| 研究生: |
魏宏格 Wei, Hung-Ke |
|---|---|
| 論文名稱: |
溶液法製備具超疏水表面之阻氣基板 Fabrication of Gas-blocking Layer with Superhydrophobic Surface by Using Solution process |
| 指導教授: |
李玉郎
Lee, Yuh-Lang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 106 |
| 中文關鍵詞: | 液相沉積法 、有機-無機奈米混層材料 、氣體阻障層 、軟性基板 、靜電作用力 、二氧化矽粒子 、超疏水表面 |
| 外文關鍵詞: | liquid phase deposition, gas blocking film, flexible substrate, electrostatic interaction, silica particles, surperhydrophobic surface, dual-size structured |
| 相關次數: | 點閱:100 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在常溫非真空的環境下製備一具氣體阻障與超疏水表面的軟性薄膜,在氣體阻障的部份利用環氧樹脂與改質後的蒙托土(Montmorillonite clay)混層材料及矽氟酸還原的二氧化矽奈米粒子,利用重力壓膜法及液相沉積法來製備薄膜,利用掃描式電子顯微鏡(SEM)、表面粗度儀(Alpha-step Profilometer)、X-光繞射光譜儀(XRD)、氣體滲透分析儀(Gas permeability analyzer)來分析蒙托土改質及薄膜厚度與表面型態和氣體通透率。
超疏水表面的部份則是使用液相沉積法(LPD)及靜電逐層組裝技術(ELBL),在氣體阻障基板上組裝微米級結構的二氧化矽粒子薄膜,並再次以液相沉積法(LPD)披覆上奈米級的二氧化矽粒子,製備出結構類似於Raspberry的階層式粒子薄膜,最後藉由長碳鏈矽烷作疏水化表面改質,得到超疏水性粒子薄膜。利用掃描式電子顯微鏡(Scanning electron microscope, SEM)及接觸角分析儀(Dynamic Contact Angle, DCA),來瞭解薄膜表面型態及潤濕性。結果顯示:利用添加10 wt% 蒙托土/環氧樹脂混層材料做為阻障層搭配靜電組裝技術所得到不規則的Raspberry-like的微/奈階層式粒子,可得到阻氧效率達94.4%,薄膜表面的靜態接觸角164度,傾斜角少於4度的阻氧超疏水性粒子薄膜。而利用液相沉積法沉積二氧化矽粒子奈米膜做為阻障層搭配液相沉積法沉積50nm二氧化矽粒子,可得到可見光穿透度達80%以上且阻氧效率50.4%,表面靜態接觸角153度,傾斜角小於5度的透明阻氣超疏水薄膜。
The work aims at fabricating a film with gas-blocking ability and superhydrophobic surface in Ambient temperature and pressure. For gas-blocking ability, we choose two kind of materials and methods to fabricate the film. First one was composed of modified Montmorillonite clay (MMT) and epoxy, fabricating by force compression. The other one was composed of silica, fabricating by liquid phase deposition (LPD).
For surperhydrophobic surface, a micro/nano dual-scale particulate film with raspberry-like morphology was prepared by using liquid phase deposition (LPD) and electrostatic layer-by-layer (ELBL) technique on gas-blocking film. Micro-size silica particles were used to prepare a surface with microscale roughness. Nano-size silica particles were then assembled on the particulate film to construct a finer structure on top of the coarse one. The as-deposited particulate films were surface-modified with alkylsilane to render a surface with surperhydrophobic property.
For the gas-blocking film fabricate by MMT and epoxy, coating with dual-size structure can decrease 94.4% of oxygen permeation comparing with PET substrate. The static contact angles of water on the dual-size structured surface were 164o,and sliding angle were only 3.31o. On the other hand, the gas-blocking film fabricate by silica, coating with 50nm-silica-particle layer can decrease 50.4% of oxygen permeation comparing with PET substrate. The static contact angles of water on the surface were 153o, sliding angle were 5o, and the transmittence is above 80%.
1. Barthlott, W., Neinhuis, C., “Purity of the Sacred Lotus, or Escape from Contamination in Biological Surfaces,”Planta, 202, 1-8, 1997.
2. Chen, W., Fadeev, A. Y., Hsieh, M. C., Oner, D., Youngblood, J., McCarthy, T. J., “Ultrahydrophobic and Ultralyophobic Surfaces: Some Comments and Examples,” Langmuir, 15, 3395-3399, 1999.
3. Feng, L., Li, S., Li, Y., Li, H., Zhang, L., Zhai, J., Song, Y., Liu, B., Jiang, L.,Zhu, D., “Super-Hydrophobic Surfaces : From Natural to Articicial,”Adv. Mater., 14, 1857-1860, 2002.
4. Feng, L., Song, Y., Zhai, J., Liu, B., Xu, J., Jiang, L., Zhu, D., “Creation of Superhydrophobic Surface from an Amphilic Polymer,” Angew. Chem. Int. Ed., 42, 800-802, 2003.
5. Patankar, N. A., “Mimicking the Lotus Effect: Influence of Double Roughness Structure and Slender Pillars,” Langmuir, 20, 8209-8213, 2004.
6. Soeno, T., Inokuchi, K., Shiratori, S., “Ultra-Water-Repellent Surface :Fabrication of Complicated Structure of SiO2 Nanopraticles by Electrostatic Self-assembled Films,” Appl. Surf. Sci., 237, 543-547, 2004.
7. T. Saegusa, “Organic-inorganic polymers hybrids”, Pure Appl. Chem., 67(12), 1965
8. 廖建勳,工業材料, ”奈米高分子複合材料” 5, 125,1997
9. 蔡宗燕,化工資訊,”奈米級無機材料的發展與應用” 12, 2 ,1998
10. H.-L. Tyan, Y.-C. Liu, K.-H. Wei, Chem. Mater. 11, 1942 ,1999
11. T. Lan, P. D. Kaviratna, T. J. Pinnavaia, Chem. Mater. 6, 573,1994
12. J. W. Gilman, C. L. Jackson, A. B. Morgan, R. Jr. Hayyis, E. Manias, E. P. Giannelis, M. Wuthenow, D. Hilton, S. H. Phillips, Chem. Mater. 12, 1866,2000
13. R. Georga Brubaker, Corrosion Chemistry 39, 108, 1979
14. Y. Wang, N. Herron, Solid State Commun. 77, 33, 1991
15. F. E. Karasz, P. N. Prasad, Y. Pang, US Patent 5130362 July, 1992
16. S. P. Armes, S. Gottesfeld, J. G. Berry, F. Garzon, S. F. Agnew, “Conducting polymer-colloidal silica composites”, Polymer, 32(13), 2325, 1991
17. 陳啟倫 碩士論文 “聚鄰-胺基苯乙基醚/黏土奈米複合材料之製備與性質研究”,中華民國九十年五月
18. C. G. Gebelein, Biometic. Polymer, Plenum Press, New York, 1990
19. 林鴻明, 化工科技與商情, 5, 2002
20. 蔡宗燕, 化工資訊, 2月刊, 1998
21. Y. Kojoma, et al. J. Polym. Sci. Part A: Polym. Chem. 31, 1755, 1993
22. Y. Kojoma, et al. J. Materials Res. 8, 1179, 1993
23. A. Usuki, et al. J. Applied Polym science. 55, 119, 1995
24. A. Usuki, et al. Polym. Prepr. Japan. 14, 1361, 1993
25. A. Usuki, et al. Polym. Prepr. 31, 651, 1993
26. A. Okada, A. Usuki, T. Kurauchi, and O. Kamigaito, Hybrid Organic-InOrganic Composite, ACS Symp. Series, 55, 585, 1995
27. A. Akelah, and A. Moet, J. Appl. Polymer. Sci. Appl. Polymer. Symp. 55, 153, 1994
28. W. T. Reichle, S. Y. Kong, and D. S. Everhart, J. Catalyst. 101, 352, 1986
29. C. Depege, F. E. Elmetoui, C. Forano, and A. D. Roy, Chem. Mat. 8, 952, 1996
30. S. Bonnet, C. Forano, A. D. Roy, and J. P. Besse. Chem. Mat. 8, 1962, 1996
31. R. J. Hunter, Clareden Press Oxford. Foundation of Colloid Science. 1, 25, 1992
32. A. W. Adamsom, ⅩⅠ. Adsorption from Solution. 4th Edition.p.388
33. A. Mahieu-Sicaud, J. Mering, and Perrin-Bonnet. Bull. Soc. Milner. Cryistal. 74, 473, 1971
34. W. F. Su, H. W Huang, and W. P. Pan, Thermochimica Acta, 391-394, 2002
35. T. Lan, et al., Chem. Mater., 7, 2144, 1995
36. 丁原傑,無機有機混合溶凝膠配置與應用,化工,第46卷第5期,63-71,1999年10月
37. C. J. Brinker, J. Non-Cryst. Solid. 100, 31-50, 1988
38. B. Himmel, T. Gerber, and H. Burger, J. Non-crystal. Sol., 91, 122, 1987
39. Wenzel, R. N., “Resistance of Solid Surfaces to Wetting by Water,” Ind. Eng. Chem., 28, 988-994, 1936
40. Cassie, A. B. D., Baxter, S., “Wettability on Porous Surfaces,” Trans. Faraday Soc., 40, 546-551, 1944,
41. Chen, A.C., X.S. Peng, K. Koczkur and B. Miller, “Super-hydrophobic tin oxide nanoflowers,” Chem. Commun., 17,1964-1965, 2004.
42. Han, J.T., Y. Jang, D.Y. Lee, J.H. Park, S.H. Song, D.Y. Ban and K. Cho, “Fabrication of a bionic superhydrophobic metal surface by sulfur-induced morphological development,” J. Mater. Chem., 15, 3089-3092, 2005.
43. Hosono, E., S. Fujihara, I. Honma and H.S. Zhou, “Superhydrophobic perpendicular nanopin film by the bottom-up process,” J. Am. Chem. Soc., 127, 13458-13459, 2005
44. Qian, B.T. and Z.Q. Shen, “Fabrication of superhydrophobic surfaces by dislocation-selective chemical etching on aluminum, copper, and zinc substrates,” Langmuir, 21, 9007-9009, 2005
45. Cao, L.L., H.H. Hu and D. Gao, “Design and fabrication of micro-textures for inducing a superhydrophobic behavior on hydrophilic materials,” Langmuir, 23, 4310-4314, 2007.
46. Xiu, Y., L. Zhu, D.W. Hess and C.P. Wong, “Hierarchical silicon etched structures for controlled hydrophobicity/superhydrophobicity,” Nano Lett., 7, 3388-3393, 2007
47. Shiu, J.Y., C.W. Kuo, P.L. Chen and C.Y. Mou, “Fabrication of tunable superhydrophobic surfaces by nanosphere lithography,” Chem. Mat., 16, 561-564, 2004
48. Yang, S.Y., S. Chen, Y. Tian, C. Feng and L. Chen, “Facile transformation of a native polystyrene (PS) film into a stable superhydrophobic surface via sol-gel process,” Chem. Mat., 20, 1233-1235, 2008.
49. Zhang, J.H., P. Zhan, Z.L. Wang, W.Y. Zhang and N.B. Ming, “Preparation of monodisperse silica particles with controllable size and shape,” Journal of Materials Research, 18, 649-653, 2003.
50. Zhai, L., F.C. Cebeci, R.E. Cohen and M.F. Rubner, “Stable superhydrophobic coatings from polyelectrolyte multilayers,” Nano Lett., 4, 1349-1353, 2004
51. Shi, F., Z.Q. Wang and X. Zhang, “Combining a layer-by-layer assembling technique with electrochemical deposition of gold aggregates to mimic the legs of water striders,” Adv. Mat., 17, 1005-1009, 2005
52. Jisr, R.M., H.H. Rmaile and J.B. Schlenoff, “Hydrophobic and ultrahydrophobic multilayer thin films from perfluorinated polyelectrolytes,” Angew. Chem.-Int. Edit., 44, 782-785, 2005.
53. Zhang, G., D.Y. Wang, Z.Z. Gu and H. Mohwald, “Fabrication of superhydrophobic surfaces from binary colloidal assembly,” Langmuir, 21, 9143-9148, 2005.
54. Jin, M.H., X.J. Feng, J.M. Xi, J. Zhai, K.W. Cho, L. Feng and L. Jiang, “Super-hydrophobic PDMS surface with ultra-low adhesive force,” Macromol. Rapid Commun., 26, 1805-1809, 2005.
55. Tserepi, A.D., M.E. Vlachopoulou and E. Gogolides, “Nanotexturing of poly(dimethylsiloxane) in plasmas for creating robust super-hydrophobic surfaces,” Nanotechnology, 17, 3977-3983, 2006
56. Erbil, H.Y., A.L. Demirel, Y. Avci and O. Mert, “Transformation of a simple plastic into a superhydrophobic surface,” Science, 299, 1377-1380, 2003.
57. Chen, A.C., X.S. Peng, K. Koczkur and B. Miller, “Super-hydrophobic tin oxide nanoflowers,” Chem. Commun., 17,1964-1965, 2004.
58. Qian, B.T. and Z.Q. Shen, “Fabrication of superhydrophobic surfaces by dislocation-selective chemical etching on aluminum, copper, and zinc substrates,” Langmuir, 21, 9007-9009, 2005.
59. Yang, S.Y., S. Chen, Y. Tian, C. Feng and L. Chen, “Facile transformation of a native polystyrene (PS) film into a stable superhydrophobic surface via sol-gel process,” Chem. Mat., 20, 1233-1235, 2008.
60. Vansant, E. F., Van Der Voort, P., Vrancken, K. C., “Characterization and chemical modification of the silica surface,” Elsevier: Amsterdam, 1995.
61. Vallant, T., J. Kattner, H. Brunner, U. Mayer and H. Hoffmann, “Investigation of the formation and structure of self-assembled alkylsiloxane monolayers on silicon using in situ attenuated total reflection infrared spectroscopy,” Langmuir, 15, 5339-5346, 1999.
62. Jesionowski, T. and A. Krysztafkiewicz, “Influence of silane coupling agents on surface properties of precipitated silicas,” Appl. Surf. Sci., 172, 18-32, 2001.
63. McGovern, M.E., K.M.R. Kallury and M. Thompson, “Role of solvent on the silanization of glass with octadecyltrichlorosilane,” Langmuir, 10, 3607-3614, 1994.