簡易檢索 / 詳目顯示

研究生: 魏宏格
Wei, Hung-Ke
論文名稱: 溶液法製備具超疏水表面之阻氣基板
Fabrication of Gas-blocking Layer with Superhydrophobic Surface by Using Solution process
指導教授: 李玉郎
Lee, Yuh-Lang
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 106
中文關鍵詞: 液相沉積法有機-無機奈米混層材料氣體阻障層軟性基板靜電作用力二氧化矽粒子超疏水表面
外文關鍵詞: liquid phase deposition, gas blocking film, flexible substrate, electrostatic interaction, silica particles, surperhydrophobic surface, dual-size structured
相關次數: 點閱:100下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在常溫非真空的環境下製備一具氣體阻障與超疏水表面的軟性薄膜,在氣體阻障的部份利用環氧樹脂與改質後的蒙托土(Montmorillonite clay)混層材料及矽氟酸還原的二氧化矽奈米粒子,利用重力壓膜法及液相沉積法來製備薄膜,利用掃描式電子顯微鏡(SEM)、表面粗度儀(Alpha-step Profilometer)、X-光繞射光譜儀(XRD)、氣體滲透分析儀(Gas permeability analyzer)來分析蒙托土改質及薄膜厚度與表面型態和氣體通透率。
    超疏水表面的部份則是使用液相沉積法(LPD)及靜電逐層組裝技術(ELBL),在氣體阻障基板上組裝微米級結構的二氧化矽粒子薄膜,並再次以液相沉積法(LPD)披覆上奈米級的二氧化矽粒子,製備出結構類似於Raspberry的階層式粒子薄膜,最後藉由長碳鏈矽烷作疏水化表面改質,得到超疏水性粒子薄膜。利用掃描式電子顯微鏡(Scanning electron microscope, SEM)及接觸角分析儀(Dynamic Contact Angle, DCA),來瞭解薄膜表面型態及潤濕性。結果顯示:利用添加10 wt% 蒙托土/環氧樹脂混層材料做為阻障層搭配靜電組裝技術所得到不規則的Raspberry-like的微/奈階層式粒子,可得到阻氧效率達94.4%,薄膜表面的靜態接觸角164度,傾斜角少於4度的阻氧超疏水性粒子薄膜。而利用液相沉積法沉積二氧化矽粒子奈米膜做為阻障層搭配液相沉積法沉積50nm二氧化矽粒子,可得到可見光穿透度達80%以上且阻氧效率50.4%,表面靜態接觸角153度,傾斜角小於5度的透明阻氣超疏水薄膜。

    The work aims at fabricating a film with gas-blocking ability and superhydrophobic surface in Ambient temperature and pressure. For gas-blocking ability, we choose two kind of materials and methods to fabricate the film. First one was composed of modified Montmorillonite clay (MMT) and epoxy, fabricating by force compression. The other one was composed of silica, fabricating by liquid phase deposition (LPD).
    For surperhydrophobic surface, a micro/nano dual-scale particulate film with raspberry-like morphology was prepared by using liquid phase deposition (LPD) and electrostatic layer-by-layer (ELBL) technique on gas-blocking film. Micro-size silica particles were used to prepare a surface with microscale roughness. Nano-size silica particles were then assembled on the particulate film to construct a finer structure on top of the coarse one. The as-deposited particulate films were surface-modified with alkylsilane to render a surface with surperhydrophobic property.
    For the gas-blocking film fabricate by MMT and epoxy, coating with dual-size structure can decrease 94.4% of oxygen permeation comparing with PET substrate. The static contact angles of water on the dual-size structured surface were 164o,and sliding angle were only 3.31o. On the other hand, the gas-blocking film fabricate by silica, coating with 50nm-silica-particle layer can decrease 50.4% of oxygen permeation comparing with PET substrate. The static contact angles of water on the surface were 153o, sliding angle were 5o, and the transmittence is above 80%.

    摘要 III Abstract V 致謝 VII 目錄 IX 表目錄 XIII 圖目錄 XIV 第一章 緒論 1 1-1前言 ..1 1-2研究動機 3 第二章 文獻回顧與原理 4 2-1奈米級複合材料 4 2-1-1有機-無機混成材料之種類與特性 6 2-1-2無機層狀材料之簡介 8 2-1-3環氧樹脂簡介 10 2-1-4環氧樹脂應用於封裝材 11 2-2溶膠凝膠法介紹 13 2-2-1 pH值對溶膠凝膠法的影響 16 2-2-2水含量的多寡對溶膠-凝膠法的影響 16 2-2-3反應物種類對溶膠-凝膠法的影響 17 2-3液相沉積法簡介 17 2-4超疏水表面的簡介 19 2-4-1超疏水自潔表面 19 2-4-2超疏水理論模式 21 2-4-3超疏水表面製備方法 27 2-4-4表面疏水改質 31 第三章 實驗藥品與方法 33 3-1實驗藥品 33 3-2儀器設備與裝置 34 3-2-1超音波震盪分散裝置 34 3-2-2 Milli-Q超純水系統 34 3-2-3 UV-O3 (臭氧電漿) 34 3-2-4 X-光繞射光譜儀(XRD) 35 3-2-5 氣體滲透分析儀(Gas permeability analyzer) 35 3-2-6靜態接觸角測量儀 37 3-2-7動態接觸角分析儀 38 3-2-8掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 40 3-2-9紫外光-可見光( UV-vis)光譜儀 41 3-2-10表面粗度儀(Alpha-Step Profilometer) 42 3-3實驗流程 42 3-4實驗方法 43 3-4-1 PET基板改質 43 3-4-2蒙托土改質程序 44 3-4-3有機-無機材料混層膜之製備 47 3-4-4液相沉積法 49 3-4-5超疏水表面的製備 50 3-4-6粒子薄膜疏水改質 52 第四章 結果與討論 54 4-1製備阻氣基板和氣體阻障結果與討論 54 4-1-1環氧樹脂/蒙托土混層薄膜製備 55 4-1-2液相沉積法製備二氧化矽阻障層 61 4-1-3氣體通透率分析 66 4-2製備Raspberry-like階層式結構疏水粒子薄膜 70 4-2-1靜電吸引建構微米結構SiO2粒子 71 4-2-2液相沉積法建構微米結構SiO2粒子 73 4-2-3液相沉積法建構奈米結構SiO2粒子 75 4-2-4接觸角分析Raspberry-like階層式結構疏水粒子薄膜 81 4-2-5傾斜角(Sliding angle)分析Raspberry-like階層式結構疏水粒子薄膜 93 4-2-6 超疏水薄膜光線穿透度(Transmittence)分析 96 第五章 結論 98 參考文獻 100 表目錄 表4-1. 氣體滲透分析儀檢測結果(壓力差1atm) ……………………66 表4-2. 氣體滲透分析儀檢測結果(壓力差5atm)…………………….67 圖目錄 圖2-1. 高分子/黏土混成複合材料的種類…………………………….7 圖2-2 Clay之結晶構造圖……………………………………………..10 圖 2-3 PH值對矽烷架橋結構及型態影響……………………………16 圖2-4. 水滴在傾斜的粗糙表面及平坦表面運動示意圖。(a)水滴在平坦表面的運動方式為滑動,平坦表面的粒子或污染物僅僅被干擾而已,未被水滴帶走。(b)水滴在粗糙表面的運動方式為滾動,粗糙表面的粒子或污染物會被水滴滾動帶走。……21 圖2-5. 液滴在不同理想粗糙度的疏水表面狀態。(a)平坦固體表面,(b) 非複合(noncomposited)固體表面,(c)複合(composited)固體表面。………………………………………………………26 圖2-6 以不同方式所創造出之超疏水表面結構像及其靜態接觸角。(a)熱氧化方式(b)電化學方式(c)蝕刻方式(d)旋轉塗佈方式(e)溶膠凝膠方式(f)逐層組裝方式。……………………………30 圖3-1. UV-O3表面改質示意圖………………………………………..35 圖3-2.(a) 氣體滲透分析儀……………………………………………36 圖3-2.(b) 氣體滲透測試原理示意圖…………………………………36 圖3-3.(a) 靜態接觸角量測儀;(b) 微量注射器……………………..37 圖3-4. 動態接觸角分析儀…………………………………………….38 圖3-5. 浸入-拉出(immersion-emmersion)分析原理圖……………….39 圖3-6. 場發射掃描式電子顯微鏡…………………………………….41 圖3-7. 實驗流程圖…………………………………………………….43 圖3-8. 蒙托土改質前後氣體擴散路徑差異(a)改值前 (b)改質後………………………………………………………………45 圖3-9. 蒙托土澎潤過程……………………………………………….46 圖3-10. 蒙托土因二氧化矽的立體空間障礙而剝離示意圖………...47 圖3-11. 重力壓膜機圖…………………………………………………48 圖3-12. 重力壓膜法示意圖……………………………………………48 圖3-13. 超疏水表面實驗流程圖……………………………………...51 圖4-1. 氣體阻障層製備流程圖………………………………………..54 圖4-2 可明顯的看出彭潤前後的差異………………………………..55 圖4-3. 蒙托土改質檢測結果………………………………………….56 圖4-4. α-step的檢測結果 (A為旋轉塗佈法、B為刮刀塗佈法、C為重力壓膜法) …………………………………………………..58 圖4-5. SEM俯視圖 (A為旋轉塗佈法、B為刮刀塗佈法、C為重力壓膜法) ………………………………………………………………………58 圖4-6. 20K牛頓下α-step的檢測結果………………………………..59 圖4-7. 薄膜表面之場發式電子顯微鏡俯視圖………………………..60 圖4-8. PET基板靜態接觸角量測結果 (A為電漿改質前基板、B為電漿改質後基板) ………………………………………………..62 圖4-9. 液相沉積法薄膜掃描式顯微鏡俯視圖譜…………………….63 圖4-10. 液相沉積法薄膜掃描式顯微鏡側視圖譜…………………..64 圖4-11. UV-Vis光線穿透率檢測………………………………………65 圖4-12.依蒙托土比例之有機-無積材料混層膜氧氣通透趨勢……. ..66 圖4-13. 氣體滲透儀檢測結果…………………………………………69 圖4-14.覆盆子形狀圖及類覆盆子結構………………………………..71 圖4-15 以逐層組裝法組裝(A)1層,(B)2層,(C)3層 0.5μm之二氧化矽粒子SEM俯視圖分析…………………………………..73 圖4-16 以液相沉積法組裝調整濃度矽氟酸/硼酸濃度比(A)1:1,(B)1:10,(C)1:50 二氧化矽粒子SEM俯視圖分析…………75 圖4-17 以液相沉積法組裝控制反應時間在(A)1小時,(B)2小時,(C)3小時,(D)5小時 所沉積的二氧化矽粒子薄膜SEM俯視圖分析………………………………………………………………76 圖4-18 以液相沉積法組裝Raspberry-like階層式結構粒子薄膜(A) 沉積在PET基板的二氧化矽微米結構上 (B)沉積在塗布有機-無機材料的阻氣基板二氧化矽微米結構上……………………………………..79 圖4-19 沉積奈米二氧化矽在液相沉積法還原的二氧化矽微米結構上………………………………………………………………80 圖4-20 十八碳酸改質前後靜態接觸角的變化 (A.改質前 B.改質後) ……………………………………………………………..82 圖4-21 PET基板上利用靜電逐層組裝出的超疏水表面量測的結果,對照SEM觀察膜表面特性 (A)矽氟酸沉積類玻璃 (B)疏水微米結構 (C) Raspberry-like階層式結構疏水結構……………84 圖4-22 塗佈上有機-無機混層材料的PET基板上,利用靜電逐層組裝出的超疏水表面量測的結果及膜表面特性 (A)矽氟酸沉積類玻璃 (B)微米疏水結構 (C) Raspberry-like階層式結構疏水結構……………………………………………………………85 圖4-23 液相沉積法形成不同大小粒子構成的疏水表面SEM圖及接觸角分析儀檢測結果(A)粒徑50nm (B)粒徑100nm (C)粒徑100nm/10nm形成的Raspberry-like結構……………………87 圖4-24 PET基板上疏水結構的動態皆觸角檢測……………………90 圖4-25 圖佈有機-無機材料的PET基板上構成的疏水表面動態接觸角分析結果……………………………………………………72 圖4-26 傾斜角(Sliding angle)檢測 (A) Raspberry-like結構在PET基板 (B) Raspberry-like結構在圖佈有機-無機材料之PET基板……93 圖4-27 傾斜角(Sliding angle)檢測 (A) 50nm的二氧化矽粒子膜 (B)10nm/100nm二氧化矽粒子的Raspberry-like結構………95 圖4-28 UV-Vis檢測結果……………………………………………..97

    1. Barthlott, W., Neinhuis, C., “Purity of the Sacred Lotus, or Escape from Contamination in Biological Surfaces,”Planta, 202, 1-8, 1997.

    2. Chen, W., Fadeev, A. Y., Hsieh, M. C., Oner, D., Youngblood, J., McCarthy, T. J., “Ultrahydrophobic and Ultralyophobic Surfaces: Some Comments and Examples,” Langmuir, 15, 3395-3399, 1999.

    3. Feng, L., Li, S., Li, Y., Li, H., Zhang, L., Zhai, J., Song, Y., Liu, B., Jiang, L.,Zhu, D., “Super-Hydrophobic Surfaces : From Natural to Articicial,”Adv. Mater., 14, 1857-1860, 2002.

    4. Feng, L., Song, Y., Zhai, J., Liu, B., Xu, J., Jiang, L., Zhu, D., “Creation of Superhydrophobic Surface from an Amphilic Polymer,” Angew. Chem. Int. Ed., 42, 800-802, 2003.

    5. Patankar, N. A., “Mimicking the Lotus Effect: Influence of Double Roughness Structure and Slender Pillars,” Langmuir, 20, 8209-8213, 2004.

    6. Soeno, T., Inokuchi, K., Shiratori, S., “Ultra-Water-Repellent Surface :Fabrication of Complicated Structure of SiO2 Nanopraticles by Electrostatic Self-assembled Films,” Appl. Surf. Sci., 237, 543-547, 2004.

    7. T. Saegusa, “Organic-inorganic polymers hybrids”, Pure Appl. Chem., 67(12), 1965

    8. 廖建勳,工業材料, ”奈米高分子複合材料” 5, 125,1997

    9. 蔡宗燕,化工資訊,”奈米級無機材料的發展與應用” 12, 2 ,1998

    10. H.-L. Tyan, Y.-C. Liu, K.-H. Wei, Chem. Mater. 11, 1942 ,1999

    11. T. Lan, P. D. Kaviratna, T. J. Pinnavaia, Chem. Mater. 6, 573,1994

    12. J. W. Gilman, C. L. Jackson, A. B. Morgan, R. Jr. Hayyis, E. Manias, E. P. Giannelis, M. Wuthenow, D. Hilton, S. H. Phillips, Chem. Mater. 12, 1866,2000

    13. R. Georga Brubaker, Corrosion Chemistry 39, 108, 1979

    14. Y. Wang, N. Herron, Solid State Commun. 77, 33, 1991

    15. F. E. Karasz, P. N. Prasad, Y. Pang, US Patent 5130362 July, 1992

    16. S. P. Armes, S. Gottesfeld, J. G. Berry, F. Garzon, S. F. Agnew, “Conducting polymer-colloidal silica composites”, Polymer, 32(13), 2325, 1991

    17. 陳啟倫 碩士論文 “聚鄰-胺基苯乙基醚/黏土奈米複合材料之製備與性質研究”,中華民國九十年五月

    18. C. G. Gebelein, Biometic. Polymer, Plenum Press, New York, 1990
    19. 林鴻明, 化工科技與商情, 5, 2002

    20. 蔡宗燕, 化工資訊, 2月刊, 1998

    21. Y. Kojoma, et al. J. Polym. Sci. Part A: Polym. Chem. 31, 1755, 1993

    22. Y. Kojoma, et al. J. Materials Res. 8, 1179, 1993

    23. A. Usuki, et al. J. Applied Polym science. 55, 119, 1995

    24. A. Usuki, et al. Polym. Prepr. Japan. 14, 1361, 1993

    25. A. Usuki, et al. Polym. Prepr. 31, 651, 1993

    26. A. Okada, A. Usuki, T. Kurauchi, and O. Kamigaito, Hybrid Organic-InOrganic Composite, ACS Symp. Series, 55, 585, 1995

    27. A. Akelah, and A. Moet, J. Appl. Polymer. Sci. Appl. Polymer. Symp. 55, 153, 1994

    28. W. T. Reichle, S. Y. Kong, and D. S. Everhart, J. Catalyst. 101, 352, 1986

    29. C. Depege, F. E. Elmetoui, C. Forano, and A. D. Roy, Chem. Mat. 8, 952, 1996

    30. S. Bonnet, C. Forano, A. D. Roy, and J. P. Besse. Chem. Mat. 8, 1962, 1996

    31. R. J. Hunter, Clareden Press Oxford. Foundation of Colloid Science. 1, 25, 1992

    32. A. W. Adamsom, ⅩⅠ. Adsorption from Solution. 4th Edition.p.388

    33. A. Mahieu-Sicaud, J. Mering, and Perrin-Bonnet. Bull. Soc. Milner. Cryistal. 74, 473, 1971

    34. W. F. Su, H. W Huang, and W. P. Pan, Thermochimica Acta, 391-394, 2002

    35. T. Lan, et al., Chem. Mater., 7, 2144, 1995

    36. 丁原傑,無機有機混合溶凝膠配置與應用,化工,第46卷第5期,63-71,1999年10月

    37. C. J. Brinker, J. Non-Cryst. Solid. 100, 31-50, 1988

    38. B. Himmel, T. Gerber, and H. Burger, J. Non-crystal. Sol., 91, 122, 1987

    39. Wenzel, R. N., “Resistance of Solid Surfaces to Wetting by Water,” Ind. Eng. Chem., 28, 988-994, 1936

    40. Cassie, A. B. D., Baxter, S., “Wettability on Porous Surfaces,” Trans. Faraday Soc., 40, 546-551, 1944,

    41. Chen, A.C., X.S. Peng, K. Koczkur and B. Miller, “Super-hydrophobic tin oxide nanoflowers,” Chem. Commun., 17,1964-1965, 2004.

    42. Han, J.T., Y. Jang, D.Y. Lee, J.H. Park, S.H. Song, D.Y. Ban and K. Cho, “Fabrication of a bionic superhydrophobic metal surface by sulfur-induced morphological development,” J. Mater. Chem., 15, 3089-3092, 2005.

    43. Hosono, E., S. Fujihara, I. Honma and H.S. Zhou, “Superhydrophobic perpendicular nanopin film by the bottom-up process,” J. Am. Chem. Soc., 127, 13458-13459, 2005

    44. Qian, B.T. and Z.Q. Shen, “Fabrication of superhydrophobic surfaces by dislocation-selective chemical etching on aluminum, copper, and zinc substrates,” Langmuir, 21, 9007-9009, 2005

    45. Cao, L.L., H.H. Hu and D. Gao, “Design and fabrication of micro-textures for inducing a superhydrophobic behavior on hydrophilic materials,” Langmuir, 23, 4310-4314, 2007.

    46. Xiu, Y., L. Zhu, D.W. Hess and C.P. Wong, “Hierarchical silicon etched structures for controlled hydrophobicity/superhydrophobicity,” Nano Lett., 7, 3388-3393, 2007

    47. Shiu, J.Y., C.W. Kuo, P.L. Chen and C.Y. Mou, “Fabrication of tunable superhydrophobic surfaces by nanosphere lithography,” Chem. Mat., 16, 561-564, 2004

    48. Yang, S.Y., S. Chen, Y. Tian, C. Feng and L. Chen, “Facile transformation of a native polystyrene (PS) film into a stable superhydrophobic surface via sol-gel process,” Chem. Mat., 20, 1233-1235, 2008.

    49. Zhang, J.H., P. Zhan, Z.L. Wang, W.Y. Zhang and N.B. Ming, “Preparation of monodisperse silica particles with controllable size and shape,” Journal of Materials Research, 18, 649-653, 2003.

    50. Zhai, L., F.C. Cebeci, R.E. Cohen and M.F. Rubner, “Stable superhydrophobic coatings from polyelectrolyte multilayers,” Nano Lett., 4, 1349-1353, 2004

    51. Shi, F., Z.Q. Wang and X. Zhang, “Combining a layer-by-layer assembling technique with electrochemical deposition of gold aggregates to mimic the legs of water striders,” Adv. Mat., 17, 1005-1009, 2005

    52. Jisr, R.M., H.H. Rmaile and J.B. Schlenoff, “Hydrophobic and ultrahydrophobic multilayer thin films from perfluorinated polyelectrolytes,” Angew. Chem.-Int. Edit., 44, 782-785, 2005.

    53. Zhang, G., D.Y. Wang, Z.Z. Gu and H. Mohwald, “Fabrication of superhydrophobic surfaces from binary colloidal assembly,” Langmuir, 21, 9143-9148, 2005.

    54. Jin, M.H., X.J. Feng, J.M. Xi, J. Zhai, K.W. Cho, L. Feng and L. Jiang, “Super-hydrophobic PDMS surface with ultra-low adhesive force,” Macromol. Rapid Commun., 26, 1805-1809, 2005.

    55. Tserepi, A.D., M.E. Vlachopoulou and E. Gogolides, “Nanotexturing of poly(dimethylsiloxane) in plasmas for creating robust super-hydrophobic surfaces,” Nanotechnology, 17, 3977-3983, 2006

    56. Erbil, H.Y., A.L. Demirel, Y. Avci and O. Mert, “Transformation of a simple plastic into a superhydrophobic surface,” Science, 299, 1377-1380, 2003.
    57. Chen, A.C., X.S. Peng, K. Koczkur and B. Miller, “Super-hydrophobic tin oxide nanoflowers,” Chem. Commun., 17,1964-1965, 2004.

    58. Qian, B.T. and Z.Q. Shen, “Fabrication of superhydrophobic surfaces by dislocation-selective chemical etching on aluminum, copper, and zinc substrates,” Langmuir, 21, 9007-9009, 2005.

    59. Yang, S.Y., S. Chen, Y. Tian, C. Feng and L. Chen, “Facile transformation of a native polystyrene (PS) film into a stable superhydrophobic surface via sol-gel process,” Chem. Mat., 20, 1233-1235, 2008.
    60. Vansant, E. F., Van Der Voort, P., Vrancken, K. C., “Characterization and chemical modification of the silica surface,” Elsevier: Amsterdam, 1995.

    61. Vallant, T., J. Kattner, H. Brunner, U. Mayer and H. Hoffmann, “Investigation of the formation and structure of self-assembled alkylsiloxane monolayers on silicon using in situ attenuated total reflection infrared spectroscopy,” Langmuir, 15, 5339-5346, 1999.

    62. Jesionowski, T. and A. Krysztafkiewicz, “Influence of silane coupling agents on surface properties of precipitated silicas,” Appl. Surf. Sci., 172, 18-32, 2001.

    63. McGovern, M.E., K.M.R. Kallury and M. Thompson, “Role of solvent on the silanization of glass with octadecyltrichlorosilane,” Langmuir, 10, 3607-3614, 1994.

    下載圖示 校內:2013-08-02公開
    校外:2013-08-02公開
    QR CODE