| 研究生: |
黃智毅 Huang, Chih-Yi |
|---|---|
| 論文名稱: |
階層視覺化知識地圖法之研究 A Hybrid Approach to the Development of Hierarchical Visual Knowledge Maps |
| 指導教授: |
李昇暾
Li, Sheng-Tun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 資訊管理研究所 Institute of Information Management |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 67 |
| 中文關鍵詞: | 知識地圖 、知識管理 、增長式自我組織映射圖 、樹狀地圖 、資訊視覺化 |
| 外文關鍵詞: | growing hierarchical self-organizing map, tree map, information visualization, knowledge map, knowledge management |
| 相關次數: | 點閱:159 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著大量資料的時代來臨,充分有效的管理知識以及對於知識的分享、重複使用與整合是非常重要的。在知識管理的範疇中,知識地圖經常被使用來協助於知識庫內知識的導引與取得,其建構的過程一般是透過屬性擷取與分群方法,接著利用資訊視覺化的技術呈現結果。資訊視覺化的技術著重在人類獨特的思考創造能力、特徵辨識能力以及對複雜圖形的迅速認知能力,以彌補電腦在自動化的過程中不具彈性的缺點,並將大量、高維度的資料利用圖形化的方式呈現,將隱含的資訊以視覺特徵呈現,透過人類與生俱來的視覺特徵辨識能力為導向,快速擷取出有用的資訊。適用於知識地圖的分群方法,需要具備將資料複雜維度簡單化與重要概念視覺化的能力,由於知識結構是階層性的架構,透過階層式方法建構的知識地圖,有助於使用者了解知識的意涵與關聯。本研究提出整合階層式技術的方法論,分群的部份,分析各群的標記名稱與專家建議的概念;視覺化的部分,整合具有描述樹狀結構的視覺化方法。最後測試階層架構的有效度與使用度,完成具有階層意涵的知識地圖。
Along with the coming of mass materialization era, the full effective knowledge management regarding the knowledge share, the repetition use and as well as conformity do count much. In knowledge management, the knowledge map is frequently used to assist knowledge guiding and obtaining. The process of knowledge forming is through feature extraction and clustering, followed by using information visualization technique to present the result. In order to atone for the weakness of non-flexibility in the process of computer automation, information visualization technique emphasizes human’s unique thinking, creativity, recognition and rapid cognition ability to complex graphs, afterward ,the massive and high dimension material would be displayed through graphing. Furthermore, the innate human visual characteristic recognition is a perfect guidance to review the hidden information for retrieving useful one. The clustering technique suitable to knowledge map must have the capability of simplifying complicated information and visualizing important concepts. Based on the fact that knowledge structure itself is a hierarchical framework, the knowledge map constructed by hierarchical visualization technique provides users with great understanding on knowledge denotation and connection. This study proposes two kinds of hierarchical techniques: clustering and visualization. The part of clustering is to analyze various groups of labels and concepts suggested by experts; as to the part of visualization, is to integrate any visualization techniques described with trees structure. Finally we testify the validity and usability of the hierarchical framework and complete the meaningful knowledge map with hierarchical information structures.
[1]Bladh, T., Carr, D., & Scholl, J. (2004).Extending Tree-Maps to Three Dimensions: A Comparative Study. Proceedings of the 6th Asia Pacific Conference on Computer Human Interaction, 50-60.
[2]Bruls, M., Kees, H., & Jarke, J. (2000). Squarified Treemaps. In proceedings of Joint Eurographics and IEEE TCVG Symposium on Visualization, 33-42.
[3]Card, S. K., & Mackinlay, J. (1997). The Structure of the Information Visualization Design Space. Information Visualization, 92-99.
[4]Chung, W., Chen, H., & Nunamaker, J. F. (2003). Business intelligence explorer: a knowledge map framework for discovering business intelligence on the web. Proceedings of the 36th Annual Hawaii International Conference on System Sciences, 10-19.
[5]Chung W. -T., O'Neil H. F., & Herl H. E. (1999). The use of computer-based collaborative knowledge mapping to measure team processes and team outcomes. Computer in Human Behavior, 15, 463-493.
[6]Davenport, T. H., & Prusak, L. (1998). Working knowledge:How organization manage what they know. Boston:Harvard Business Review, 102.
[7]Drucker, P. F. (1993). Post Capitalist Society. New York: Harper Business.
[8]Fritzke, B. (1994). Growing Cell Structure - A Self-Organizing Network for Unsupervised Learning. Neural Networks, 7, 1441-1460.
[9]Fritzke, B. (1995). Growing Grid - A Self-Organizing Network with Constant Neighborhood Range and Adaptation Strength. Neural Processing Letters, 2, 9-13.
[10]Honkela, T. (1997). Self-organizing maps in natural language processing. Unpublished Ph.D. thesis, Helsinki University of Technology, Espoo, Finland.
[11]Kohonen, T. (1982). Self-Organized Formation of Topologically Correct Feature Maps. Biological Cybernetics, 43(1), 9-69.
[12]Kohonen, T. (1997). Self-organizing maps,2nd ed. Berlin, Germany: Springer.
[13]Kohonen, T., Kaski, S., Lagus, K., Salojarvi, J., Honkela, J., Paatero, V., Saarela, A., et al. (2000). Self Organization of a Massive Document Collection. Neural Networks, IEEE Transactions on , 11(3), 574-585.
[14]Lin, F. -R., & Hsueh, C. -M. (2003). Knowledge Map Creation and Maintenance for Virtual Communities of Practice. Proceedings of the 36th Hawaii International Conference on System Sciences, 1-10.
[15]Logan, D., & Caldwell, F. (2000). Knowledge Mapping: Five Key Dimensions to Consider. GartnerGroup.
[16]Luo, X., & Nur A. Z. -H. (2004). Evaluation of Three Dimensionality Reduction Techniques for Document Classification. Electrical and Computer Engineering, IEEE Canadian Conference on, Niagara Falls, Canada.
[17]Mikkulainen, R. (1990). Script Recognition with Hierarchical Feature Map. Connection Science, 2, 83-101.
[18]Nagal, M., Shiraki, K., Kato, H., & Akahori, K. (2002). The Effectiveness of a Web Bulletin Board Enhanced with a Knowledge Map. Computers in Education, International Conference on, 1, 268-272.
[19]Nonaka, I. (1994). A Dynamic Theory of Organizational Knowledge Creation. Organization Science, 5(1), 14-37.
[20]Nonaka, I., & Takeuchi, H. (1995). The Knowledge-Creating Company. New York: Oxford University Press.
[21]Ong, T. -H., Chen, H., Sung, W. -K., & Zhu B. (2005). Newsmap: a knowledge map for online news. Decision Support Systems, 39, 583-597.
[22]Rauber, A., Merkl, D., & Dittenbach, M. (2002). The Growing Hierarchical Self-Organizing Map: Exploratory Analysis of High-Dimensional Data. Neural Networks, IEEE Transactions on, 13(6), 1331–1341.
[23]Robertson, G.., Card, S. K., & Mackinlay, J. D. (1993). Information Visualization using 3D Interactive Animation. Association for Computing Machinery. Communications of the ACM,36(4), 56-72.
[24]Salton, G.. (1988). Automatic Text Processing. Addison-Wesley Longman Publishing Conference.
[25]Salton, G.., Wong, A., & Yang, C. S. (1975). A Vector Space Model for Information Retrieval. Journal of the American Society for Information Science, 18(11), 613-620.
[26]Shneiderman, B. & Wattenberg, M. (2001). Ordered Treemap Layouts. IEEE Symposium on Information Visualization 2001.
[27]Shneiderman, B. (1992). Tree Visualization with Treemaps: A 2-D Space-Filling Approach. ACM Transaction on Graphics, 11, 92-99.
[28]Singh, L., Scheuermann, P., & Chen, B. (1997). Generating Association Rules from Semi-Structured Documents Using an Extended Concept Hierarchy. ACM IKM, 19, 193-200.
[29]Smith, M. A. & Fiore, A. (2001). Treemap Visualizations of Newsgroups. Microsoft Research Technical Report. Redmond: Microsoft Research, Microsoft Corporation.
[30]Skupin, A. (2002). A Cartographic Approach to Visualizing Conference Abstracts. Computer Graphics and Applications, 22(1), 50-58.
[31]Skupin, A. (2004). A Picture from a Thousand Words. Computing in Science & Engineering, 6(5), 84-88.
[32]Stewart, T. A. (1997). Intellectual Capital : The New Wealth of Organizations. New York: Doubleday.
[33]Simula, O., Vesanto, J., & Vasara, P. (1998). Analysis of Industrial Systems using the Self-Organizing Map. Proceeding of Knowledge-Based Intelligent Electronic Systems, Adelaide Australia, 1, 21-23.
[34]Vail, E F. Ⅲ. (1999). Knowledge mapping: getting started with knowledge management. Information Systems Management, Fall, 16-23.
[35]Vesanto, J., & Alhoniemi, E. (2000) Clustering of the Self-Organizing Map. Neural Networks, IEEE Transactions on, 11(3), 586-600.
[36]Yang, Y. (1999). An Evaluation of Statistical Approaches to Text Categorization Information Retrieval. ABI/INFORM Global, 1(1-2), 69-89.
[37]Yang, H. -C., & Lee, C. -H. (2004). A Text Mining Approach on Automatic Generation of Web Directories and Hierarchies. Expert Systems with Applications, 27(4), 645-663.
[38]Xiang, Y., Chau, M., Atabakhsh, H. & Cheng, H. (2005). Visualizing criminal relationships: comparison of a hyperbolic tree and a hierarchical list. Decision Support Systems, 41, 69-83.
[39]Xiaoying, T., Fuji, R., & Kenji, K. (2002). An Information Retrieval Model Based on Vector Space Method by Supervised Learning. Information Processing and Management, 38, 749-764.
[40]Davenport, T. H., & Prusak, L. (1999). 知識管理。 (胡瑋珊譯)。 台北: 中國生產力。