| 研究生: |
蔡家祚 Tsai, Chia-Tso |
|---|---|
| 論文名稱: |
利用模擬方式探討Timothy (LQT8) Syndrome導致心臟性猝死之機制 Mechanisms of Sudden Cardiac Death in Timothy (LQT8) Syndrome by Simulation Study |
| 指導教授: |
吳勝男
Wu, Sheng-Nan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 生理學研究所 Department of Physiology |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 75 |
| 中文關鍵詞: | 心臟性猝死 、乙型類腎上腺素刺激 、模擬模組 |
| 外文關鍵詞: | Timothy syndrome, voltage-dependent inactivation of the Cav1.2 cha, sudden cardiac death, LRd model, beta-adrenergic stimulation |
| 相關次數: | 點閱:128 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Timothy Syndrome 是一種由於Cav1.2離子通道基因突變而產生「功能增益」情況所造成的致死性心臟疾病。我們希望由其電生理機制上的特性來探討出Timothy Syndrome和致死性心律不整的相關性。在我們的研究中,我們採用的模擬模組是Luo-Rudy的細胞模組和一維的線性細胞排列模組。在模擬Cav1.2離子通道的突變當中,我們將調控Cav1.2離子通道打開時間的時間常數由兩倍開始逐步增加。這樣的操作顯示,動作電位的長度和心電圖中的QT波的間距會隨之增長。這樣的處理方式會使心肌中層細胞(mid-myocardium cells)先出現Delayed afterdepolarizations (DADs)並引發其細胞活性,接下來我們還觀察到動作電位中DADs和early afterdepolarizations (EADs)的交替(APD alternans)。此外,隨著時間常數的倍增,我們還觀察到穿越肌層的再極化分佈(transmural dispersion of repolarization, TDR)也隨之增加,這種情況也伴隨著動作電位回復曲線(APD restitution curves)陡峭的趨勢。在觀察到以上的情況之後,我們也嘗試去了解beta-adrenergic刺激所造成的影響,這樣的刺激除了會使得TDR增大和動作電位回復曲線的陡峭外,更重要的是,不斷促進DADs誘發之活性的結果,最後會導致一種“flutter- or fibrillatory-like”的動作電位節奏,這種情形是由短暫往細胞內流動的電流所造成,這樣的電流是由Na+-Ca2+ 交換電流(INCX)、非特異性鈣離子活化電流(nonspecific Ca2+-activated currents, INS(Ca))、鈣離子誘發的肌漿膜鈣離子自動釋放(evoked by spontaneous Ca2+ release from the sarcoplasmic reticulum (Irel,overload) related to “Ca2+ overload.”)等電流所組成。然而,在心跳減速的時候,動作電位的延長和其他類似前心律不整的情況也會產生。在此研究當中,我們得到了以下的結論,Cav1.2這個離子通道的突變導致其原有的功能有所改變之後,會引發致死性的心室性心律不整,疾病的狀況更有可能因為交感神經的影響和心跳減慢而加重。
Timothy syndrome (TS) is a malignant form of congenital long QT syndrome caused by genetic mutations that result in “nearly complete failure” of voltage-dependent inactivation (VDI) of the Cav1.2 channel leading to "gain of function”. We set out to explore electrophysiological mechanisms underlying the propensity to develop lethal ventricular arrhythmias associated with TS. We adopted a modified Luo-Rudy cell model of ventricular myocyte along with 1-dimensional multicellular strand model. To simulate mutant-induced reduction of VDI of the Cav1.2 channel, the time constant of VDI was multiplied by 2-fold to 20-fold. This resulted in progressive prolongation of action potential duration (APD) and QT interval without eliciting abnormal automaticity. Delayed afterdepolarizations (DADs) and DAD-mediated trigger activity first appeared in the mid-myocardial cell, and intermittently, and we also observed APD alternans with early afterdepolarizations (EADs). Additionally, there was a progressive increase in transmural dispersion of repolarization (TDR) alongside steepening of APD restitution. Beta-adrenergic stimulation further amplified TDR and steepened APD restitution, and importantly, facilitated induction of DAD-mediated triggered activity culminating in its transformation into a “flutter- or fibrillatory-like” rhythm driven by a transient inward current (ITi) generated by forward mode Na+-Ca2+ (INCX) and nonspecific Ca2+-activated currents (INS(Ca)) evoked by spontaneous Ca2+ release from the sarcoplasmic reticulum (Irel,overload) related to “Ca2+ overload.” Of note, bradycardia further prolonged APD and exerted similar proarrhythmic effects. In patients with TS, significant reduction of VDI of the Cav1.2 channel may provide not only a trigger but also a substrate for the propensity to develop lethal ventricular arrhythmia aggravated by enhanced sympathetic tone and bradycardia.
1. Moss AJ, Schwartz PJ, Crampton RS, Tzivoni D, Locati EH, MacCluer J, Hall WJ, Weitkamp L, Vincent GM, Garson A Jr: The long QT syndrome. Prospective longitudinal study of 328 families. Circulation 1991;84:1136-1144.
2. Antzelevitch C. Molecular genetics of arrhythmias and cardiovascular conditions associated with arrhythmias. Heart Rhythm 2004;1:42C-56C.
3. Antzelevitch C, Sicouri S. Clinical relevance of cardiac arrhythmias generated by afterdepolarizations. Role of M cells in the generation of U waves, triggered activity and torsade de pointes. J Am Coll Cardiol 1994;23:259-277.
4. Plaster NM, Tawil R, Tristani-Firouzi M, Canun S, Bendahhou S, Tsunoda A, Donaldson MR, Iannaccone ST, Brunt E, Barohn R, Clark J, Deymeer F, George AL Jr, Fish FA, Hahn A, Nitu A, Ozdemir C, Serdaroglu P, Subramony SH, Wolfe G, Fu YH, Ptacek LJ: Mutations in Kir2.1 cause the developmental and episodic electrical phenotypes of Andersen's syndrome. Cell 2001;105:511-519.
5. Splawski I, Timothy KW, Sharpe LM, Decher N, Kumar P, Bloise R, Napolitano C, Schwartz PJ, Joseph RM, Condouris K, Tager-Flusberg H, Priori SG, Sanguinetti MC, Keating MT: CaV1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism. Cell 2004;119:19-31.
6. Tristani-Firouzi M, Jensen JL, Donaldson MR, Sansone V, Meola G, Hahn A, Bendahhou S, Kwiecinski H, Fidzianska A, Plaster N, Fu YH, Ptacek LJ, Tawil R: Functional and clinical characterization of KCNJ2 mutations associated with LQT7 (Andersen syndrome). J Clin Invest 2002;110:381-388.
7. Splawski I, Timothy KW, Decher N, Kumar P, Sachse FB, Beggs AH, Sanguinetti MC, Keating MT: Severe arrhythmia disorder caused by cardiac L-type calcium channel mutations. Proc Natl Acad Sci USA 2005;102:8089-8096.
8. Sung RJ, Wu SN, Wu JS, Chang HD, Luo CH: Electrophysiological mechanisms of ventricular arrhythmias in relation to Andersen-Tawil (LQT7) syndrome under conditions of reduced IK1: A simulation study. Am J Physiol 2006;291:H2597-H2605.
9. Luo CH, Rudy Y: A dynamic model of the cardiac ventricular action potential. I. Simulations of ionic currents and concentration changes. Circ Res 1994;74:1071-1096.
10. Zeng J, Laurita KR, Rosenbaum DS, Rudy Y: Two components of the delayed rectifier K+ current in ventricular myocytes of the guinea pig type. Theoretical formulation and their role in repolarization. Circ Res 1995;77:140-152.
11. Viswanathan PC, Shaw RM, Rudy Y: Effects of IKr and IKs heterogeneity on action potential duration and its rate dependence: a simulation study. Circulation 1999;99:2466-2474.
12. Gima K, Rudy Y. Ionic current basis of electrocardiographic waveforms: A model study. Circ Res 2002;90:889-896.
13. Zhang H, Hancox JC. In silico study of action potential and QT interval shortening due to loss of inactivation of the cardiac rapid delayed rectifier potassium current. Biochem Biophys Res Commun 2004;322:693-699.
14. Tsuboi M, Antzelevitch C. Cellular basis for electrocardiographic and arrhythmic manifestations of Andersen-Tawil syndrome (LQT7). Heart Rhythm 1006;3:328-335.
15. Chang HD, Wu SN, Sung RJ. Electrophysiological mechanisms of differential patterns of survival between Anderson-Tawil (LQT7) and Timothy (LQT8) syndromes. J Am Coll Cariol 2007;49(Suppl. A):8A (abstract).
16. Koller ML, Riccio ML, Gilmour RF Jr. Dynamic restitution of action potential duration during electrical alternans and ventricular fibrillation. Am J Physiol 1998;275:H1635-1642.
17. Terrenoire C, Clancy CE, Cormier JW, Sampson KJ, Kass RS. Autonomic control of cardiac action potentials: role of potassium channel kinetics in response to sympathetic stimulation. Circ Res 2005;96:e25-e34.
18. Volders PG, Vos MA, Szabo B, Sipido KR, de Groot SH, Gorgels AP, Wellens HJ, Lazzara R. Progress in the understanding of cardiac early afterdepolarizations and torsades de pointes: time to revise current concepts. Cardiovasc Res 2000;46:376-392.
19. Reichenbach H, meister EM, Theile H: The heart-hand syndrome. A new variant of disorders of heart conduction and syndactylia including osseous changes in hands and feet. Kinderarztl Prax 1992;60:54-56.
20. Marks ML, Whisler SL, Clericuzio C, Keating MT. A new form of long QT syndrome associated with syndactyly. J Am Coll Cardiol 1995;25:59-64.
21. Marks ML, Trippel DL, Keating MT. Long QT syndrome associated with syndactyly identified in females. Am J Cardiol 1996:78:380.
22. Sun H, Leblane N, Nattel S. Mechanisms of inactivation of L-type calcium channels in human atrial myocytes. Am J Physiol 1997; 272: H1625-H1635.
23. Priori SG, Napolitano C, Schwartz PJ. Low penetrance in the Long QT syndrome. Circulation 1999; 99:529-533.
24. Sanguinetti MC, Jurkiewicz NK, Scott A, Siegl PK. Isoproterenol antagonizes prolongation of refractory period by the class III antiarrhythmic agent E-4031 in guinea pig myocytes. Circ Res 1991;68:77-84.
25. Robert E, Aya AG, de la Coussaye JE, Peray P, Juan JM, Brugada J, Davy JM, Eledjam JJ. Dispersion-based reentry: mechanism of initiation of ventricular tachycardia in isolated rabbit hearts. Am J Physiol 1999;276:H413-H423.
26. Ou Z, Weiss J, Garfinkel A. Cardiac electrical restitution properties and stability of reentrant spiral waves: a simulation study. Am J Physiol 1999;276:H269-H283.
27. Goldhaber JI, Xie LH, Duong T, Motter C, Khuu K, Weiss JN. Action potential duration restitution and alternans in rabbit ventricular myocytes. The key role of intracellular calcium cycling. Circ Res 2005;96:459-466.
28. Qian YW, Clusin WT, Lin SF, Han J, Sung RJ. Spatial heterogeneity of calcium transient alternans during the early phase of myocardial ischemia in the blood-perfused rabbit heart. Circulation 2001;104:2082-2087.
29. Pruvot EJ, Katra RP, Rosenbaum DS, Laurita KR. Role of calcium cycling versus restitution in the mechanism of repolarization alternans. Circ Res 2004;94:1083-1090.
30. Rudy Y, Silva JR. Computational biology in the study of cardiac ion channels and cell electrophysiology. Quarterly Reviews of Biophysics 2006; Cambridge University Press pp1-66.
31. Katra RP, Laurita KR. Cellular mechanism of calcium-mediated triggered activity in the heart. Circ Res 2005;96:535-542.
32. Chudin E, Goldhaber J, Garfinkel A, Weiss J, Kogan B. Intracellular Ca2+ dynamics and the stability of ventricular tachycardia. Biophy J 1999;77:2930-2941.
33. Omichi C, Lamp ST, Lin SF, Yang J, Baher A, Zhou S, Attin M, Lee MH, Karagueuzian HS, Kogan B, Qu Z, Garfinkel A, Chen PS, Weiss JN. Intracellular Ca dynamics in ventricular fibrillation. Am J Physiol 2004;286:H1836-H1844.
34. Clusin WT, Bristow MR, Karagueuzian HS, Katzung BG, Schroeder JS. Do calcium-dependent ionic currents mediate ischemic ventricular fibrillation? Am J Cardiol 1982;49:606-612.
35. Schwartz PJ, Priori SG, Spazzolini C, Moss AJ, Vincent GM, Napolitano C, Denjoy I, Guicheney P, Breithardt G, Keating MT, Towbin JA, Beggs AG, Brink P, Wilde AA, Toivonen L, Zareba W, Robinson JL, Timothy KW, Corfield V, Wattanasirichaigoon D, Corbett C, Haverkamp W, Schulze-Bahr E, Lehmann MH, Schwartz K, Coumel P, Bloise R. Genotype-phenotype correlation in the long-QT syndrome: gene-specific triggers for life-threatening arrhythmias. Circulation 2001;103: 87-95.
36. Wilde AAM, Jongbloed RJE, Doevendans PA, et al. Auditory stimuli as a trigger for arrhythmic events differentiate HERG-related (LQTS2) patients from KVLQT1-related patients (LQTS1). J Am Coll Cardiol. 1999;33:327–332
37. Priori SG, Schwartz PJ, Napolitano C, Bliose R, Ronchetti E, Grillo M, Vicentini A, Spazzolini C, Nastoli J, Bottelli G, Folli R, Cappelletti D. Risk stratification in the long-QT syndrome. N Engl J Med 2003;348:1866-1874.
38. Shimizu W, Antzelevitch C. Cellular basis for the ECG features of the LQT1 form of the long-QT syndrome: effects of beta-adrenergic agonists and antagonists and sodium channel blockers on transmural dispersion of repolarization and torsade de pointes. Circulation 1998;98:2314-2322.
39. Shimizu W, Anzelevitch C. Differential response to beta-adrenergic agonist and antagonists in LQT1, LQT2 and LQT3 models of the long QT syndrome. J Am Coll Cardiol 2000;35:778-786.
40. Areba W, Moss AJ, Locati EH, Lehmann MH, Peterson DR, Hall WJ, Schwartz PJ, Vincent GM, Priori SG, Benhorin J, Towbin JA, Robinson JL, Andrews ML, Napolitano C, Timothy K, Zhang L, Medina A. Modulating effects of age and gender on the clinical course of long QT syndrome by genotype. J Am Coll Cardiol 2003;42:103-109.
41. Arnestad M, Crotti L, Rognum TO, Insolia R, Pedrazzini M, Ferrandi C, Vege A, Wang DW, Rhodes TE, George AL Jr, Schwartz PJ. Prevalence of long QT syndrome gene variants in sudden infant death syndrome. Circulation 2007;115:294-296.
42. Sham JSK, Cleeman L, Morad M. Functional coupling of Ca2+ channels and ryanodine receptors in cardiac myocytes. Proc Natl Acad Sci USA 1995;92:121-125.
43. Chudin E, Garfinkel A, Weiss J, Karplus W, Kogan B. Wave propagation in cardiac tissue and effects of intracellular calcium dynamics (computer simulation study). Prog Biophy Mol Biol 1998;69:225-236.
44. Ten Tusscher KH, Noble D, Noble PJ, Panfilov AV. A model for human ventricular tissue. Am J Physiol 2005;286:H1573-1589.
45. Saucerman JJ, Bruntons LL, Michailova AP, McCulloch AD: Modeling B-adrenergic control of cardiac myocyte contractility. J Biol Chemistry 2003;278: 47997-48003.