簡易檢索 / 詳目顯示

研究生: 林祐安
Lin, Yu-An
論文名稱: 探討利用微流體晶片中液滴合併方式包覆成對微粒
Encapsulation of paired micro-particles by droplet coalescence in microfluidic chips
指導教授: 莊怡哲
Juang, Yi-Je
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 88
中文關鍵詞: 液滴微流體晶片微粒包覆液滴配對液滴合併正16烷
外文關鍵詞: droplet-based microfluidics, particle encapsulation, droplet pairing, droplet coalescence, n-hexadecane
相關次數: 點閱:73下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用液滴微流體晶片,同時讓液滴分別包覆兩種不同的微粒,並讓兩液滴在交會處進行一對一碰撞合併,達到產生包覆成對微粒的液滴的目的,其能建立包覆成對微粒的平台。液滴微流體已廣泛運用於生物應用上,一個微小液滴即為一個獨立的微反應器,每個包覆在液滴內的物質可不受外界的影響,讓液滴內的生化反應運用在各項用途。相較於傳統方法,液滴微流體可大幅縮短操作時間、步驟及反應所需的材料量。
    研究結果顯示,最終包覆雙顆成對微粒的效率與單微粒的包覆效率有關,此與液滴大小、流道設計、微粒懸浮液濃度、流率調控等亦有極大的關聯性。當流體之總流率越大或是連續相與分散相的流率比值越大,則產生的液滴大小就會越小。使用close-packed設計的流道,連續相和分散相流率為0.16ml/hr和0.04ml/hr下,包覆10µm單顆粒子效率為40%,而包覆雙顆成對微粒的效率為21%,為了減少粒子沉降的問題,我們使用密度與粒子相近之蔗糖溶液作為分散相,可以提升包覆10µm和20µm單微粒的效率分別達到68%和65%,而包覆單微粒的兩液滴經過一對一的碰撞合併後,最終一個液滴包覆一顆10µm和一顆20µm的微粒效率為38%。
    關鍵字:液滴微流體晶片、微粒包覆、液滴配對、液滴合併、正16烷

    Droplet-based microfluidics have been used in biological applications widely. Each micro-droplet is an independent micro-reactor and the material inside the droplet is not affected by the environment. Compared with traditional methods, droplet-based microfluidics can decrease the operation time, steps and the amount of materials required substantially. In this study, the droplet-based microfluidic chip was used to encapsulate paired particles by coalescing two droplets with single particle individually at the channel intersection.
    The results showed that the efficiency of encapsulation of paired particles was related to that of single particles, which depended on droplet size, channel design, particle suspension concentration, and flow rate. Using the close-packed channel design at the flow rate of continuous and dispersed phase 0.16ml/hr and 0.04ml/hr, respectively, the encapsulated efficiency of 10μm single particle was 40%, which led to the encapsulated efficiency of paired particles 21%. When using the sucrose solution with density similar to the particles as the dispersed phase, sedimentation of particles was alleviated and the encapsulated efficiency of 10μm and 20μm single particles was 68% and 65%, respectively. This resulted in encapsulated efficiency of paired particles was 38%, relatively efficient compared to those in the literature.
    Key words: droplet-based microfluidics, particle encapsulation, droplet pairing, droplet coalescence, n-hexadecane

    摘要 i Extended Abstract ii 誌謝 viii 目錄 ix 表目錄 xii 圖目錄 xiii 第1章 緒論 1 1.1 微流體系統簡介 1 1.2 研究動機以及方法 3 第2章 文獻回顧 4 2.1液滴微流體系統 4 2.1.1產生液滴的方法與條件 5 2.1.2 系統中液滴的控制 12 2.1.2.1液滴的分類 12 2.1.2.2液滴合併 13 2.1.2.3液滴分裂 16 2.1.2.4液滴混合 17 2.2 液滴微流體的應用 19 2.2.1利用液滴微流體包覆細胞 19 2.2.2利用液滴微流體作為反應系統 26 2.2.3利用液滴微流體產生Metal organic Frameworks (MOFs) 28 第3章 材料與實驗方法 30 3.1實驗藥品與材料 30 3.1.1黃光微影製程 30 3.1.2微流道平台 32 3.2 實驗儀器 36 3.2.1 黃光微影製程 36 3.2.2 微流道晶片製作 37 3.2.3 液滴微流體系統 39 3.3 實驗方法 42 3.3.1 黃光微影製程 42 3.3.2 微流道晶片製作 48 3.3.3 液滴微流體系統 50 第4章 結果與討論 52 4.1 使用Droplet Generation Oil for EvaGreen作為連續相 54 4.1.1 液滴的形成 54 4.1.2 單微粒的包覆 59 4.1.3 液滴的配對與合併 65 4.2 使用正十六烷作為連續相 67 4.2.1液滴的形成 67 4.2.2單微粒的包覆 69 4.2.3液滴的配對與合併 71 4.3提升整體效率-利用蔗糖水溶液調整微粒懸浮液密度 76 第5章 結論 81 第6章 未來工作與建議 82 參考文獻 83

    1.Bassous, E., H. H. Taub, and L. Kuhn. "Ink jet printing nozzle arrays etched in silicon." Applied Physics Letters 31.2 (1977): 135-137.
    2.Terry, Stephen C., John H. Jerman, and James B. Angell. "A gas chromatographic air analyzer fabricated on a silicon wafer." IEEE transactions on electron devices 26.12 (1979): 1880-1886.
    3.Teh, Shia-Yen, et al. "Droplet microfluidics." Lab on a Chip 8.2 (2008): 198-220.
    4.Li, Xu, David R. Ballerini, and Wei Shen. "A perspective on paper-based microfluidics: Current status and future trends." Biomicrofluidics 6.1 (2012):011301.
    5.Ding, Xiaoyun, et al. "Surface acoustic wave microfluidics." Lab on a Chip 13.18 (2013): 3626-3649.
    6.McNeely, M.R., et al. Hydrophobic microfluidics. in Microfluidic Devices and Systems II. 1999. International Society for Optics and Photonics.
    7.Figeys, Daniel, and Devanand Pinto. "Lab-on-a-chip: a revolution in biological and medical sciences." (2000): 330-A.
    8.Demello, Andrew J. "Control and detection of chemical reactions in microfluidic systems." Nature 442.7101 (2006): 394-402.
    9.Macosko, Evan Z., et al. "Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets." Cell 161.5 (2015): 1202-1214.
    10.Choban, Eric R., et al. "Microfluidic fuel cell based on laminar flow." Journal of Power Sources 128.1 (2004): 54-60.
    11.Sollier, Elodie, et al. "Rapid prototyping polymers for microfluidic devices and high pressure injections." Lab on a Chip 11.22 (2011): 3752-3765.
    12.Nunes, J. K., et al. "Dripping and jetting in microfluidic multiphase flows applied to particle and fibre synthesis." Journal of physics D: Applied physics 46.11 (2013): 114002.
    13.Cubaud, Thomas, and Thomas G. Mason. "Capillary threads and viscous droplets in square microchannels." Physics of fluids 20.5 (2008): 053302.
    14.V. van Steijn, C. R. Kleijn, and M. T. Kreutzer, “Predictive model for the size of bubbles and droplets created in microfluidic T-junctions,” Lab Chip 10(19), 2513–2518 (2010).
    15.Volume-of-fluid simulations in microfluidic T-junction devices: Influence of viscosity ratio on droplet size Stone, H.A. and S. Kim, Microfluidics: basic issues, applications, and challenges. AIChE Journal, 2001. 47(6): p. 1250-1254.
    16.Xu, J. H., et al. "Preparation of highly monodisperse droplet in a T‐junction microfluidic device." AIChE journal 52.9 (2006): 3005-3010.
    17.Mazutis, Linas, and Andrew D. Griffiths. "Preparation of monodisperse emulsions by hydrodynamic size fractionation." Applied Physics Letters 95.20 (2009): 204103.
    18.Wang, Kai, et al. "Microdroplet coalescences at microchannel junctions with different collision angles." AIChE Journal 59.2 (2013): 643-649.
    19.Bremond, Nicolas, Abdou R. Thiam, and Jérôme Bibette. "Decompressing emulsion droplets favors coalescence." Physical review letters 100.2 (2008): 024501.
    20.Fidalgo, Luis M., Chris Abell, and Wilhelm TS Huck. "Surface-induced droplet fusion in microfluidic devices." Lab on a Chip 7.8 (2007): 984-986.
    21.Yang, Chun-Guang, Ru-Yi Pan, and Zhang-Run Xu. "A single-cell encapsulation method based on a microfluidic multi-step droplet splitting system." Chinese Chemical Letters 26.12 (2015): 1450-1454.
    22.Jung, Jin Ho, et al. "On-demand droplet splitting using surface acoustic waves." Lab on a Chip 16.17 (2016): 3235-3243.
    23.Song, Helen, Joshua D. Tice, and Rustem F. Ismagilov. "A microfluidic system for controlling reaction networks in time." Angewandte Chemie 115.7 (2003): 792-796
    24.Theberge, Ashleigh B., et al. "Microdroplets in microfluidics: an evolving platform for discoveries in chemistry and biology." Angewandte Chemie International Edition 49.34 (2010): 5846-5868.
    25.Zhu, Ying, and Qun Fang. "Analytical detection techniques for droplet microfluidics—A review." Analytica chimica acta 787 (2013): 24-35.
    26.Kintses, Balint, et al. "Microfluidic droplets: new integrated workflows for biological experiments." Current opinion in chemical biology 14.5 (2010): 548-555.
    27.Teh, Shia-Yen, et al. "Droplet microfluidics." Lab on a Chip 8.2 (2008): 198-220.
    28.Demello, Andrew J. "Control and detection of chemical reactions in microfluidic systems." Nature 442.7101 (2006): 394-402.
    29.Deria, Pravas, et al. "Framework-topology-dependent catalytic activity of zirconium-based (porphinato) zinc (II) MOFs." Journal of the American Chemical Society 138.43 (2016): 14449-14457.
    30.Li, Hailian, et al. "Design and synthesis of an exceptionally stable and highly porous metal-organic framework." nature 402.6759 (1999): 276-279.
    31.Lee, JeongYong, et al. "Metal–organic framework materials as catalysts." Chemical Society Reviews 38.5 (2009): 1450-1459.
    32.Li, Liangjun, et al. "High gas storage capacities and stepwise adsorption in a UiO type metal–organic framework incorporating Lewis basic bipyridyl sites." Chemical Communications 50.18 (2014): 2304-2307.
    33.Cacho-Bailo, Fernando, et al. "High selectivity ZIF-93 hollow fiber membranes for gas separation." Chemical Communications 51.56 (2015): 11283-11285.
    34.Klein, Allon M., et al. "Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells." Cell 161.5 (2015): 1187-1201.
    35.Zheng, Grace XY, et al. "Massively parallel digital transcriptional profiling of single cells." Nature communications 8.1 (2017): 1-12.
    36.Kemna, Evelien WM, et al. "High-yield cell ordering and deterministic cell-in-droplet encapsulation using Dean flow in a curved microchannel." Lab on a Chip 12.16 (2012): 2881-2887.
    37.Abate, Adam R., et al. "Beating Poisson encapsulation statistics using close-packed ordering." Lab on a Chip 9.18 (2009): 2628-2631.
    38.Chan, Emory M., A. Paul Alivisatos, and Richard A. Mathies. "High-temperature microfluidic synthesis of CdSe nanocrystals in nanoliter droplets." Journal of the American Chemical Society 127.40 (2005): 13854-13861.
    39.Seo, Minseok, et al. "Continuous microfluidic reactors for polymer particles." Langmuir 21.25 (2005): 11614-11622.
    40.Nightingale, A. M., et al. "A stable droplet reactor for high temperature nanocrystal synthesis." Lab on a Chip 11.7 (2011): 1221-1227.
    41.Paseta, Lorena, et al. "Accelerating the controlled synthesis of metal–organic frameworks by a microfluidic approach: a nanoliter continuous reactor." ACS applied materials & interfaces 5.19 (2013): 9405-9410.
    42.Paseta, Lorena, et al. "Accelerating the controlled synthesis of metal–organic frameworks by a microfluidic approach: a nanoliter continuous reactor." ACS applied materials & interfaces 5.19 (2013): 9405-9410.
    43.Kumaresan, Palani, et al. "High-throughput single copy DNA amplification and cell analysis in engineered nanoliter droplets." Analytical chemistry 80.10 (2008): 3522-3529.
    44.Glawdel, T., C. Elbuken, and C. L. Ren. "Droplet generation in microfluidics." Encyclopedia of Microfluidics and Nanofluidics (2013): 1-12.
    45.Campanelli, John R., and Xiaohong Wang. "Dynamic interfacial tension of surfactant mixtures at liquid–liquid interfaces." Journal of colloid and interface science 213.2 (1999): 340-351.
    46.WU, DONGMIN, and VLADIMIR HORNOF. "Dynamic interfacial tension in hexadecane/water systems containing ready-made and in-situ-formed surfactants." Chemical Engineering Communications 172.1 (1999): 85-106.
    47.Jin, Shaobo, et al. "Construction of core–shell microcapsules via focused surface acoustic wave microfluidics." Lab on a Chip 20.17 (2020): 3104-3108.

    下載圖示 校內:2024-07-07公開
    校外:2024-07-07公開
    QR CODE