簡易檢索 / 詳目顯示

研究生: 劉振群
Liu, Chen-Chun
論文名稱: 以混營培養策略進行本土微藻葉黃素生產之最適化
Optimization of lutein production with mixotrophic cultivation of an indigenous microalga
指導教授: 張嘉修
Chang, Jo-Shu
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 97
中文關鍵詞: 小球藻葉黃素混營培養兩水準部分因子實驗設計陡升法反應曲面法醋酸鈉氮源微量金屬光強度半批次操作兩階段半批次操作
外文關鍵詞: Chlorella sp., lutein, mixotrophic cultivation, two-level fractional factorial experimental design, steepest ascent method, response surface methodology, sodium acetate, nitrogen, trace metal, light intensity, semi-batch operation, semi-batch integrated with two-stage operation
相關次數: 點閱:170下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 葉黃素為普遍存於植物、微藻與其他光合生物中的一種類胡蘿蔔素。在植物中,葉黃素扮演著光合輔助色素的角色。文獻指出,適量葉黃素可有效延緩老化、預防心血管,並降低罹患眼疾、癌症與慢性疾病之風險。由於人體無法自行合成葉黃素,故需經食物補充。目前葉黃素之主要來源為金盞花,但近年來,微藻成為葉黃素之替代來源之一。由於微藻具高生長速率且不受季節採收之限制,且相較於金盞花,微藻之生長較為快速,且具有較高之葉黃素含量,而其葉黃素主要以非酯化之小分子存在,因此以微藻作為葉黃素生產料源有其優勢。
    本研究之目標為建立微藻葉黃素之生產技術平台,起初篩選數株能利用醋酸鈉生長之本土微藻,如Chlorella sp., Scenedesmus abundans GH-D11, Scenedesmus Obliquus AS-6-1, 與Chlorella sorokiniana HCH-2,進行混營培養,並初步鑑定其葉黃素生產能力。實驗結果顯示,本土微藻Chlorella sp. 具最佳之生物量產率及葉黃素生產效率(1.10 mg/L與2.79 mg/L/d)。為進一步提升葉黃素生產效能,本研究以系統性策略進行培養基成分之優化。首先,進行探討不同培養基(Basal medium, modified Bold Basal medium, modified Bristol's medium, and BG-11 medium)對於葉黃素生產效率之影響。而結果顯示,本土微藻Chlorella sp. 培養於BG-11培養基中,可獲得最高之葉黃素生產效率(3.39 mg/L/d),其培養基組成成本亦為最低。由於先前結果顯示,於批次培養的過程中,本土微藻Chlorella sp. 之葉黃素含量及產率與培養基內之醋酸鈉(有機碳源)及硝酸鈉(氮源)之消耗密切相關,且其對於生物量生產及收成時機亦具顯著之影響。因此,本研究以反應曲面實驗設計法(RSM)針對碳氮源組成進行最適化。而RSM模擬結果顯示,於添加4.88 g/L醋酸鈉及1.83 g/L硝酸鈉的條件下,可獲最佳葉黃素產率為 3.86 mg/L/d。此結果與三重複驗證實驗結果十分相符。再者,為進一步進行培養基微量元素組成之優化,兩水準部分因子實驗被用以全面性檢測具顯著性之影響因子,並以陡升法探尋中央合成實驗設計之中心點,以針對微量金屬進行反應曲面模型之建構。實驗結果顯示,於添加51 mg/L二水合氯化鈣及218 mg/L氯化鈉,其葉黃素產率可進一步提升至4.10 mg/L/d。此外,光照強度對於本土微藻Chlorella sp. 之葉黃素生產無顯著性之影響,亦無顯著之光抑制生長效應,因此有利於未來戶外大規模化培養。
    最後,以上述所得之最適化條件進行半批次操作(semi-batch operation)及兩階段半批次操作策略(semi-batch integrated with two-stage)以提升其生物量產率及葉黃素產率。實驗結果顯示,半批次操作於培養基取代率為80% 情況下,生物量產率及葉黃素生產速率分別可提升至1.55 g/L/d與5.51 mg/L/d。而於兩階段半批次操作策略中,於培養基取代率為80%時可得到其最大生物量產率及葉黃素生產效率,分別為1.98 g/L/d與7.62 mg/L/d,相較於批次條件分別提升約87 %與86 %。

    Lutein is a kind of carotenoids widely existing in plants, microalgae and other photosynthetic organisms. In addition to acting as photosynthetic pigments, uptaking lutein can also effectively prevent aging, retinal diseases, cardiovascular diseases and chronic diseases. Compared to conventional lutein production source (i.e., marigold petals), microalgae have emerged as a promising lutein producer due to their high growth rate, no limitation of seasonal harvesting and most importantly, high lutein content in microalgal biomass, high lutein productivity, and the structure of lutein in microalgae being the free form. Therefore, using microalgae as the lutein production sources has some advantages over marigold.
    This study was to establish the platform technology on lutein production from the indigenous microalgal strains. First, several indigenous microalgal strains isolated from aquatic environments of Taiwan, such as Chlorella sp., Scenedesmus abundans GH-D11, Scenedesmus obliquus AS-6-1, and Chlorella sorokiniana HCH-2, were examined for their capabilities to accumulate lutein under mixotrophic cultivation. The results show that the indigenous microalga Chlorella sp. had the highest biomass and lutein productivity (1.10 mg/L/d and 2.79 mg/L/d, respectively). In order to further enhance the performance of lutein productivity of Chlorella sp., a series of systematic strategies were applied. First, four kinds of broth media (Basal, MBM, MBBM, and BG-11) were used to examine the microalgae cell growth and lutein content of Chlorella sp. The results show that BG-11 medium was more suitable for lutein production (2.96 mg/L/d). Furthermore, since our previous work showed the performance of lutein production with Chlorella sp. was markedly dependent on the concentration of sodium acetate and sodium nitrate, which also further influenced the biomass productivity and harvest timing. Therefore, the response surface methodology (RSM) experimental design was used to optimize the composition of carbon and nitrogen source. The simulated results based on RSM analysis predicted a maximal lutein productivity of 3.86 mg/L/d when adding 4.88 g/L of sodium acetate and 1.83 g/L of sodium nitrate. This predicted value was confirmed with experiments conducted based on the optimized conditions. The lutein productivity obtained from the confirmation experiments was 3.87 mg/L/d, which is quite similar to the predicted one. Finally, in order to investigate the influence of trace elements in the medium on lutein productivity and avoid neglecting the main and interaction effects among those ions, the two-level fractional factorial experimental design was applied to find out the significant factors. Afterwards, the steepest ascent method was used to locate the center for central composite designs. Lastly, the response surface methodology was employed for optimizing the trace composition. The RSM analysis demonstrated a little improvement on lutein production, as the productivity further increased to 4.10 mg/L/d with the optimal trace element composition of 51 mg/L calcium chloride dihydrate and 218 mg/L sodium chloride. The investigation on the effect of light intensity shows that light intensity did not have significant effect on the performance of lutein production. Also, there was also no light inhibition on the cell growth. Hence, this strain may be feasible for outdoor cultivation.
    Next, the operation modes were studied (including semi-batch and semi-batch integrated with two-stage system) using optimal medium composition as mentioned above to improve the biomass productivity and lutein productivity. The results of semi-batch system show that the maximal biomass productivity and maximal lutein productivity were 1.55 g/L/d and 5.51 mg/L/d, respectively, at 80% medium replacement ratio. The results of semi-batch integrated with two-stage operation strategy demonstrated a maximal biomass productivity and maximal lutein productivity of 1.98 g/L/d and 7.62 mg/L/d, respectively, also occurred at a medium replacement ratio of 80% ratio. Compared with the optimal condition of batch cultivation, the lutein productivity was enhanced by 87% and to 86%, respectively, for semi-batch operation and semi-batch integrated with two-stage system.

    摘 要 III Abstract V Acknowledgements VIII Contents X List of tables XIV List of figures XVI List of symbols XIX Chapter 1 Introduction 1 1.1 Background 1 1.2 Motivation and purpose 2 1.3 Research scheme of the dissertation 3 Chapter 2 Literature review 4 2.1 Photosynthesis and photosynthetic pigments 4 2.1.1 Photosynthesis mechanism 4 2.1.2 Chlorophyll 7 2.1.3 Carotenoids 9 2.1.4 Lutein 12 2.2 Microalgae as lutein producer 14 2.2.1 Microalgae 14 2.2.2 The advantages of using microalgae as source of lutein 15 2.2.3 Lutein biosynthesis: carotenogenesis pathways 20 2.2.4 Function of lutein in microalgae 23 2.2.5 Lutein recovery and storage from microalgal biomass 24 2.3 Factors affecting the cell growth or lutein accumulation of microalgae 27 2.3.1 Carbon 27 2.3.2 Nitrogen 29 2.3.3 Medium composition 30 2.3.4 Light intensity 31 Chapter 3 Materials and methods 33 3.1 Chemicals and materials 33 3.2 Equipment 34 3.3 Isolation and identification of microalgae strains 36 3.4 Cultivation system 36 3.4.1 Composition of media 36 3.4.2 Operation system 38 3.5 Statistical experiment design methodology 40 3.5.1 Two-level fractional factorial experimental design 42 3.5.2 Steepest ascent methodology 43 3.5.3 Response surface methodology experimental design 45 3.5.3.1 Sodium acetate and sodium nitrate 47 3.5.3.2 Calcium chloride dihydrate and salinity 48 3.6 Analytical methods 49 3.6.1 Determination of biomass concentration 49 3.6.2 Determination of residual nutrient concentration 50 3.6.3 Determination of lutein content 52 3.7 Data analysis 53 3.7.1 Definition of maximal specific growth rate 53 3.7.2 Definition of biomass productivity 54 3.7.3 Definition of lutein content and lutein productivity 54 3.7.4 Statistical significance analysis 55 Chapter 4 Results and discussion 56 4.1 Comparison of cell growth and lutein productivity of four indigenous microalga strains under mixotrophic cultivation 56 4.2 Effect of medium composition on cell growth and lutein productivity 57 4.3 Determination of optimal ratio of acetate and nitrate for the lutein productivity of Chlorella sp. 58 4.3.1 Effect of sodium acetate concentration 58 4.3.2 Effect of sodium nitrate concentration 61 4.3.3 Statistical analysis using the response surface methodology 64 4.3.4 Determination of optimal nutrient condition for the lutein production of Chlorella sp. 66 4.3.5 Summary 68 4.4 Determination of the optimal trace metal ions composition for the lutein productivity of Chlorella sp. 68 4.4.1 2-level fractional factorial design 68 4.4.2 Steepest ascent 70 4.4.3 Statistical analysis using the response surface methodology 72 4.4.4 Confirmation of the predicted optimal trace metal ion composition for the lutein productivity of Chlorella sp. 74 4.4.5 Summary 76 4.5 Light intensity 76 4.6 Operation strategies for microalgae cultivation 80 4.6.1 Semi-batch system 81 4.6.2 Semi-batch integrated with two-stage system 85 4.6.3 Summary 92 Chapter 5 Conclusion 94 References i

    Abdel-Aal, E.-S.M., Akhtar, H., Zaheer, K., Ali, R. (2013) Dietary Sources of Lutein and Zeaxanthin Carotenoids and Their Role in Eye Health. Nutrients, 5(4), pp. 1169-1185.
    Andrade, M.R., Costa, J.A.V. (2007) Mixotrophic cultivation of microalga Spirulina platensis using molasses as organic substrate. Aquaculture, 264(1), pp. 130-134.
    Battersby, A.R. (2000) Tetrapyrroles: the pigments of life. Nat Prod Rep, 17(6), pp. 507-526.
    Benemann, J. (2013) Microalgae for Biofuels and Animal Feeds. Energies, 6(11), pp. 5869-5886.
    Bhatnagar, A., Bhatnagar, M., Chinnasamy, S., Das, K.C. (2010) Chlorella minutissima—A Promising Fuel Alga for Cultivation in Municipal Wastewaters. Appl Biochem Biotechnol, 161(1-8), pp. 523-536.
    Bishop, N.I. (1996) The β, ϵ-carotenoid, lutein, is specifically required for the formation of the oligomeric forms of the light harvesting complex in the green alga, Scenedesmus obliquus. J. Photochem. Photobiol., B, 36(3), pp. 279-283.
    Blifernez Klassen, O. (2012) Molecular mechanisms behind the adjustment of phototrophic light-harvesting and mixotrophic utilization of cellulosic carbon sources in Chlamydomonas reinhardtii, unpublished thesis (PhD), Algae Biotechnology & Bioenergy, Bielefeld University.
    Bowen, P.E., Herbst-Espinosa, S.M., Hussain, E.A., Stacewicz-Sapuntzakis, M. (2002) Esterification Does Not Impair Lutein Bioavailability in Humans. J Nutr, 132(12), pp. 3668-3673.
    Breithaupt, D.E., Wirt, U., Bamedi, A. (2002) Differentiation between Lutein Monoester Regioisomers and Detection of Lutein Diesters from Marigold Flowers (Tagetes erecta L.) and Several Fruits by Liquid Chromatography− Mass Spectrometry. J Agric Food Chem, 50(1), pp. 66-70.
    Brennan, L., Owende, P. (2010) Biofuels from microalgae—A review of technologies for production, processing, and extractions of biofuels and co-products. Renewable Sustainable Energy Rev, 14(2), pp. 557-577.
    Brown, C.R. (2008) Breeding for Phytonutrient Enhancement of Potato. Am J Potato Res, 85(4), pp. 298-307.
    Bryson, A.E., Denham, W.F. (1962) A Steepest-Ascent Method for Solving Optimum Programming Problems. J Appl Mech, 29(2), pp. 247-257.
    Buschmann, C., Langsdorf, G., Lichtenthaler, H.K. (2001) Imaging of the blue, green, and red fluorescence emission of plants: An overview. Photosynthetica, 38(4), pp. 483-491.
    Cai, T., Park, S.Y., Li, Y. (2013) Nutrient recovery from wastewater streams by microalgae: Status and prospects. Renewable Sustainable Energy Rev, 19, pp. 360-369.
    Campenni, L., Nobre, B.P., Santos, C.A., Oliveira, A.C., Aires-Barros, M.R., Palavra, A.M.F., Gouveia, L. (2013) Carotenoid and lipid production by the autotrophic microalga Chlorella protothecoides under nutritional, salinity, and luminosity stress conditions. Appl Microbiol Biotechnol, 97(3), pp. 1383-1393.
    Cardozo, K.H.M., Guaratini, T., Barros, M.P., Falcão, V.R., Tonon, A.P., Lopes, N.P., Campos, S., Torres, M.A., Souza, A.O., Colepicolo, P., Pinto, E. (2007) Metabolites from algae with economical impact. Comp Biochem Physiol, 146(1), pp. 60-78.
    Carvalho, A.P., Pontes, I., Gaspar, H., Malcata, F.X. (2006) Metabolic relationships between macro- and micronutrients, and the eicosapentaenoic acid and docosahexaenoic acid contents of Pavlova lutheri. Enzyme Microb Technol, 38(3), pp. 358-366.
    Carvalho, A.P., Silva, S.O., Baptista, J.M., Malcata, F.X. (2011) Light requirements in microalgal photobioreactors: an overview of biophotonic aspects. Appl Microbiol Biotechnol, 89(5), pp. 1275-1288.
    Casal, C., Cuaresma, M., Vega, J.M., Vilchez, C. (2011) Enhanced Productivity of a Lutein-Enriched Novel Acidophile Microalga Grown on Urea. Mar Drugs, 9(1), pp. 29-42.
    Cerón Garcı́a, M.C., Campos, I., Sánchez Mirón, A., Acién, F.G., Molina, E., Fernández Sevilla, J.M. (2008) Recovery of Lutein from Microalgae Biomass: Development of a Process for Scenedesmus almeriensis Biomass. J Agric Food Chem, 56(24), pp. 11761-11766.
    Cerón Garcı́a, M.C., Fernández Sevilla, J.M., Sánchez Mirón, A., García Camacho, F., Contreras Gómez, A. (2013) Mixotrophic growth of Phaeodactylum tricornutum on fructose and glycerol in fed-batch and semi-continuous modes. Bioresour Technol, 147, pp. 569-576.
    Cerón Garcı́a, M.C., Sánchez Mirón, A., Fernández Sevilla, J.M., Molina Grima, E., Garcıa Camacho, F. (2005) Mixotrophic growth of the microalga Phaeodactylum tricornutum: Influence of different nitrogen and organic carbon sources on productivity and biomass composition. Process Biochem, 40(1), pp. 297-305.
    Chan, M.-C., Ho, S.-H., Lee, D.-J., Chen, C.-Y., Huang, C.-C., Chang, J.-S. (2013) Characterization, extraction and purification of lutein produced by an indigenous microalga Scenedesmus obliquus CNW-N. Biochem Eng J, 78, pp. 24-31.
    Chan, M.C. (2012) Producing lutein from indigenous microalgae – Optimization of microalgae cultivation extraction protocols storage conditions and mass production processes, unpublished thesis (MS), Chemical Engineering, National Cheng Kung University.
    Che, R., Wang, Q., Huang, L., Zhao, P., Yu, X. (2014) Effects of Additional Mg2+ on the Growth and Lipid Accumulation of Monoraphidium sp. FXY-10 under Mixotrophic Conditions. Advanced Materials Research, 860, pp. 920-927.
    Chen, C.-Y., Kao, P.-C., Tsai, C.-J., Lee, D.-J., Chang, J.-S. (2013a) Engineering strategies for simultaneous enhancement of C-phycocyanin production and CO2 fixation with Spirulina platensis. Bioresour Technol, 145, pp. 307-312.
    Chen, C.-Y., Yeh, K.-L., Aisyah, R., Lee, D.-J., Chang, J.-S. (2011) Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Bioresour Technol, 102(1), pp. 71-81.
    Chen, C.-Y., Zhao, X.-Q., Yen, H.-W., Ho, S.-H., Cheng, C.-L., Lee, D.-J., Bai, F.-W., Chang, J.-S. (2013b) Microalgae-based carbohydrates for biofuel production. Biochem Eng J, 78, pp. 1-10.
    Chew, E.Y., Clemons, T.E., SanGiovanni, J.P., Danis, R.P., Ferris, F.L., Elman, M.J., Antoszyk, A.N., Ruby, A.J., Orth, D., Bressler, S.B. (2013) Secondary Analyses of the Effects of Lutein/Zeaxanthin on Age-Related Macular Degeneration Progression AREDS2 Report No. 3. JAMA Ophthalmol, p. 139.
    Chiara, L., Jean, A., Giovanni, G., Michel, H., Roberto, B. (2006) Lutein is needed for efficient chlorophyll triplet quenching in the major LHCII antenna complex of higher plants and effective photoprotection in vivo under strong light. BMC Plant Biol, 6
    Chiu, S.-Y., Kao, C.-Y., Tsai, M.-T., Ong, S.-C., Chen, C.-H., Lin, C.-S. (2009a) Lipid accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2 aeration. Bioresour Technol, 100(2), pp. 833-838.
    Chiu, S.Y., Tsai, M.T., Kao, C.Y., Ong, S.C., Lin, C.S. (2009b) The air‐lift photobioreactors with flow patterning for high‐density cultures of microalgae and carbon dioxide removal. Eng Life Sci, 9(3), pp. 254-260.
    Collen, J., Pinto, E., Pedersen, M., Colepicolo, P. (2003) Induction of oxidative stress in the red macroalga Gracilaria tenuistipitata by pollutant metals. Arch Environ Contam Toxicol, 45(3), pp. 337-342.
    Das, A., Yoon, S.-H., Lee, S.-H., Kim, J.-Y., Oh, D.-K., Kim, S.-W. (2007) An update on microbial carotenoid production: application of recent metabolic engineering tools. Appl Microbiol Biotechnol, 77(3), pp. 505-512.
    Dayananda, C., Sarada, R., Usha Rani, M., Shamala, T.R., Ravishankar, G.A. (2007) Autotrophic cultivation of Botryococcus braunii for the production of hydrocarbons and exopolysaccharides in various media. Biomass Bioenergy, 31(1), pp. 87-93.
    de Winter, L., Klok, A.J., Cuaresma Franco, M., Barbosa, M.J., Wijffels, R.H. (2013) The synchronized cell cycle of Neochloris oleoabundans and its influence on biomass composition under constant light conditions. Algal Res, 2(4), pp. 313-320.
    Del Campo, J.A., García-González, M., Guerrero, M.G. (2007) Outdoor cultivation of microalgae for carotenoid production: current state and perspectives. Appl Microbiol Biotechnol, 74(6), pp. 1163-1174.
    Del Campo, J.A., Moreno, J., Rodriguez, H., Vargas, M.A., Rivas, J., Guerrero, M.G. (2000) Carotenoid content of chlorophycean microalgae: factors determining lutein accumulation in Muriellopsis sp. (Chlorophyta). J Biotechnol, 76(1), pp. 51-59.
    Del Campo, J.A., Rodrı́guez, H., Moreno, J., Vargas, M., Rivas, J.n., Guerrero, M.G. (2001) Lutein production by Muriellopsis sp. in an outdoor tubular photobioreactor. J Biotechnol, 85(3), pp. 289-295.
    Del Campo, J.A., Rodriguez, H., Moreno, J., Vargas, M.A., Rivas, J., Guerrero, M.G. (2004) Accumulation of astaxanthin and lutein in Chlorella zofingiensis (Chlorophyta). Appl Microbiol Biotechnol, 64(6), pp. 848-854.
    Dortch, Q. (1990) The interaction between ammonium and nitrate uptake in phytoplankton. Mar Ecol: Prog Ser, 61(1), pp. 183-201.
    Draaisma, R.B., Wijffels, R.H., Slegers, P.M., Brentner, L.B., Roy, A., Barbosa, M.J. (2013) Food commodities from microalgae. Curr Opin Biotechnol, 24(2), pp. 169-177.
    Dragone, G., Fernandes, B.D., Abreu, A.P., Vicente, A.A., Teixeira, J.A. (2011) Nutrient limitation as a strategy for increasing starch accumulation in microalgae. Appl Energy, 88(10), pp. 3331-3335.
    Dubey, V.S., Bhalla, R., Luthra, R. (2003) An overview of the non-mevalonate pathway for terpenoid biosynthesis in plants J. Biosci., 28(5), pp. 637-646.
    Egawa, A., Fujiwara, T., Mizoguchi, T., Kakitani, Y., Koyama, Y., Akutsu, H. (2007) Structure of the light-harvesting bacteriochlorophyll c assembly in chlorosomes from Chlorobium limicola determined by solid-state NMR. Proc Natl Acad Sci U S A, 104(3), pp. 790-795.
    Esterhuizen-Londt, M., Zeelie, B. (2013) Outdoor Large scale Microalgae consortium culture for biofuel production in South Africa: Overcoming adverse environmental effects on microalgal growth. J of Ener Tech and Poli, 3(11), pp. 39-45.
    Feng, D., Chen, Z., Xue, S., Zhang, W. (2011) Increased lipid production of the marine oleaginous microalgae Isochrysis zhangjiangensis (Chrysophyta) by nitrogen supplement. Bioresour Technol, 102(12), pp. 6710-6716.
    Fernández-Sevilla, J.M., Acién Fernández, F.G., Molina Grima, E. (2010) Biotechnological production of lutein and its applications. Appl Microbiol Biotechnol, 86(1), pp. 27-40.
    Fraser, P.D., Bramley, P.M. (2004) The biosynthesis and nutritional uses of carotenoids. Prog Lipid Res, 43(3), pp. 228-265.
    Gouveia, L., Empis, J. (2003) Relative stabilities of microalgal carotenoids in microalgal extracts, biomass and fish feed: effect of storage conditions. Innovative Food Sci Emerging Technol, 4(2), pp. 227-233.
    Goyal, A. (2007) Osmoregulation in Dunaliella, Part II: Photosynthesis and starch contribute carbon for glycerol synthesis during a salt stress in Dunaliella tertiolecta. Plant Physiol Biochem, 45(9), pp. 705-710.
    Grobbelaar, J.U. (2013) Mass Production of Microalgae at Optimal Photosynthetic Rates, in Photosynthesis, (Ed.) Z. Dubinsky, Agricultural and Biological Sciences.
    Guedes, A.C., Amaro, H.M., Malcata, F.X. (2011) Microalgae as Sources of Carotenoids. Mar Drugs, 9(4), pp. 625-644.
    Gutiérrez-Praena, D., Jos, Á., Pichardo, S., Moreno, I.M., Cameán, A.M. (2013) Presence and bioaccumulation of microcystins and cylindrospermopsin in food and the effectiveness of some cooking techniques at decreasing their concentrations: A review. Food Chem Toxicol, 53, pp. 139-152.
    Hammershøj, M., Kidmose, U., Steenfeldt, S. (2010) Deposition of carotenoids in egg yolk by short-term supplement of coloured carrot (Daucus carota) varieties as forage material for egg-laying hens. J Sci Food Agric, 90(7), pp. 1163-1171.
    Harun, R., Singh, M., Forde, G.M., Danquah, M.K. (2010) Bioprocess engineering of microalgae to produce a variety of consumer products. Renewable Sustainable Energy Rev, 14(3), pp. 1037-1047.
    Heredia-Arroyo, T., Wei, W., Hu, B. (2010) Oil Accumulation via Heterotrophic/Mixotrophic Chlorella protothecoides. Appl Biochem Biotechnol, 162(7), pp. 1978-1995.
    Hirschberg, J., Cohen, M., Harker, M., Lotan, T., Mann, V., Pecker, I. (1997) Molecular genetics of the carotenoid biosynthesis pathway in plants and algae. Gene, 1, p. 4.
    Ho, S.-H., Chan, M.-C., Liu, C.-C., Chen, C.-Y., Lee, W.-L., Lee, D.-J., Chang, J.-S. (2014a) Enhancing lutein productivity of an indigenous microalga Scenedesmus obliquus FSP-3 using light-related strategies. Bioresour Technol, 152, pp. 275-282.
    Ho, S.-H., Chang, J.-S., Lai, Y.-Y., Chen, C.-N.N. (2014b) Achieving high lipid productivity of a thermotolerant microalga Desmodesmus sp. F2 by optimizing environmental factors and nutrient conditions. Bioresour Technol,
    Ho, S.-H., Chen, C.-Y., Chang, J.-S. (2012) Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N. Bioresour Technol, (113), pp. 244-252.
    Ho, S.-H., Chen, C.-Y., Lee, D.-J., Chang, J.-S. (2011) Perspectives on microalgal CO2-emission mitigation systems—A review. Biotechnol Adv, 29(2), pp. 189-198.
    Hockin, N.L., Mock, T., Mulholland, F., Kopriva, S., Malin, G. (2012) The Response of Diatom Central Carbon Metabolism to Nitrogen Starvation Is Different from That of Green Algae and Higher Plants. Plant Physiol., 158(1), pp. 299-312.
    Hodaifa, G., Martínez, M.E., Sánchez, S. (2009) Daily doses of light in relation to the growth of Scenedesmus obliquus in diluted three-phase olive mill wastewater. J Chem Technol Biotechnol, 84(10), pp. 1550-1558.
    Hojnik, M., Škerget, M., Knez, Ž. (2007) Concentrating the chlorophylls in extract by pretreatment of stinging nettle leaves with nonpolar organic solvents and supercritical carbon dioxide. J Food Process Eng, 30(6), pp. 701-716.
    Hosikian, A., Lim, S., Halim, R., Danquah, M.K. (2010) Chlorophyll extraction from microalgae: A review on the process engineering aspects. Int J Chem Eng, 2010
    Ito, T., Tanaka, M., Shinkawa, H., Nakada, T., Ano, Y., Kurano, N., Soga, T., Tomita, M. (2013) Metabolic and morphological changes of an oil accumulating trebouxiophycean alga in nitrogen-deficient conditions. Metabolomics, 9(1), pp. 178-187.
    Jahns, P., Holzwarth, A.R. (2012) The role of the xanthophyll cycle and of lutein in photoprotection of photosystem II. Biochim Biophys Acta, 1817(1), pp. 182-193.
    Jiménez-Contreras, E., Torres-Salinas, D., Moreno, R.B., Baños, R.R., López-Cózar, E.D. (2009) Response Surface Methodology and its application in evaluating scientific activity. Scientometrics, 79(1), pp. 201-218.
    Jin, E., Polle, J.E.W., Lee, H.K., Hyun, S.M., Chang, M. (2003) Xanthophylls in Microalgae: From Biosynthesis to Biotechnological Mass Production and Application. J Microbiol Biotechnol, 13(2), pp. 165-174.
    Jomaa, H., Wiesner, J., Sanderbrand, S., Altincicek, B., Weidemeyer, C., Hintz, M., Türbachova, I., Eberl, M., Zeidler, J., Lichtenthaler, H.K. (1999) Inhibitors of the Nonmevalonate Pathway of Isoprenoid Biosynthesis as Antimalarial Drugs. Science, 285(5433), pp. 1573-1576.
    Kamiya, A., Kowallik, W. (1987) Photoinhibition of Glucose Uptake in Chlorella. Plant Cell Physiol, 28(4), pp. 611-619.
    Kato, M.C., Hikosaka, K., Hirotsu, N., Makino, A., Hirose, T. (2003) The Excess Light Energy that is neither Utilized in Photosynthesis nor Dissipated by Photoprotective Mechanisms Determines the Rate of Photoinactivation in Photosystem II. Plant Cell Physiol, 44(3), pp. 318-325.
    Khachik, F., (2001) Process for extraction and purification of lutein, zeaxanthin and rare carotenoids from marigold flowers and plants, United States 6262284.
    Kim, S., Park, J.-e., Cho, Y.-B., Hwang, S.-J. (2013) Growth rate, organic carbon and nutrient removal rates of Chlorella sorokiniana in autotrophic, heterotrophic and mixotrophic conditions. Bioresour Technol, 144, pp. 8-13.
    Kirrolia, A., Bishnoi, N.R., Singh, R. (2013) Response surface methodology as a decision-making tool for optimization of culture conditions of green microalgae Chlorella sp. for biodiesel production. Ann Microbiol, pp. 1-15.
    Kovač, D.J., Simeunović, J.B., Babić, O.B., Mišan, A.Č., Milovanović, I.L. (2013) Algae in food and feed. Food Feed Res, 40(1), pp. 21-31.
    Krinsky, N.I., Landrum, J.T., Bone, R.A. (2003) Biologic mechanisms of the protective role of lutein and zeaxanthin in the eye. Annu Rev Nutr, 23(1), pp. 171-201.
    Laney, S.R. (2007) Seconds to hour scale photosynthetic responses in marine microalgae, unpublished thesis (PhD), Oceanography, Oregon State University
    Lee, Y.-K. (2001) Microalgal mass culture systems and methods: Their limitation and potential. J Appl Phycol, 13(4), pp. 307-315.
    Li, H.-B., Jiang, Y., Chen, F. (2002) solation and Purification of Lutein from the Microalga Chlorella vulgaris by Extraction after Saponification. J Agric Food Chem, 50(5), pp. 1070-1072.
    Liang, Y., Sarkany, N., Cui, Y. (2009) Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnol Lett, 31(7), pp. 1043-1049.
    Lionard, M., Muylaert, K., Van Gansbeke, D., Vyverman, W. (2005) Influence of changes in salinity and light intensity on growth of phytoplankton communities from the Schelde river and estuary (Belgium/The Netherlands). Hydrobiologia, 540(1-3), pp. 105-115.
    Liu, X., Duan, S., Li, A., Xu, N., Cai, Z., Hu, Z. (2009) Effects of organic carbon sources on growth, photosynthesis, and respiration of Phaeodactylum tricornutum. J Appl Phycol, 21(2), pp. 239-246.
    Liu, Z.-Y., Wang, G.-C., Zhou, B.-C. (2008) Effect of iron on growth and lipid accumulation in Chlorella vulgaris. Bioresour Technol, 99(11), pp. 4717-4722.
    Lo, Y.-S. (2005) Using response surface methodology to determine optimal conditions for fermentative H2 production with an indigenous anaerobic H2-producing bacterium Clostridium butyricum CGS2, unpublished thesis (PhD), Chemical Engineering, National Cheng Kung University.
    Lustigman, B.K. (1986) Enhancement of pigment concentrations in Dunaliella tertiolecta as a result of copper toxicity. Bull Environ Contam Toxicol, 37(1), pp. 710-713.
    Müller, P., Li, X.-P., Niyogi, K.K. (2001) Non-Photochemical Quenching. A Response to Excess Light Energy. Plant Physiol., 125(4), pp. 1558-1566.
    M., R.-C. (2004) The MEP pathway: a new target for the development of herbicides, antibiotics and antimalarial drugs. Curr Pharm Des, 10(19), pp. 2391-2400.
    Mares-Perlman, J.A., Millen, A.E., Ficek, T.L., Hankinson, S.E. (2002) The Body of Evidence to Support a Protective Role for Lutein and Zeaxanthin in Delaying Chronic Disease. J Nutr, 132(3), pp. 518S-524S.
    Masmoudi, S., Nguyen-Deroche, N., Caruso, A., Ayadi, H., Morant-Manceau, A., Tremblin, G., Schoefs, B. (2013) Cadmium, Copper, Sodium and Zinc Effects on Diatoms: from Heaven to Hell-a Review. Cryptogamie, Algologie, 34(2), pp. 185-225.
    Mata, T.M., Martins, A.A., Caetano, N.S. (2010) Microalgae for biodiesel production and other applications: a review. Renewable Sustainable Energy Rev, 14(1), pp. 217-232.
    Milledge, J.J. (2011) Commercial application of microalgae other than as biofuels: a brief review. Rev Environ Sci Bio/Technol, 10(1), pp. 31-41.
    Min, M., Hu, B., Zhou, W., Li, Y., Chen, P., Ruan, R. (2012) Mutual influence of light and CO2 on carbon sequestration via cultivating mixotrophic alga Auxenochlorella protothecoides UMN280 in an organic carbon-rich wastewater. J Appl Phycol, 24(5), pp. 1099-1105.
    Mitra, D., van Leeuwen, J.H., Lamsal, B. (2012) Heterotrophic/mixotrophic cultivation of oleaginous Chlorella vulgaris on industrial co-products. Algal Res,
    Montgomery, D.C. (1991) Design and analysis of experiments. 3rd edition. John Wiley & Sons, New York. .
    Morosinotto, T., Caffarri, S., Dall'Osto, L., Bassi, R. (2003) Mechanistic aspects of the xanthophyll dynamics in higher plant thylakoids. Physiol Plant, 119(3), pp. 347-354.
    Namitha, K.K., Negi, P.S. (2010) Chemistry and biotechnology of carotenoids. Crit Rev Food Sci Nutr, 50(8), pp. 728-760.
    Norsker, N.-H., Barbosa, M.J., Vermuë, M.H., Wijffels, R.H. (2011) Microalgal production - A close look at the economics. Biotechnol Adv, 29(1), pp. 24-27.
    Ogbonna, J.C., Soejima, T., Tanaka, H. (1999) An integrated solar and artificial light system for internal illumination of photobioreactors. J Biotechnol, 70(1), pp. 289-297.
    Oilgae, (2014) Comprehensive Report on Attractive Algae Product Opportunities, http://www.oilgae.com accessed May, 2014
    Pascal, A.A., Liu, Z., Broess, K., van Oort, B., van Amerongen, H., Wang, C., Horton, P., Robert, B., Chang, W., Ruban, A. (2005) Molecular basis of photoprotection and control of photosynthetic light-harvesting. Nature, 436(7047), pp. 134-137.
    Peng, L., Lan, C.Q., Zhang, Z. (2013) Evolution, Detrimental Effects, and Removal of Oxygen in Microalga Cultures: A Review. Environ Prog Sustainable Energy, 32(4), pp. 982-988.
    Pettai, H., Oja, V., Freiberg, A., Laisk, A. (2005) Photosynthetic activity of far-red light in green plants. Biochim. Biophys. Acta, Bioenerg., 1708(3), pp. 311-321.
    Pirastru, L., Darwish, M., Chu, F.L., Perreault, F., Sirois, L., Sleno, L., Popovic, R. (2012) Carotenoid production and change of photosynthetic functions in Scenedesmus sp. exposed to nitrogen limitation and acetate treatment. J Appl Phycol, 24(1), pp. 117-124.
    Qin, X., Zhang, W., Dubcovsky, J., Tian, L. (2012) Cloning and comparative analysis of carotenoid β-hydroxylase genes provides new insights into carotenoid metabolism in tetraploid (Triticum turgidum ssp. durum) and hexaploid (Triticum aestivum) wheat grains. Plant Mol Biol, 80(6), pp. 631-646.
    Raja, R., Hemaiswarya, S., Kumar, N.A., Sridhar, S., Rengasamy, R. (2008) A Perspective on the Biotechnological Potential of Microalgae. Crit Rev Microbiol, 34(2), pp. 77-88.
    Rao, A.R., Dayananda, C., Sarada, R., Shamala, T.R., Ravishankar, G.A. (2007) Effect of salinity on growth of green alga Botryococcus braunii and its constituents. Bioresour Technol, 98(3), pp. 560-564.
    Ratledge, C., Kanagachandran, K., Anderson, A.J., Grantham, D.J., Stephenson, J.C. (2001) Production of docosahexaenoic acid by Crypthecodinium cohnii grown in a pH-auxostat culture with acetic acid as principal carbon source. Lipids, 36(11), pp. 1241-1246.
    Roberts, S.C. (2007) Production and engineering of terpenoids in plant cell culture. Nat Chem Biol, 3(7), pp. 387-395.
    Roca, M., Gallardo-Guerrero, L., Mínguez-Mosquera, M.a.I., Gandul Rojas, B. (2009) Control of Olive Oil Adulteration with Copper-Chlorophyll Derivatives. J Agric Food Chem, 58(1), pp. 51-56.
    Ruban, A.V., Berera, R., Ilioaia, C., Van Stokkum, I.H.M., Kennis, J.T.M., Pascal, A.A., Van Amerongen, H., Robert, B., Horton, P., Van Grondelle, R. (2007) Identification of a mechanism of photoprotective energy dissipation in higher plants. Nature, 450(7169), pp. 575-578.
    Ruiz-Sola, M.Á., Rodríguez-Concepción, M. (2012) Carotenoid Biosynthesis in Arabidopsis: A Colorful Pathway, American Society of Plant Biologists, 10.
    Ryckebosch, E., Muylaert, K., Eeckhout, M., Ruyssen, T., Foubert, I. (2011) Influence of Drying and Storage on Lipid and Carotenoid Stability of the Microalga Phaeodactylum tricornutum. J Agric Food Chem, 59(20), pp. 11063-11069.
    Sánchez, J.F., Fernández-Sevilla, J.M., Acién, F.G., Cerón, M.C., Pérez-Parra, J., Molina-Grima, E. (2008a) Biomass and lutein productivity of Scenedesmus almeriensis: influence of irradiance, dilution rate and temperature. Appl Microbiol Biotechnol, 79(5), pp. 719-729.
    Sánchez, J.F., Fernández-Sevilla, J.M., Acién, F.G., Rueda, A., Pérez-Parra, J., Molina, E. (2008b) Influence of culture conditions on the productivity and lutein content of the new strain Scenedesmus almeriensis. Process Biochem, 43(4), pp. 398-405.
    Sajilata, M.G., Singhal, R.S., Kamat, M.Y. (2008) The carotenoid pigment zeaxanthin—a review. Compr Rev Food Sci Food Saf, 7(1), pp. 29-49.
    Schödel, R., Irrgang, K.-D., Voigt, J., Renger, G. (1999) Quenching of Chlorophyll Fluorescence by Triplets in Solubilized Light-Harvesting Complex II (LHCII). Biophys J, 76(4), pp. 2238-2248.
    Seddon, J.M., Ajani, U.A., Sperduto, R.D., Hiller, R., Blair, N., Burton, T.C., Farber, M.D., Gragoudas, E.S., Haller, J., Miller, D.T., Yannuzzi, L.A., Willett, W. (1994) Dietary Carotenoids, Vitamins A, C, and E, and Advanced Age-Related Macular Degeneration. JAMA, 272(18), pp. 1413-1420.
    Seddon, J.M., Willett, W.C., Speizer, F.E., Hankinson, S.E. (1996) A prospective study of cigarette smoking and age-related macular degeneration in women. JAMA, 276(14), pp. 1141-1146.
    Sharkey, T.D. (2012) Advances in photosynthesis and respiration. Photosynth Res, 111(3), pp. 327-329.
    Shmoop Editorial Team. (2008, November 11) The Light-Dependent and Light-Independent Reactions - Shmoop Biology. Retrieved May 29, 2014 from http://www.shmoop.com/photosynthesis/light-independent-reactions.html
    Sijtsma, L., Anderson, A.J., Ratledge, C. (2005) Alternative carbon sources for heterotrophic production of docosahexaenoic acid by the marine alga Crypthecodinium cohnii, accepted for Single Cell Oils in USA.
    Slattery, M.L., Benson, J., Curtin, K., Ma, K.-N., Schaeffer, D., Potter, J.D. (k2000) Carotenoids and colon cancer. Am J Clin Nutr, 71(2), pp. 575-582.
    Solovchenko, A.E., Khozin-Goldberg, I., Didi-Cohen, S., Cohen, Z., Merzlyak, M.N. (2008) Effects of light intensity and nitrogen starvation on growth, total fatty acids and arachidonic acid in the green microalga Parietochloris incisa. J Appl Phycol, 20(3), pp. 245-251.
    Syrett, P.J. (1981) Nitrogen metabolism of microalgae. Can Bull Fish Aquat Sci,
    Tababa, H.G., Hirabayashi, S., Inubushi, K. (2012) Growth of Parietochloris incisa in various organic carbon substrates. HortResearch, (66), pp. 25-35.
    Tang, Y.C., Chen, B.H. (2000) Pigment change of freeze-dried carotenoid powder during storage. Food Chem, 69(1), pp. 11-17.
    Taylor, K.L., Brackenridge, A.E., Vivier, M.A., Oberholster, A. (2006) High-performance liquid chromatography profiling of the major carotenoids in Arabidopsis thaliana leaf tissue. J Chromatogr A, 1121(1), pp. 83-91.
    Thielmann, J., Galland, P. (1991) Action spectra for photosynthetic adaptation in Scenedesmus obliquus II. Chlorophyll biosynthesis and cell growth under heterotrophic conditions. Planta, 183(3), pp. 340-346.
    Thielmann, J., Galland, P., Senger, H. (1991) Action spectra for photosynthetic adaptation in Scenedesmus obliquus I. Chlorophyll biosynthesis under autotrophic conditions. Planta, 183(3), pp. 334-339.
    Tsavalos, A.J., Day, J.G. (1994) Development of media for the mixotrophic/heterotrophic culture of Brachiomonas submarina. J Appl Phycol, 6(4), pp. 431-433.
    Vaquero, I., Ruiz-Domínguez, M.C., Márquez, M., Vílchez, C. (2012) Cu-mediated biomass productivity enhancement and lutein enrichment of the novel microalga Coccomyxa onubensis. Process Biochem, 47(5), pp. 694-700.
    Villarejo, A., Orus, M.I., Martinez, F. (1995) Coordination of photosynthetic and respiratory metabolism in Chlorella vulgaris UAM 101 in the light. Physiol Plant, 94(4), pp. 680-686.
    Wei, D., Chen, F., Chen, G., Zhang, X., Liu, L., Zhang, H. (2008) Enhanced production of lutein in heterotrophic Chlorella protothecoides by oxidative stress. Science China Life Sciences, 51(12), pp. 1088-1093.
    Wheeler, G.L., Brownlee, C. (2008) Ca2+ signalling in plants and green algae–changing channels. Trends Plant Sci, 13(9), pp. 506-514.
    Wood, B.J.B., Grimson, P.H.K., German, J.B., Turner, M. (1999) Photoheterotrophy in the production of phytoplankton organisms. Prog Ind Microbiol, 35, pp. 175-183.
    Xie, Y.-P., Ho, S.-H., Chen, C.-N.N., Chen, C.-Y., Ng, I.-S., Jing, K.-J., Chang, J.-S., Lu, Y. (2013) Phototrophic cultivation of a thermo-tolerant Desmodesmus sp. for lutein production: Effects of nitrate concentration, light intensity and fed-batch operation. Bioresour Technol, 144, pp. 435-444.
    Xie, Y.-P., Ho, S.-H., Chen, C.-Y., Chen, C.-N.N., Liu, C.-C., Ng, I.-S., Jing, K.-J., Yang, S.-C., Chen, C.-H., Chang, J.-S. (2014) Simultaneous enhancement of CO2 fixation and lutein production with thermo-tolerant Desmodesmus sp. F51 using a repeated fed-batch cultivation strategy. Biochem Eng J,
    Yen, H.-W., Sun, C.-H., Ma, T.-W. (2011) The Comparison of Lutein Production by Scenesdesmus sp. in the Autotrophic and the Mixotrophic Cultivation. Appl Biochem Biotechnol, 164(3), pp. 353-361.
    Yuah-Kun, L. (2004) Algal Nutrition: Heterotrophic Carbon Nutrition, in Handbook of Microalgal Culture: Biotechnology and Applied Psychology, (Ed.) A. Richmond, Wiley & Sons, Incorporated, John.
    Zehr, J.P., Ward, B.B. (2002) Nitrogen cycling in the ocean: new perspectives on processes and paradigms. Appl Environ Microbiol, 68(3), pp. 1015-1024.
    Zheng, Y., Chi, Z., Lucker, B., Chen, S. (2012) Two-stage heterotrophic and phototrophic culture strategy for algal biomass and lipid production. Bioresour Technol, 103(1), pp. 484-488.
    Zwietering, M.H., Jongenburger, I., Rombouts, F.M., Van't Riet, K. (1990) Modeling of the bacterial growth curve. Appl Environ Microbiol, 56(6), pp. 1875-1881.

    無法下載圖示 校內:2024-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE