| 研究生: |
温勖惠 Wen, Hsu-Hui |
|---|---|
| 論文名稱: |
以計畫需水量為基礎之最佳模糊化水庫營運規線對缺水特性影響之探討 Effects of optimal fuzzified demand-based reservoir rule curves on shortage characteristics |
| 指導教授: |
蕭政宗
Shiau, Jenq-Tzong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 89 |
| 中文關鍵詞: | 水庫規線 、供水係數 、模糊化 、入流量 、缺水指標 、遺傳演算法 |
| 外文關鍵詞: | Rule curves, Hedging factor, Fuzzy theory, Inflow, Genetic algorithm |
| 相關次數: | 點閱:121 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
臺灣地區因地形陡峭造成河流湍急,且乾濕季節分明,尤以南部地區最為明顯,使得大部分的水資源未被有效使用,故需興建水庫蓄豐濟枯以提供穩定供水。近年來用水需求逐漸增加,水庫有效庫容卻因泥沙淤積而減少,使得乾旱時期的缺水問題更加嚴重,因此提高現有水庫系統的水資源使用效益,降低缺水損失為水資源管理的重要議題之一。臺灣地區的水庫營運單位常訂定營運規線(rule curve)以表示不同時期水庫蓄水量的豐枯情形,並對應不同的供水係數,然而水庫實際可供水量尚包含入流量,若將其納入供水評估,則可有更大的調配空間。且基於防洪運轉的目的,於豐水期之規線較枯水期為低,然若豐水期流量不如預期,即使水庫蓄水量高於上限,亦不代表水庫有充足的蓄水量可供枯水期之用水需求。此外,營運規線對水庫蓄水量的劃分屬於明確的(crisp)界線,會造成階梯式跳躍變化的供水係數。因此本研究以位於臺灣南部的南化水庫與甲仙攔河堰系統為研究對象,利用計畫需水量制定水庫營運規線,考慮水庫可供水量(water availability)中四種不同入流量處理方式以及蓄水區間模糊化之有無,依此建立八種優選模式,並透過五項缺水指標評估各模式與現況營運之缺水情形,以探討各模式對水庫營運操作之影響。經遺傳演算法求解八種優選模式並分析結果後可知,八種模式皆能大幅改善現況營運之缺水情形,且將入流量納入供水考量後可提升供水效益,而模糊化方案缺水情形皆較無模糊化方案和緩。
The temporal and spatial distribution of rainfall in southern Taiwan is particularly uneven, which usually leads to severe water-deficits problems. Therefore, reservoir operation plays an important role for stable water supply. In Taiwan, reservoir releasing policies depend on the relationship between the storage and the predefined rule curves. The rule curves are lowered in flooding seasons due to flood prevention. Reservoir storage above rule curves during flooding seasons cannot guarantee sufficient water supply for the coming dry seasons. Besides, the rule curves crisply divide the storage into finite zones, which leads to step-wise hedging. To overcome the above problems, this study constructs the demand-based rule curves and uses fuzzy theory to smooth hedging factors. This study employs water availability to trigger hedging. The optimal hedging rules are searched using a multi-criteria optimization in terms of five shortage indices. This study chooses the Nanhua reservoir, located in southern Taiwan, as the case study to demonstrate the proposed approach. The results show that the derived reservoir operation strategies could mitigate the shortage effects more effectively than the current operation during droughts.
1. Afshar, A., "Mari" "n" ̃"o" , M. A., Saadatpour, M., Afshar, A., Fuzzy TOPSIS multi-criteria decision analysis applied to Karun reservoirs system. Water Resources Management, 25(2), 545-563, 2011
2. Ahmadianfar, I., Adib, A., Taghian, M., Optimization of fuzzified hedging rules for multipurpose and multireservoir systems. Journal of Hydrologic Engineering, 21(4), 05016003, DOI: 10.1061/(ASCE)HE.1943-5584.0001329, 2016
3. Azmi, M., Araghinejad, S., Sarmadi, F., A national-scale assessment of agricultural development feasibility using multi-criteria decision making (MCDM) approaches. Advances in Natural & Applied Sciences, 5(4), 379-391, 2011
4. Bayazit, M., Unal, N. E., Effects of hedging on reservoir performance. Water Resources Research, 26(4), 713-719, 1990
5. Chang, F. J., Hui, S. C., Chen, Y. C., Reservoir operation using grey fuzzy stochastic dynamic programming. Hydrological Processes, 16(12), 2395-2408, 2002
6. Chang, L. C., Ho, C. C., Chen, Y. W., Applying multiobjective genetic algorithm to analyze the conflict among different water use sectors during drought period. Journal of Water Resources Planning and Management, 136(5), 539-546, 2010
7. Chang, Y. T., Chang, L. C., Chang, F. J., Intelligent control for modeling of real-time reservoir operation, part Ⅱ: artificial neural network with operating rule curves. Hydrological Processes, 19(7), 1431-1444, 2005
8. Chen, L., Real coded genetic algorithm optimization of long term reservoir operation. Journal of the American Water Resources Association, 39(5), 1157-1165, 2003
9. Chen, L., McPhee, J., Yeh, W. W. G., A diversified multiobjective GA for optimizing reservoir rule curves. Advances in Water Resources, 30(5), 1082-1093, 2007
10. Draper, A. J., Lund, J. R., Optimal hedging and carryover storage value. Journal of Water Resources Planning and Management, 130(1), 83-87, 2004
11. Dubrovin, T., Jolma, A. K., Turunen, E., Fuzzy model for real-time reservoir operation. Journal of Water Resources Planning and Management, 128(1), 66-73, 2002
12. Hwang, C. L., Yoon, K., Multiple attribute decision making: methods and applications. Spring-Verlag, New York, 1981
13. Hashimoto, T., Stedinger, J. R., Loucks, D. P., Reliability, resiliency, and vulnerability criteria for water resource system performance evaluation. Water Resources Research, 18(1), 14-20, 1982
14. Ji, Y., Lei, X. H., Cai, S. Y., Wang, X., Hedging rules for water supply reservoir based on the model of simulation and optimization. Water, 8(6), UNSP 249, DOI: 10.3390/w8060249, 2016
15. Kangrang, A., Chaleeraktrakoon, C., Genetic algorithms connected simulation with smoothing function for searching rule curves. American Journal of Applied Sciences, 4(2), 73-79, 2007
16. Kamodkar, R. U., Regulwar, D. G., Optimal multiobjective reservoir operation with fuzzy decision variables and resources: A compromise approach. Journal of Hydro-environment Research, 8(4), 428-440, 2014
17. Lund, J. R., Reed, R. U., Drought water rationing and transferable rations. Journal of Water Resources Planning and Management, 121(6), 429-437, 1995
18. Li, Y., Zhang, C., Chu, J. G., Cai, X. M., Zhou, H. C., Reservoir Operation with combined natural inflow and controlled inflow through interbasin transfer: Biliu reservoir in northeastern China. Journal of Water Resources Planning and Management, 142(2), 05015009, DOI: 10.1061/(ASCE)WR.1943-5452.0000607, 2016
19. Motevalli, M., Zadbar, A., Elyasi, E., Jalaal, M., Using Monte-Carlo approach for analysis of quantitative and qualitative operation of reservoirs system with regard to the inflow uncertainty. Journal of African Earth Sciences, 105, 1-16, 2015
20. Moeini, R., Afshar, A., Afshar, M. H., Fuzzy rule-based model for hydropower reservoirs operation. International Journal of Electrical Power and Energy Systems, 33(2), 171-178, 2011
21. Mousavi, S. J., Ponnambalam, K., Karray, F., Reservoir operation using a dynamic programming fuzzy rule-based approach. Water Resources Management, 19(5), 655-672, 2005
22. Moy, W. S., Cohon, J. L., ReVelle, C. S., A programming model for analysis of the reliability, resilience, and vulnerability of a water supply reservoir. Water Resources Research, 22(4), 489-498, 1986
23. Najl, A. A., Haghighi, A., Samani, H. M. V., Simultaneous optimization of operating rules and rule curves for multireservoir systems using a self-adaptive simulation-GA model. Journal of Water Resources Planning and Management, 142(10), 04016041, DOI: 10.1061/(ASCE)WR. 1943-5452.0000688, 2016
24. Ngoc, T. A., Hiramatsu, K., Harada, M., Optimizing the rule curves of multi-use reservoir operation using a genetic algorithm with a penalty strategy. Paddy and Water Environment, 12(1), 125-137, 2014
25. Panigrahi, D. P., Mujumdar, P. P., Reservoir operation modelling with fuzzy logic. Water Resources Management, 14(2), 89-109, 2000
26. Rittima, A., Hedging policy for reservoir system operation: a case study of Mun Bon and Lam Chae reservoirs. Kasetsart Journal: Natural Science, 43(4), 833-842, 2009
27. Russell, S. O., Campbell, P. F., Reservoir operating rules with fuzzy programming. Journal of Water Resources Planning and Management, 122(3), 165-170, 1996
28. Shrestha, B. P., Duckstein, L., Stakhiv, E. Z., Fuzzy rule-based modeling of reservoir operation. Journal of Water Resources Planning and Management, 122(4), 262-269, 1996
29. Srdjevic, B., Medeiros, Y. D. P., Faria, A. S., An objective multi-criteria evaluation of water management scenarios. Water Resources Management, 18(1), 35-54, 2004
30. Sivapragasam, C., Sugendran, P., Marimuthu, M., Seenivasakan, S., Vasudevan, G., Fuzzy logic for reservoir operation with reduced rules. Environmental Progress, 27(1), 98-103, 2008
31. Shih, J. S., ReVelle, C., Water-supply operations during drought: Continuous hedging rule. Journal of Water Resources Planning and Management, 120(5), 613-629, 1994
32. Shiau, J. T., Water release policy effects on the shortage characteristics for the Shihmen reservoir system during droughts. Water Resources Management, 17(6), 463-480, 2003
33. Shiau, J. T., Optimization of reservoir hedging rules using multiobjective genetic algorithm. Journal of Water Resources Planning and Management, 135(5), 355-363, 2009
34. Srinivasan, K., Philipose, M. C., Evaluation and selection of hedging policies using stochastic reservoir simulation. Water Resources Management, 10(3), 163-188, 1996
35. Tu, M. Y., Hsu, N. S., Yeh, W. W. G., Optimization of reservoir management and operation with hedging rules. Journal of Water Resources Planning and Management, 129(2), 86-97, 2003
36. Tu, M. Y., Hsu, N. S., Tsai, F. T. C., Yeh, W. W. G., Optimization of hedging rules for reservoir operations. Journal of Water Resources Planning and Management, 134(1), 3-13, 2008
37. Taghian, M., Rosbjerg, D., Haghighi, A., Madsen, H., Optimization of conventional rule curves coupled with hedging rules for reservoir operation. Journal of Water Resources Planning and Management, 140(5), 693-698, 2014
38. Wang, D., Adams, B. J., Optimization of real-time reservoir operations with markov decision processes. Water Resources Research, 22(3), 345-352, 1986
39. Xu, W. Z., Zhao, J. S., Zhao, T. T. G., Wang, Z. J., Adaptive reservoir operation model incorporating nonstationary inflow prediction. Journal of Water Resources Planning and Management, 141(8), 04014099, DOI: 10.1061/(ASCE)WR.1943-5452.0000502, 2015
40. You, J. Y., Cai, X. M., Hedging rule for reservoir operations: 1. A theoretical analysis. Water Resources Research, 44(1), W01415, DOI:10.1029/2006WR005481, 2008
41. You, J. Y., Cai, X. M., Hedging rule for reservoir operations: 2. A numerical model. Water Resources Research, 44(1), W01416, DOI:10.1029/2006WR005482, 2008
42. Yang, P., Ng, T. L., Fuzzy inference system for robust rule-based reservoir operation under nonstationary inflows. Journal of Water Resources Planning and Management, 143(4), 04016084, DOI: 10.1061/(ASCE)WR.1943-5452.0000743, 2017
43. Zadeh, L. A., Fuzzy sets. Information and Control, 8(3), 338-353, 1965
44. 陳莉、張斐章,以物件導向之遺傳演算法優選水庫運用規線之研究,農業工程研討會,第541-555頁,1995
45. 陳莉、蔡宗志、江柏寬,以模糊理論結合遺傳演算法應用於水庫防洪操作之最佳化研究,農業工程學報,第48卷,第1期,第82-94頁,2002
46. 陳正炎、姚嘉耀、謝馥揚、廖苑雅,運用遺傳演算法推求水庫操作規線之研究─以明德水庫為例,中華水土保持學報,第37卷,第2期,第173-184頁,2006
47. 張斐章、黃金鐸、王文清,運用模糊序率動態規劃於水庫操作之研究,台灣水利,第43卷,第4期,第37-48頁,1995
48. 張斐章、惠士奇,灰色模糊序率動態規劃於水庫操作之應用,農業工程學報,第44卷,第1期,第34-49頁,1998
49. 張斐章、許榮哲,灰色模糊動態規劃於水庫即時操作之應用,台灣水利,第47卷,第1期,第44-53頁,1999
50. 童慶斌、陳佳正,水庫操作方法探討及其應用,農業工程研討會,第543-551頁,2002
51. 鄭皆達、陳裕仁,模擬法與遺傳演算法應用於明德水庫操作規線之研究,水土保持學報,第38卷,第2期,第129-140頁,2006
52. 蕭政宗,乾旱時期水庫供水策略對缺水影響分析,農業工程學報,第46卷,第2期,第54-74頁,2000
53. 蕭政宗、黃景裕,以遺傳演算法推導考量二衝突缺水指標之南化水庫多標的最佳限水策略,農業工程學報,第56卷,第4期,第27-41頁,2010
54. 楊偉甫,台灣地區水資源利用現況與未來發展問題,財團法人中技社,臺北,2010
55. 台灣自來水股份有限公司,台灣自來水事業統計年報,2017
56. 經濟部水利署,南化水庫運用要點,2011
57. 經濟部水利署,甲仙攔河堰水庫運用要點,2011
58. 經濟部水利署水利規劃試驗所,烏山嶺第2隧道配合曾文越引計畫供水策略研究,2009
59. 經濟部水利署水利規劃試驗所,台南大湖水資源規劃檢討,2012
60. 經濟部水利署水利規劃試驗所,曾文南化水庫聯通管輸水工程可行性分析,2013
61. 經濟部水利署水利規劃試驗所,台南大湖水資源開發調查試驗及推動策略研析,2014
62. 經濟部水利署南區水資源局,曾文水庫越域引水工程計畫─輸水工程可行性規劃成果檢討及設計─水源運用方式檢討報告,2006