簡易檢索 / 詳目顯示

研究生: 陳祐綸
Chen, You-Lun
論文名稱: 含孔洞複材疊層板之非破壞式修補有限元素法分析
Finite Element Analysis For Non-Destructive Repair for Laminated Plates with Holes
指導教授: 夏育群
Shiah, Yu-Chun
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 116
中文關鍵詞: 複合材料應力集中孔洞修補ANSYS有限元素分析非破壞式修補
外文關鍵詞: Composite materials, Stress concentration, Hole repair, ANSYS finite element analysis, Non-destructive repair
相關次數: 點閱:68下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究在探討複合材料構件於孔洞修補後之應力集中效應,並藉由有限元素分析軟體 ANSYS 建立數值模型進行模擬分析。考量複合材料於實際應用中常因損傷或孔洞而導致應力集中與結構強度下降,故本研究分別建立未修補、補片修補(patch repair)、插入式修補(plug repair)以及複合型修補的方式,並針對不同纖維方向、接觸條件(如干涉配合與膠合層)、及施力方向進行分析與比較。模擬中選用疊層複材模型,考慮多種疊層角度配置以及不同修補方式與干涉配合量,透過靜態結構分析觀察應力分佈與最大應力集中之變化。
    結果顯示,適當的修補策略與纖維配置能有效降低孔洞周圍應力集中,提升整體結構承載性能,尤其當採用具干涉量之插入修補結構時,在特定條件下能顯著分散應力集中區域。本研究結果可作為複合材料結構修補設計與力學強化之參考依據,並驗證 ANSYS 作為複合材料修補模擬工具之可行性與精準度。

    This study investigates the stress concentration effects in composite structures after hole repair, utilizing the finite element analysis software ANSYS to establish numerical models for simulation. Considering that composite materials often experience stress concentration and reduced structural strength due to damage or holes in practical applications, this research develops and analyzes four different conditions: unrepaired, patch repair, plug repair, and hybrid repair. The analysis further examines the influence of various fiber orientations, contact conditions (such as interference fit and adhesive layers), and loading directions.
    A laminated composite model is adopted in the simulations, incorporating multiple ply orientations along with different repair strategies and levels of interference fit. Through static structural analysis, the stress distribution and changes in maximum stress concentration are observed.
    The results indicate that appropriate repair strategies and fiber layups can effectively reduce stress concentration around holes and enhance the overall load-bearing performance of the structure. In particular, plug repairs with interference fit can significantly alleviate localized stress concentrations under certain conditions. The findings of this study provide a reference for the design and mechanical enhancement of composite structural repairs and validate the feasibility and accuracy of using ANSYS as a simulation tool for composite repair analysis.

    摘要 1 ABSTRACT 2 致謝 8 目錄 9 圖目錄 11 符號表 14 第一章 導論 16 1-1前言 16 1-2研究動機與目的 17 1-3含孔洞之複合材料疊層板相關文獻 19 1-3.1貼片式及填入式修補相關文獻 26 1-4 研究過程 32 第二章 複合材料疊層板理論與有限元素分析介紹 34 2-1複合材料疊層理論 34 2-2座標轉換與平面應力 36 2-3有限元素分析介紹 41 2-3-1有限元素分析理論 43 2-3-2 ANSYS所使用的單元介紹 46 第三章 含孔洞複材板受力之應力分析 48 3-1 本章介紹 48 3-2 等向性板尺寸和邊界條件 49 3-2-1 等向性板網格劃分及應力集中之討論 50 3-3 複材疊層板之模型幾何及邊界條件設定 55 第四章 複材層板修補範例 60 4-1 範例一 無補貼之孔洞應力分析 60 4-2 範例二 貼片式修補法(PATCH REPAIR)之孔洞應力分析 63 4-3 範例三 插入式修補法(PLUG REPAIR ) 之孔洞應力分析 73 4-3-1無膠合層 75 4-3-2有膠合層 79 4-4範例四 貼片+插入式混合修補法(HYBRID REPAIR) 84 4-4-1貼片+無膠合插入式 85 4-4-2貼片+膠合插入式 97 第五章 結論與未來展望 110 參考文獻 111

    [1] Whitney, J. M., & Nuismer, R. J. (1975). Approximate stresses in an orthotropic plate containing a circular hole. Journal of Composite Materials, 9(2), 157–166.
    [2] Tan, S. C., & Kim, R. Y. (1990). Strain and stress concentrations in composite laminates containing a hole. Experimental Mechanics, 30(4), 345–351.
    [3] Wagner, H. D., & Eitan, A. (1993). Stress concentration factor in two-dimensional composites: Effects of material and geometrical parameters. Composite Structures
    [4] Toubal, L., Karama, M., & Lorrain, B. (2005). Stress concentration in a circular hole in composite plate. Composite Structures, 68, 31–36.
    [5] Zhang, A. Y., Lu, H. B., & Zhang, D. X. (2014). Research on the mechanical properties prediction of carbon/epoxy composite laminates with different void contents. Polymer Composites, 37(1), 14–20.
    [6] Ghannadpour, S. A. M., Mohammadi, B., & Shokrieh, M. M. (2006). Stress concentrations of symmetrically laminated composite plates containing circular holes. Iranian Journal of Science and Technology, Transaction B: Engineering, 30(B4), 447–460.
    [7] Mahmoud, R. K., & Hachim, S. K. (2009). Stress analysis of composite plates with different types of cutouts. Anbar Journal of Engineering Sciences, 2(1), 11–29.
    [8] 韓小平, 鄧訓正, 王玉忠, 等. (2009). 含孔複合材料層合板孔邊的應力集中. 複合材料學報, 26(1), 168–173.
    [9] Kannan, T. G., Wu, C., & Cheng, K. (2011). Finite element analysis and notched tensile strength evaluation of center-hole 2D carbon–carbon laminates.
    [10] Sharma, D. S. (2011). Stress concentration around circle/elliptical/
    triangular cutouts in infinite composite plate. In Proceedings of the World Congress on Engineering 2011 (Vol. III, pp. 2626–2631).
    [11] Mekalke, G. C., Kavade, M., & Deshpande, S. S. (2012). Analysis of a plate with a circular hole by FEM. IOSR Journal of Mechanical and Civil Engineering, 25–30.
    [12] Banerjee, M., Jain, N. K., & Sanyal, S. (2012). Three dimensional parametric analyses on effect of fibre orientation for stress concentration factor in fibrous composite cantilever plate with central circular hole under transverse loading. IIUM Engineering Journal, 13(2), 131–144.
    [13] Kumar, A., Agrawal, A., Ghadai, R. K., & Kalita, K. (2016). Analysis of stress concentration in orthotropic laminates. Procedia Technology, 23, 156–162.
    [14] Mhalla, M. M., & Bouraoui, C. (2016). Experimental, analytical, and finite element study of stress concentration factors for composite materials. Journal of Composite Materials, 50(8), 1087–1099.
    [15] Makki, M. M., Bahloul, A., & Bouraoui, C. (2018). Reliability prediction of the stress concentration factor using response surface method. The International Journal of Advanced Manufacturing Technology, 94, 817–826.
    [16] Ghayoor, H., Hoa, S. V., & Marsden, C. C. (2018). A micromechanical study of stress concentrations in composites. Composites Part B: Engineering, 132, 115–124.
    [17] Chawla, K., & Ray-Chaudhuri, S. (2018). Stress and strain concentration factors in orthotropic composites with hole under uniaxial tension. Curved and Layered Structures, 5, 213–231.
    [18] Su, Z., Xie, C., & Tang, Y. (2018). Stress distribution analysis and optimization for composite laminate containing hole of different shapes. Aerospace Science and Technology, 76, 466–470.
    [19] Damghani, M., Bakunowicz, J., & Murphy, A. (2019). Understanding the influence of laminate stacking sequence on strain/stress concentrations in thin laminates at repair holes with large scarf angles. Journal of Composite Materials, 53(28–30), 4273–4284.
    [20] Divse, V., Marla, D., & Joshi, S. S. (2020). Finite element analysis of tensile notched strength of composite laminates. Composite Structures, 255, Article 112880.
    [21] Aabid, A., Hrairi, M., Ali, J. S. M., & Abuzaid, A. (2018, June). Stress concentration analysis of a composite patch on a hole in an isotropic plate. International Journal of Mechanical and Production Engineering Research and Development (IJMPERD), Special Issue, 249–255.
    [22] Khan, M. A., & Kumar, S. (2018). Interfacial stresses in single-side composite patch-repairs with material tailored bondline. Mechanics of Advanced Materials and Structures, 25(4), 304–318.
    [23] Hall, Z. E. C., Lin, R. J. T., Hong, T., & Mouritz, A. P. (2022). The effectiveness of patch repairs to restore the impact properties of carbon-fibre reinforced-plastic composites. Engineering Fracture Mechanics, 270, Article 108570.
    [24] Paroissien, E., & Lachaud, F. (2018). Numerical modelling of bonded joints and repairs. Composites Part A: Applied Science and Manufacturing, 113, 201–217.
    [25] Orsatelli, J.-B., Paroissien, E., Lachaud, F., & Schwartz, S. (2024). Experimental and numerical multiscale testing of CFRP bonded repairs. Composites Part B: Engineering.
    [26] Kumar, A., Sahoo, C. K., & Arockiarajan, A. (2024). Study of damage behavior and repair effectiveness of patch repaired carbon fiber laminate under quasi-static indentation loading. Defence Technology, 34, 29–41.
    [27] Walid, H. M., Kamel, Z., Mohammed, B., & Rachid, M. (2024). Numerical damage prediction of marine structures reinforced by composite patch with XFEM and CZM methods. The Eurasia Proceedings of Science, Technology, Engineering & Mathematics, 32, 173–184.
    [28] Wang, L.-C. (2024). Stress analysis of laminated composites with pin-loaded holes.
    [29] American National Standards Institute. (1967). Preferred limits and fits for cylindrical parts (ANSI B4.1 1967 [R1974/1987]).
    [30] Luo, B., Xue, L., Wang, Q., & Zou, P. (2024). Mechanistic study of failure in CFRP hybrid bonded–bolted interference connection structures under tensile loading. Materials, 17(6), Article 2117.
    [31] Wang, X., Cao, Z., Wang, Y., & Guo, Y. (2024). Influence of bolt dynamic installation on topography characteristics and mechanical behaviors of CFRP interference-fit bolted joints. Chinese Journal of Aeronautics, 37(2), 482–500.
    [32] Wei, X., Huang, M., Cai, C., Xu, Z., & Peng, Q. (2025). Experimental and numerical investigation of patch repair for composite laminates subjected to low-velocity impact. Polymers, 17, Article 942.
    [33] Sivagangai, T., & Younus, A. M. (2025). Experimental investigation of repair of glass epoxy composite with edge and center crack by epoxy resin. Mechanics of Advanced Composite Structures, 12(Special Issue 2), 371–377.
    [34] Tserpes, K. I., Papanikos, P., & Pantelakis, S. G. (2005). Progressive damage modelling of bonded composite repairs. Theoretical and Applied Fracture Mechanics, 43(2), 189–198.
    [35] Herakovich, C. T. (1997). Mechanics of fibrous composites (1st ed.). Wiley.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE