| 研究生: |
周庭旭 Chou, Ting-Hsu |
|---|---|
| 論文名稱: |
數位濾波器應用於土石流地聲訊號分析之研究 Applications of digital filters for analyzing ground vibration signals produced by debris flows |
| 指導教授: |
黃清哲
Huang, Ching-Jer |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 73 |
| 中文關鍵詞: | 數位濾波器 、地聲檢知器 、光纖加速度計 |
| 外文關鍵詞: | Geophone, Fiber bragg grating sensor, Signal processing filters |
| 相關次數: | 點閱:105 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
地表震動監測為近年來重要的土石流事發型監測方法,但是事發型監測方法的缺陷為應變時間短。為了改善這個缺點,本研究期望藉由濾波器提分析地表震動訊號,提前土石流的偵測時間。本研究藉由四種不同的數位濾波器(巴特沃斯濾波器 (Butterworth filter)、橢圓形濾波器 (Elliptic filter)、切比雪夫一號濾波器 (Chebyshev Type I filter)、切比雪夫二號濾波器 (Chebyshev Type II filter) )提取土石流波湧前端訊號,並且以地表震動強度分析取得背景雜訊的平均強度作為參考閾值。而土石流接近震動感測器時的震動強度若高於閾值,則判斷為土石流的偵測時間。三起作為分析樣本的土石流事件中,兩起由地聲檢知器 (Geophone) 量測得,一起由光纖加速度計 (Fiber Bragg Grating Accelerometer) 量測得。由分析結果可知,地聲檢知器所量測得的訊號經過數位濾波器保留特定區段後確實可以提前土石流偵測時間,原因為地聲檢知系統的系統內雜訊太多,造成訊號品質不良,藉由濾波後可將雜訊排除,達到提升訊號品質、提取土石流前端訊號並提前土石流偵測時間之功用。而光纖感知系統所量測得之訊號則因來自系統內部的雜訊較少,濾波器將其品質提升的程度有限,所以提前偵測土石流的效果也有限,訊號濾波前後所估算的土石流偵測時間並無明顯差異。
Ground vibration monitoring is one of the most important techniques as a real-time monitoring system of debris flow events. However, the limitation of the ground vibration monitoring system results in a short period of reaction time to evacuate the inhabitants before the debris flow disasters arrive. To improve the limitation of this system, this study analyzes ground vibration signals with signal processing filters to be early the disaster warning time. Four different signal processing filters, including Butterworth, Elliptic, Chebyshev Type I, and Chebyshev Type I filters are used to identify the ground vibration signals of the surge front resulted from the debris flows. The threshold levels of the average intensity of the ambient noise are indicated by an analysis of ground vibration intensity. The detected time of a debris flow is defined while the intensity of the ground vibration signals exceeds the threshold level. The first two cases to analyze ground vibration signals are measured by the geophones, and the last one is evaluated by the fiber bragg grating accelerometer. The results determine that the disaster warning time estimated with these signal processing filters are earlier than original ones because the noise from the geophone system are obviously sufficient to overlap the debris flow signals. In the case of fiber system, those signal processing filters did not improve the quality of the signal as much as they work on the geophone signals since the noise generated from the fiber system are much lower than those from the geophone system. As a result, the debris flows detected time seems without significant improvements even though the signal processing filters are implemented to modify the row signal data.
1.Arattano, M., “Monitoring the Presence of the Debris-Flow Front and Its Velocity through Ground Vibration Detectors”, Debris Flow hazard Mitigation: Mechanics, Prediction and Assesment, edited by Rickenmann and Chen, Millpress, Rotterdam,2003.
2.Arattano, M., and Marchi, L., “Systems and Sensors for Debris-Flow Monitoring and Warning”, Sensors,Vol. 8,pp. 2436-52,2008.
3.Berkoff, T. A., and Kersey, A. D., “Experimental Demonstration of a Fiber Bragg Grating Accelerometer”, IEEE. Photo. Technol. Lett.,Vol. 8,pp. 1677-79,1996.
4.Bolt, В. A., 'Earthquakes, a Primer', Freeman, San Francisco, 1978.
5.Cooley, J. W., and Tukey, J. W., “An Algorithm for the Machine Calculation of Complex Fourier Series”, Math. Computation,Vol. 19,pp. 297-301,1965.
6.Friedlander, B., and Porat, B., “Detection of Transient Signals by the Gabor Representation”, IEEE Trans. Acoust., Speech, Signal Processing,Vol. 37,pp. 169-80,1989.
7.Friedlander, B., and Zeira, A., “Oversampled Gabor Representation for Transient Signals”, IEEE Trans. Acoust., Speech, Signal Processing,Vol. 43,pp. 2088-94,1995.
8.Huang, C. J., Yeh, C. H., Chen, C. Y., and Chang, S. T., “Ground Vibrations and Airborne Sounds Generated by Motion of Rock in a River Bed”, Natural Hazards and Earth System Sciences,Vol. 8,pp. 1139-47,2008.
9.Huang, C. J., Yin, H. Y., Chen, C. Y., Yeh, C. H., and Wang, C. L., “Ground Vibrations Produced by Rock Motions and Debris Flows”, J. Geophys. Res. Earth Surface,Vol. 112,2007.
10.Itakura, Y, Fujii, N, and Sawada, T, “Basic Characteristics of Ground Vibration Sensors for the Detection of Debris Flow”, Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere,Vol. 25,pp. 717-20,2000.
11.Itakura, Y, Inaba, H, and Sawada, T, “A Debris-Flow Monitoring Devices and Methods Bibliography”, Natural Hazards and Earth System Science,Vol. 5,pp. 971-77,2005.
12.Johnson, A. M., and Rodine, J. R., “Debris Flow”, Slop Instability,pp. 257-361,1984.
13.Kersey, A. D., Davis, M. A., Patrick, H. J., LeBlanc, M., Koo, K. P., Askins, C. G., Putnam, M. A., and Friebele, E. J., “Fiber Grating Sensors”, J. Lightwave Technol.,Vol. 15,pp. 1442-63,1997.
14.Massimo, A., “On Debris Flow Front Evolution Along a Rorrent”, Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere,Vol. 25,pp. 733-40,2000.
15.Morey, W. W., Meltz, G., and Glenn, W. H., “Fiber Optic Bragg Grating Sensors”, OE/FIBERS'89,pp. 98-107,1990.
16.Okuda, S., Okunishi, K., and Suwa, H., “Observation of Debris Flow at Kamikamihori Valley of Mt. Yakedade”, Disaster Prev. Res. Inst. Kyoto Univ.,pp. 127-30,1980.
17.Richart, F. E., Hall, J. R., and Woods, R. D., “Vibrations of Soils and Foundations”,1970.
18.Shearer, P. M., “Introduction to Seismology”, Cambridge University Press,1999.
19.台灣水土保持局及中華水土保持學會,「水土保持手冊」,1992。
20.李尹維,「不同土石流震動訊號偵測系統特性之比較」,國立成功大學水利工程研究所碩士論文,2011。
21.吳積善、康志成、田連權,「雲南蔣家溝泥石流觀測研究」,北京,科學出版社,1990。
22.高橋保,「橫跨土石流潛勢區域之橋梁工程問題」,土木工程防災系列研習會論文集,中央大學土木系橋梁工程研發中心,1997。
23.簡旭君,「光纖光柵應變管之研發」,國立交通大學土木工程研究所碩士論文,2003。
24.(蘇) B. C. 斯捷潘諾夫著,孟河清譯「泥石流與泥石流體的基本特性及其量測方法」,科學技術文獻出版社重慶分社,1986。