有良好的抗氧化及抗菌性質,但價格昂貴;而銅粉亦具有優良的導電與導熱性,但抗氧化性質差,暴露在空氣中時,表面容易形成一層氧化膜,影響其特性,惟價格低廉。因此若能在銅粉表面鍍一銀層,可克服此二種粉末的缺點,而發揮其優點。
本研究以市售銅粉為核種,以硫酸銀為前驅鹽,以酒石酸(TA)、葡萄糖酸鈉(SG)為螯合劑,採用逐步還原法製備核殼結構之銅/銀粉,所得之銅/銀粉以XRD、SEM及FT-IR進行性質分析。在最佳TA/Ag+及SGA/Ag+之莫爾比,銅粉表面可鍍成緊密之銀層。抗氧化分析結果證實銅粉表面之銀為連續包覆層。導電度量測顯示銀含量為10%之銅銀粉(21.73×10-3Ω.cm)與銀粉(4.85×10-3Ω.cm)的電阻係數相近。
抗菌性質量測係以紙錠擴散法,銅/銀粉可有效抑制大腸桿菌(ATCC 15480)與金黃色葡萄球菌(ATCC 15285)之生長,並隨銀含量的增加其抗菌效果也愈為顯著。
Fine metal powders have many unique properties due to their small sizes and large surfaces. Silver powders have excellent electrical conductivity, thermal conductivity, good antioxidation and antibacterial properties, but very expensive. On the other hand, copper powders have good electrical conductivity, thermal conductivity and inexpensive price. However, the poor antioxidation properties of copper prevents it from long time exposure to air, because the surface is easy to form an oxide layer and change the conductivity. If a silver layer can be coated on the copper powder, the shortcomings of these two powders, if used individually, can be overcome.
In this study, commercial copper powders were used as the nuclei, silver sulfate was used as the precursor salt, tartaric acid (TA) and sodium gluconate acid(SG) as chelating agent and core-shell structured Cu/Ag particles were synthesized by successive reduction process. The synthesized Cu/Ag powders were characterized using XRD, SEM and FT-IR. Ag can be formed as a dense layer coated on the surface of Cu powders at a proper molar ratio of the TA/Ag+ and the SG/Ag+. The results of antioxidation tests of Cu/Ag powders provided the evidences that the surfaces of copper powders were coated with a continuous layer of silver. The conductivity measurement showed that the resistivity of the Cu/Ag powders with 10 mol % silver content was 21.73×10-3Ω.cm, which is close to the resistivity of silver, i.e. 4.85×10-3Ω.cm.
Disk diffusion studies with E. coli (ATCC 15480) and S. aureus (ATCC 15285) revealed excellent antibacteria effects of the Cu/Ag powders. The antibacteria effect become more significant with the increase of the silver content of the Cu/Ag powders.
1.盧永坤,2005,奈米科技概論,滄海書局,台中。
2.蘇品康,1989,超微粒子材料技術,復漢出版社,台南。
3.W. F. Smith and J. Hashemi, 2004, Foundations of Materials Science and Engineering, 3rd ed, McGraw-Hill, New York.
4.莊萬發,1995,超微粒子理論與應用,復漢出版社,台南。
5.S. J. Hwang and J. H. Lee, 2005, “Mechanochemical synthesis of Cu–Al2O3 nanocomposites,” Materials Science and Engineering, A 405, pp.140–146.
6.Y. H. Yeh, M. S. Yeh, Y. P. Lee and C. S. Yeh, 1998, “Formation of Cu nanoparticles from CuO powder by laser ablation in 2-propanol,” The Chemical Society of Japan, pp.1183-1184.
7.F. Mafune´, J. Y. Kohno, Y. Takeda and T. Kondow, 2000, “Formation and Size Control of Silver Nanoparticles by Laser Ablation in Aqueous Solution,” J. Phys. Chem, vol.103, pp.9111-9117.
8.M. S. Yeh, Y. S. Yang, Y. P. Lee, H. F. Lee, Y. H. Yeh and C. S. Yeh, 1999, “Formation and characteristics of Cu colloids from CuO powder by laser irradiation in 2-propanol,” J. Phys. Chem, vol.103, pp.6851-6857.
9.N. Satoh and K. Kimura, 1998, “Metal Colloids Produced by Means of Gas Evaporation Technique. V. Colloidal Dispersion of Au Fine Particles to Hexane, Poor Dispersion Medium for Metal Sol,” Bull. Chem. Soc. Jpn., vol.62, pp.1758-1763.
10.Y. Lee, J. R. Choi, K. J. Lee, N. E. Stott and D. Kim, 2008, ”Large-scale synthesis of copper nanoparticles by chemically controlled reduction for applications of inkjet-printed electronics,” Nanotechnology, vol.19, pp.7.
11.G. C. Papavassiliout and T. Kokkinakist, 1974, “Optical absorption spectra of surface plasmons in small copper particles”, J. Phys. F: Met. Phys., Vol.4, pp.67-68.
12.T. Yonezawa, N. Nishida and A. Hyono, 2010, “One-pot Preparation of Antioxidized Copper Fine Particles with a Unique Structure by Chemical Reduction at Room Temperature,” Chem. Lett., vol.39, pp.548-549.
13.S. P. Wu and S. Y. Meng, 2006, “Preparation of micron size copper powder with chemical reduction method,” Materials Letters, vol.60, pp.2438–2442.
14.I. I. Obraztsova, G. Yu. Simenyuk and N. K. Eremenko, 2004, “Electrically Conducting Formulations Based on Ultradispersed Powders of Copper, Obtained by Reduction of Its Salts with the Hypophosphite Ion,” Russian Journal of Applied Chemistry, Vol. 77 No. 3, pp.380 -384.
15.X. F. Tang, Z. G. Yang and W. Ji. Wang, 2010, “A simple way of preparing high-concentration and high-purity nano copper colloid for conductive ink in inkjet printing technology,” Colloids and Surfaces A: Physicochem. Eng., Aspects 360, pp.99–104.
16.林育右,2003,以化學還原法合成導電性銅奈米微粉之研究,國立成功大學碩士論文。
17.S. A. Kumara, K. S. Meenakshia, B. R. V. Narashimhan, S. Srikanth and G. Arthanareeswaranc, 2009, “Synthesis and characterization of copper nanofluid by a novel one step method,” Materials Chemistry and Physics, vol.113, pp.57–62.
18.S. P. Wu and X. H. Ding , 2007, “Preparation of fine copper powder with chemical reduction method and its application in MLCC,” IEEE TRANSACTIONS ON ADVANCED PACKAGING, VOL. 30, NO. 3, pp.434-438.
19.C. W. Wu, B. P. Mosher and T. F. Zeng, 2006, “One-step green route to narrowly dispersed copper nanocrystals,” Journal of Nanoparticle Research, vol.8, pp.965–969.
20.W. Yu, H. Q. Xie, L. F. Chen, Y. Li and C. Zhang, 2010, “Controlled synthesis of narrow-dispersed copper nanoparticles,” Journal of Dispersion Science and Technology, vol.31, pp.364–367.
21.C. Y. Huang and S. R. Sheen, 1997, “Synthesis of nanocrystalline and monodispersed copper particles of uniform spherical shape,” Materials Letters, vol.30, pp.357-361.
22.H. T. Zhu, Y. S. Lin and Y. S. Yin, 2004, “A novel one-step chemical method for preparation of copper nanofluids,” Journal of Colloid and Interface Science , vol.277, pp.100–103.
23.S. S. Chang, C. W. Shih, C. D. Chen, W. C. Lai and C. R. Chris Wang, 1999, “The Shape Transition of Gold Nanorods,” Langmuir, vol.15, pp.701-709.
24.M. T. Reetz’ and W. Helbig, 1994, “Size-Selective Synthesis of Nanostructured Transition Metal Clusters,” J. Am. Chem. SOC., vol.116, pp.1401-1402.
25.J. A. Becker, R. Scha¨ fer, R. Festag, W. Rul and J. H. Wendorff, 1995, “Electrochemical growth of superparamagnetic cobalt clusters,” J. Chem. Phys., vol.103, pp.2520-2527.
26.Y. Nagata, Y. Watananabe, S. I. Fujita, T. Dohrnarua and S. Taniguchi, 1992, “Formation of Colloidal Silver in Water by Ultrasonic Irradiation,” J. CHEM. SOC., pp.1620-1622.
27.K. Esumi, K. Matsuhisa and K. Torigoe, 1995, “Preparation of Rodlike Gold Particles by UV Irradiation Using Cationic Micelles as a Template,” Langmuir, 11, pp.3285-3287.
28.G. A. Ozin, D. F. McIntosh and S. A. Mitchell, 1981, “Methane Activation. Photochemical Reaction of Copper Atoms in Solid Methane,” J. Am. Chem. SOC., vol.103, pp.1575-1577.
29.C. R. Jones, F. A. Houle, C. A. Kovac. and T. H. Baum, 1985, “Plhotochemical generatijon and deposition of copper from a gas phase precursor,” Appl. Phys. Lett., vol.46 (1), pp.97-99.
30.H. D. Gafney and R. L. Lintvedt , 1971, “Photochemical Reactions of Copper(11)-1,3-Diketonate Complexes,” Journal of the American Chemical Society, pp.1623-1628.
31.S. S. Jushi, S.F. Pat, V. Iyer and S. Mahumuni, 1998, “Radiation induced synthesis and characterization of copper nanoparticles,” NanoStructrued Materials, vol.10, pp.1135-1144.
32.M. Treguer, C. de Cointet, H. Remita, J. Khatouri, M. Mostafavi, J. Amblard and J. Belloni, 1998, “Dose rate effects on radiolytic synthesis of gold-silver bimetallic clusters in solution,” J. Phys. Chem., vol.102, pp.4310-4321.
33.D. W. Lee, G. H. Ha and B. K. Kim, 2001, “Synthesis of Cu-Al2O3 nano composite powders,” Scripta mater., vol.44, pp.2137–2140.
34.A. G. Nasibulin, E. I. Kauppinen, D. P. Brown and J. K. Jokiniemi, 2001, “Nanoparticle Formation via Copper (II) Acetylacetonate Vapor Decomposition in the Presence of Hydrogen and Water,” J. Phys. Chem., 105, pp.11067-11075.
35.N. Toshima and T. Yonezawa, 1998, “Bimentaliic nanoparticles—novel materials for chemical and physical applications,” New J. Chem., pp.1179-1201.
36.Y. Wang and N. Toshima, 1997, “Preparation of Pd-Pt bimetallic colloids with controllable core/shell structures,” J. Phys. Chem. B, vol.101, pp.5301-5306.
37.J. W. Haus, H. S. Zhou, S. Takami, M. Hirasawa, I. Honma and H. Komiyama, 1993, “Enhanced optical properties of metal-coated nanoparticles,” J. Appl. Phys., vol.73(3), pp.1043-1048.
38.J. B. Jackson and N. J. Halas, 2001, “Silver nanoshells: Variations in morphologies and optical properties,” J. Phys. Chem. B, vol.105, pp.2743-2746.
39.S. L. Westcott, S. J. Oldenburg, T. R. Lee and N. J. Halas, 1999, “Construction of simple gold nanoparticle aggregates with controlled plasmon-plasmon interactions,” Chem. Phys. Lett., 300.
40.S. J. Oldenburg, R. D. Averitt, S. L. Westcott and N. J. Halas, 1998, “Nano-engineering of optical resonances,” Chem. Phys Lett., vol.288 (2-4), pp.243-247.
41.S. L. Westcott, S. J. Oldenburg, T. R. Lee and N. J. Halas, 1998, “Formation and adsorption of clusters of gold nanoparticles onto functionalized silica nanoparticle surfaces,” Langmuir, vol.14, pp.5396-5401.
42.H. Hofmeister, P. T. Miclea and W. Morke, 2002, “Metal nanoparticle coating of oxide nanospheres for core-shell structures,” Part. Part. Syst. Charact., vol.19, pp.359-365.
43.K. Mallik, M. M andal, N. Pradhan and T. Pal, 2001 “Seed mediated formation of bimetallic nanoparticles by UV irradiation: A photochemical approach for the preparation of "core-shell" type structures,” Nano Letters, vol.1(6), pp.319-322.
44.K. H. Ng and R. M. Penner, 2002, “Electrodeposition of silver-copper bimetallic particles having two archetypes by facilitated nucleation,” J. Electro. Anal. Chem., vol.522(1), pp.86-94.
45.J. H. Gwak, L. Chae, S. J. Kim and M. Lee, 1997, “Surface plasmon absorption characteristics and nonlinear optical properties of silver/copper codoped silica thin films,” Nanostruct. Mate.r, vol.8(8), pp.1149-1156.
46.J. Lin, W. L. Zhou, A. Kumbhar, J. Wiemann, J. Y. Fang, E. E. Carpenter and C. J. O'Connor, 2001, “Gold-coated iron (Fe@Au) nanoparticles: Synthesis, characterization and magnetic field-induced self –assembly,” J. Solid State Chem., vol.159(1), pp.26-31.
47.S. R. Sershen, S. L. Westcott, N. J. Halas and J. L. West, 2000, “Temperature-sensitive polymer-nanoshell composites for photothermally modulated drug delivery,” J Biomed Mater. Res., vol.5(3), pp.293-298.
48.王炫仁,2002,鎳核/金殼及鎳核/銀殼複合奈米粒子之製備,國立成功大學碩士論文。
49.M. Tsuji,S. Hikino, Y. Sano and M. Horigome, 2009, “Preparation of Cu@Ag core–shell nanoparticles using a two-step polyol process under bubbling of N2 gas,” Chemistry Letters Vol.38, No.6.
50.H.T. Hai , J.G. Ahn , D.J. Kim , J.R. Lee , H.S. Chung and C.O. Kim, 2006, “Developing process for coating copper particles with silver by electroless plating method,” Surface & Coatings Technology, vol.201, pp.3788– 3792.
51.Xu X, Luo X, Zhuang H, Li W and Zhang B, 2003, “Electroless silver coating on fine copper particle and its effects on oxidation resistance,” Mater. Lett., vol.57, pp.3987-3991.
52.V. Mancier, C. Rousse-Bertr and, J. Dille, J. Michel and P. Fricoteaux, 2009, “Sono and electrochemical synthesis and characterization of copper core–silver shell nanoparticles,” Ultrasonics Sonochemistry, vol.17, pp.690–696.
53.Y-H Peng and C-H Lee, 2012, “Synthesis of Cu-Ag core-shell particles: Study on cover silver homogeneity”, International Journal of the Physical Sciences, vol.7(3), pp.478-486.
54.K. D. Young, 2006, “The selective value of bacterial shape”, Microbiol., Mol. Biol. Rev., vol.70, pp.660–703.
55.R. M. Donlan, 2002, “Biofilms:Microbial life on surfaces,” Emerg. Infect. Dis., vol.8, No.9, pp.881–890.
56.S. L. Bardy, S. Ng and K. F. Jarrell, 2003, “Prokaryotic motility structure,” Microbiology, vol.149, pp.295–304.
57.王貴譽及張瑞峰,1993,大學微生物學, 曉園出版社,台北。
58.平松實及福崎智司,2001,The Antibacterial Activity of Plated Coatings,表面技術,vol.52,No1,PP.58-59.
59.中村定幸、大久保直人及宮楠克久,1997,Antimicrobial Activity and Basic Properties of“NSSAM-1”Antimicrobial Ferritic Stainless Steel,日新製鋼技報,第76 號,PP.48-55.
60.小林道雄,1998,Antibacterial Matal Surface Treatment,表面技術,第49 期,P.433。
61.廖月禎,2006,無甲醛防縐複合奈米銀離子之機能性棉織物探討,逢甲大學碩士論文。
62.游輝智,2008,氧化鋁被覆奈米銀微粒的製備及其抗菌性之研究,逢甲大學碩士論文。
63.張讚昌、張義宏、謝政蓉、黃嘉琳、張宏洲、戴國峰及尤封陵,2004,實用為生物實驗,華格那企業,台中。
64.J. P. Ruparelia, A. K. Chatterjee, S. P. Duttagupta and S. Mukherji, 2008, “Strain specificity in antimicrobial activity of silver and copper nanoparticles,” Acta Biomaterialia, vol.4, pp.707–716.
65.M. Guzman, J. Dille and S. Godet, 2011, “Synthesis and antibacterial activity of silver nanoparticles against gram-positive and gram-negative bacteria,” Nanomedicine: Nanotechnology, Biology and Medicine.
66.G.X. Gu, J.X. Xu, Y.F. Wu, M. Chen and L.M. Wu, 2011, “Synthesis and antibacterial property of hollow SiO2/Ag nanocomposite spheres,” Journal of Colloid and Interface Science.
67.M. Valodkar, S. Modi, A. Pal and S. Thakore, 2011, “Synthesis and anti-bacterial activity of Cu, Ag and Cu–Ag alloy nanoparticles: A green approach,” Materials Research Bulletin, vol.46, pp.384–389.
68.周更生、李賢學、高振裕及盧育杰,2006,奈米銀,科學發展期刊,第408期,pp.32-39。