| 研究生: |
林峻廷 Lin, Chun-Ting |
|---|---|
| 論文名稱: |
國內太陽漫射分率模式建立 Modeling of Diffuse Solar Fraction in Taiwan |
| 指導教授: |
張克勤
Chang, Keh-Chin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系碩士在職專班 Department of Aeronautics & Astronautics (on the job class) |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 80 |
| 中文關鍵詞: | 漫射分率模型 、經典氣象年 、太陽能 |
| 外文關鍵詞: | diffuse fraction model, typical meteorological year, solar energy |
| 相關次數: | 點閱:112 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在能源價格節節攀升的國際情勢下,台灣能源轉型的首要目標即是太陽能源及風能;而評估太陽能資源中所需各種不同類型的太陽輻射量資訊卻在國內尚有所欠缺。由於目前國內氣象站僅觀測全天空輻射量,對於聚焦式太陽能設備所需的直接輻射量與漫輻射量兩類數據並未觀測,數據的缺少導致很難有效的估算各地太陽能資源的可應用性,亦無法利用相關數據來建立參考模型。因此本研究考量台灣本島被眾多山脈所區隔的東西岸與台灣本島周圍分佈的一些小離島的地理特徵,分別在台南歸仁區、澎湖馬公市與台東市設置量測漫射分率的全天空輻射計與漫射儀。所得觀測數據依經典氣象年之篩選方法建立此三地的經典氣象年數據集,並以此數據集開發評估太陽能應用所需的漫射分率模型。本研究以歸仁站十年數據建立經典氣象年數據集,因多變數模型中須使用k_t前後小時之自變數,不利於「即時」預測使用,因此亦建立了「即時」預測之單變數模型,並以此數據集開發多變數模型(分段多變數模型及BRL模型)與單變數模型(分段四階多項式及simple logistic模型),並與過去使用相同測站(歸仁站)所建立的漫射分率模型進行比較,其結果顯示以經典氣象年數據所建立的漫射分率模型,其性能皆優於過去僅以一年或某一區間所建立的模型;此一結果說明經典氣象年數據可代表該地區的長期氣候特徵,以該數據集所建立的模型也證實其模型預測性能最佳,這對於國際上建立漫射分率模型所使用的數據區間仍未有一致的共識,提供一個新的參考方向。本研究也確認台灣東西岸與離島的漫射分率模型確實存在地區上的差異,所建立不同地區的漫射分率模型建議採本研究所發展之分段多變數模型及分段四階多項式單變數模型,將可應用於國內此三種不同地形上的漫射分率。
This study considered the geographical features of the east and west coasts of Taiwan's main island separated by five north – south bound mountain ranges. Also, Taiwan's main island has some small and large outlying islets around its perimeter. Thus, a pyranometer with a shadow band was separately set up for measuring the diffuse fraction at the Guiren station located in Tainan, Magong station located in Penghu County and the station located in Taitung City. The observational data were used to establish the datasets of these three locations based on the method of typical meteorological year (TMY). The datasets were used to develop the diffuse fraction model which were necessary to assess the solar energy resources.
Furthermore, the TMY dataset for the Guiren station was established based on the data collected over a ten-year period. The dataset was also used to develop the multiple and single variable models which were then compared with the diffuse fraction model established in the past by using the same station (Guiren). The results showed that the diffuse fraction models based on the TMY data were all found to be better than those of the previous models based only on one year or a certain interval period.
This clearly showed that the TMY data could represent the long-term climate characteristics of a given location and thus it was suggested that the model established with this dataset showed the best predictive performance. This could indeed provide a new reference direction for the lack of consensus on the data interval used to establish the diffuse fraction model internationally.
[1] T. Muneer, S. Younes, and S. Munawwar, "Discourses on solar radiation modeling," Renewable and Sustainable Energy Reviews, vol. 11, no. 4, pp. 551-602, 2007/05/01/ 2007, doi: https://doi.org/10.1016/j.rser.2005.05.006.
[2] B. Y. H. Liu and R. C. Jordan, "The interrelationship and characteristic distribution of direct, diffuse and total solar radiation," Solar Energy, vol. 4, no. 3, pp. 1-19, 1960/07/01/ 1960, doi: https://doi.org/10.1016/0038-092X(60)90062-1.
[3] I. J. Hall, R. R. Prairie, H. E. Anderson, and E. C. Boes, "Generation of a typical meteorological year," presented at the Conference: Analysis for solar heating and cooling, San Diego, CA, USA, 27 Jun 1978, United States, 1978. [Online]. Available: https://www.osti.gov/biblio/7013202.
[4] J. M. Finkelstein and R. E. Schafer, "Improved Goodness-Of-Fit Tests," Biometrika, vol. 58, no. 3, pp. 641-645, 1971, doi: 10.2307/2334400.
[5] W. Marion and K. Urban, "User's Manual for TMY2s (Typical Meteorological Years) - Derived from the 1961-1990 National Solar Radiation Data Base," United States, 1995. [Online]. Available: https://www.osti.gov/biblio/87130
https://www.osti.gov/servlets/purl/87130
[6] S. Wilcox and W. Marion, "Users Manual for TMY3 Data Sets (Revised)," United States, 2008. [Online]. Available: https://www.osti.gov/biblio/928611
https://www.osti.gov/servlets/purl/928611
[7] 林憲德 and 黃國倉, "台灣TMY2標準氣象年之研究與應用," (in 繁體中文), 建築學報, no. 53, pp. 79-94, 2005, doi: 10.6377/ja.200509.0079.
[8] 何明錦, 黃國倉, 王仁傑, 余文元, and 林政賢, 臺灣建築能源模擬解析用逐時標準氣象資料TMY3之建置與研究. 內政部建築研究所, 2013.
[9] 嚴偉倫, "建立台灣在經典氣象年中的太陽能資料庫," 碩士, 航空太空工程學系, 國立成功大學, 台南市, 2015. [Online]. Available: https://hdl.handle.net/11296/d64a3q
[10] 林博雄, 劉紹臣, 馮欽賜, 周宗玄, and 葉瑞元, "台灣地區太陽輻射量之校驗與長期趨勢," 第八屆全國大氣科學學術研討會, 2004.
[11] J. C. Lam and D. H. W. Li, "Correlation between global solar radiation and its direct and diffuse components," Building and Environment, vol. 31, no. 6, pp. 527-535, 1996/11/01/ 1996, doi: https://doi.org/10.1016/0360-1323(96)00026-1.
[12] J. F. Orgill and K. G. T. Hollands, "Correlation equation for hourly diffuse radiation on a horizontal surface," Solar Energy, vol. 19, no. 4, pp. 357-359, 1977/01/01/ 1977, doi: https://doi.org/10.1016/0038-092X(77)90006-8.
[13] D. G. Erbs, S. A. Klein, and J. A. Duffie, "Estimation of the diffuse radiation fraction for hourly, daily and monthly-average global radiation," Solar Energy, vol. 28, no. 4, pp. 293-302, 1982/01/01/ 1982, doi: https://doi.org/10.1016/0038-092X(82)90302-4.
[14] D. T. Reindl, W. A. Beckman, and J. A. Duffie, "Diffuse fraction correlations," Solar Energy, vol. 45, no. 1, pp. 1-7, 1990/01/01/ 1990, doi: https://doi.org/10.1016/0038-092X(90)90060-P.
[15] J. Boland, L. Scott, and M. Luther, "Modelling the diffuse fraction of global solar radiation on a horizontal surface," Environmetrics, https://doi.org/10.1002/1099-095X(200103)12:2<103::AID-ENV447>3.0.CO;2-2 vol. 12, no. 2, pp. 103-116, 2001/03/01 2001, doi: https://doi.org/10.1002/1099-095X(200103)12:2<103::AID-ENV447>3.0.CO;2-2.
[16] B. Ridley, J. Boland, and P. Lauret, "Modelling of diffuse solar fraction with multiple predictors," Renewable Energy, vol. 35, no. 2, pp. 478-483, 2010/02/01/ 2010, doi: https://doi.org/10.1016/j.renene.2009.07.018.
[17] C.-W. Kuo, W.-C. Chang, and K.-C. Chang, "Modeling the hourly solar diffuse fraction in Taiwan," Renewable Energy, vol. 66, pp. 56-61, 2014/06/01/ 2014, doi: https://doi.org/10.1016/j.renene.2013.11.072.
[18] R. Tapakis, S. Michaelides, and A. G. Charalambides, "Computations of diffuse fraction of global irradiance: Part 1 – Analytical modelling," Solar Energy, vol. 139, pp. 711-722, 2016/12/01/ 2016, doi: https://doi.org/10.1016/j.solener.2014.10.005.
[19] J. P. Every, L. Li, and D. G. Dorrell, "Köppen-Geiger climate classification adjustment of the BRL diffuse irradiation model for Australian locations," Renewable Energy, vol. 147, pp. 2453-2469, 2020/03/01/ 2020, doi: https://doi.org/10.1016/j.renene.2019.09.114.
[20] K.-T. Huang, "Identifying a suitable hourly solar diffuse fraction model to generate the typical meteorological year for building energy simulation application," Renewable Energy, vol. 157, pp. 1102-1115, 2020/09/01/ 2020, doi: https://doi.org/10.1016/j.renene.2020.05.094.
[21] 李聰盛, "廠區漫射量測及對太陽能集熱器性能影響探討," in "太陽熱能南部檢測中心技術報告," 2010.
[22] C.-W. Kuo and K.-C. Chang, "In-situ measurements of solar diffuse fraction in southern Taiwan," Journal of the Chinese Institute of Engineers, vol. 38, pp. 1-8, 03/16 2015, doi: 10.1080/02533839.2015.1016880.
[23] C.-W. Kuo, W.-C. Chang, and K.-C. Chang, "Distribution of Solar Diffuse Fraction in Taiwan," Energy Procedia, vol. 57, pp. 1120-1129, 2014/01/01/ 2014, doi: https://doi.org/10.1016/j.egypro.2014.10.098.
[24] World Meteorological Organization, "Guide to meteorological instruments and methods of observation," 2018. [Online]. Available: https://library.wmo.int/index.php?id=12407&lvl=notice_display
[25] S. A. Dyer and J. S. Dyer, "Cubic-spline interpolation. 1," IEEE Instrumentation & Measurement Magazine, vol. 4, no. 1, pp. 44-46, 2001, doi: 10.1109/5289.911175.
[26] M. Stone and R. J. Brooks, "Continuum Regression: Cross-Validated Sequentially Constructed Prediction Embracing Ordinary Least Squares, Partial Least Squares and Principal Components Regression," Journal of the Royal Statistical Society: Series B (Methodological), vol. 52, no. 2, pp. 237-258, 1990, doi: https://doi.org/10.1111/j.2517-6161.1990.tb01786.x.
[27] T. Cebecauer and M. Suri, "Typical Meteorological Year Data: SolarGIS Approach," Energy Procedia, vol. 69, pp. 1958-1969, 2015/05/01/ 2015, doi: https://doi.org/10.1016/j.egypro.2015.03.195.
[28] R. Meyer et al., "Towards standardization of CSP yield assessments," SolarPACES, 01/01 2009.
[29] A. Roesch, M. Wild, A. Ohmura, E. G. Dutton, C. N. Long, and T. Zhang, "Assessment of BSRN radiation records for the computation of monthly means," Atmos. Meas. Tech., vol. 4, no. 2, pp. 339-354, 2011, doi: 10.5194/amt-4-339-2011.
[30] V. M. Muggeo, "Estimating regression models with unknown break-points," (in eng), Stat Med, vol. 22, no. 19, pp. 3055-71, Oct 15 2003, doi: 10.1002/sim.1545.
[31] V. M. Muggeo and M. V. M. Muggeo, "Package ‘segmented’," Biometrika, vol. 58, no. 525-534, p. 516, 2017.
[32] J. A. Duffie and W. A. Beckman, "Solar Radiation," in Solar Engineering of Thermal Processes, 2013, pp. 3-42.
[33] M. Despotovic, V. Nedic, D. Despotovic, and S. Cvetanovic, "Review and statistical analysis of different global solar radiation sunshine models," Renewable and Sustainable Energy Reviews, vol. 52, pp. 1869-1880, 2015/12/01/ 2015, doi: https://doi.org/10.1016/j.rser.2015.08.035.
[34] 林峻廷 and 張克勤, "比對氣象站所量測太陽輻射量數據—以澎湖與臺東兩氣象站為例," 氣象學報, vol. 56, pp. 25-39, 2021.
[35] A. Miller, Subset selection in regression. chapman and hall/CRC, 2002.
[36] E. Paulescu and R. Blaga, "Regression models for hourly diffuse solar radiation," Solar Energy, vol. 125, pp. 111-124, 2016/02/01/ 2016, doi: https://doi.org/10.1016/j.solener.2015.11.044.
[37] B. I. Justusson, "Median Filtering: Statistical Properties," in Two-Dimensional Digital Signal Prcessing II: Transforms and Median Filters. Berlin, Heidelberg: Springer Berlin Heidelberg, 1981, pp. 161-196.