| 研究生: |
王黎昇 Wang, Li-Sheng |
|---|---|
| 論文名稱: |
鋁漿半成品前處理分析之改善 Improving the Pre-treatment Analysis of Alumina slurry intermediate |
| 指導教授: |
周榮華
Chou, Jung-Hua |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系碩士在職專班 Department of Engineering Science (on the job class) |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 110 |
| 中文關鍵詞: | 化學機械研磨(Chemical Mechanical Polishing, CMP) 、化學研磨液(ChemicalSlurry) 、沉降 、分散 |
| 外文關鍵詞: | Chemical Mechanical Polishing, Slurry, Dispersion, Sedimentation |
| 相關次數: | 點閱:125 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
化學機械研磨(Chemical Mechanical Polishing, CMP)是為了解決表面不平整造成微影光源難以對焦的問題而導入積體電路製程,以平坦化晶圓表面;藉由化學反應及機械研磨來移除基材表面的薄膜,使晶圓表面粗糙度及平坦度到達一定的可容許範圍,奈米技術的CMP 是目前最有效達到晶圓表面平坦化的方法。
CMP是在研磨機的研磨墊(Pad)上注入含微細拋光粉末之研磨漿料(Slurry),進行化學機械式研磨拋光晶圓的動作,將積體電路晶圓(IC Wafer)上的介電層(oxide layer)與金屬層(metal layer)磨平,為化學腐蝕作用與研磨顆粒的機械式物理作用之複合方法,使其全面平坦化進而達到立體佈線或者多層佈線,提升佈線密度(pattern density),同時降低缺陷密度(defect density),提升製程良率。
化學研磨液是配合化學機械研磨所研發出來的產品,是運用在CMP製程中不可或缺的耗材。它的使用量受半導體製程的影響,隨著多層佈線時配線數的增加使研磨的次數隨之增加,因此CMP研磨液的使用量有持續增加的趨勢,而且隨著半導體製程線寬越來越窄,對化學機械研磨製程技術要求也越來越高,CMP研磨液的研發也隨之演進。
氧化鋁研磨液的密度大,在溶液中易沉降而形成緻密性的沉澱餅,且沉澱餅的微粒間會形成不可逆的鍵結,使顆粒聚集不易分散,進而破壞研磨漿料的懸浮性。奈米尺寸的金屬顆粒溶入液體後,會受到布朗運動的影響,使得固體顆粒與液體分子連續發生不規律的相互撞擊,使奈米顆粒能夠穩定地懸浮於液體中而不易沈澱。運用物理攪拌、搖晃碰撞的方式,使其鋁漿漿料流體運動快速且保持相互干擾狀態,使鋁漿半成品的鋁漿顆粒能夠均勻的分佈在樣品瓶內,以提高重複量測保留樣品時的數據精確度,讓有效率的前處理方式來改善量測分析上的誤差。實驗結果顯示,本研究之超音波震盪與機械搖擺方法能、有效地將鋁漿樣品品質維持在5%的控制範圍內。
關鍵字: 化學機械研磨(Chemical Mechanical Polishing, CMP)、化學
研磨液(ChemicalSlurry)、沉降、分散。
ImprovingthePre-treatment Analysis of Alumina Slurry Intermediate
Author: Li-ShengWang
Advisor: Jung-Hua Chou
Department of Engineering Science
SUMMARY
The density Alumina slurry is high and can settle easily in the solution to form a dense cake of precipitate. The aggregated particles do not disperse readily, and thus undermine the polishing slurry suspension. Using physical agitation and shaking to promote the intermediate aluminum slurry particles to distribute evenly distributed in the sample. In order to improve reliability, repeated measurementswere preformed, irrespective of retention time, so that measurement errorscould be reduced effectively.Experimental results showed that with the new devised method, the sample quality could be within raw datacontrolrange(5%), andnew controlrangelimit.
Keywords: Chemical mechanical polishing, Slurry, Sedimentation, Dispersion
INTRODUCTION
Chemical mechanicalpolishingprocesshas beenwidely used in thesemiconductor industrywafermanufacturing process for wafer surfaceplanarization by the comprehensive force and chemical etching process. Although CMPis important, but it is ahighly pollutingprocessin the clean room due to its slurry.Generally, polishing requires a solution with a stablesuspensionofabrasive particles havinguniform size, accurate pHvalue, a broadoperating range, long life, andeasy to clean andremoved. Since theslurrycharacteristics affect the material removalrate(MRR),selectivity,homogeneity(uniformity), and totalthicknessvariation(TTV)amount, slurryproperties for different materialsplanarization processwillvary.The most commontypesofabrasive particles are Silica (SiO2), Ceria (CeO2), Alumina (Al2O3), Zirconia (ZrO2)andMagnum (MnO2). The purpose of this study was to provide a slurry with uniform particle distribution meeting the client specifications for practical applications by physical methods without changing the chemical properties of the slurry.
MATERIALS AND METHODS
The main contents of the experiment is the physical particle dispersionmainly by mechanical stirring, shaking,andultrasonicdecentralizedmanner.Before startingthe experiment, instruments were calibrated and measurement reliability checked toconfirm their suitability for alumina slurryintermediatemeasurement.
Sonicationdensityarchitectureof this experiment was to analyze thealumina slurryintermediate at the centerforaluminum paste which could easilyprecipitate to the bottom of thevial. Bysonicationfirst and followed withmechanicalshaking, theprecipitatedaluminum pastecould disperseto form a uniformsuspensionliquid material toreturn tothe initialdensityvalue. Under this sameinitial density valuesas the starting point, we usedthree physically differentwaysat discretetimetostrengthen the test. The relationship of the number of particlesobservedchanged withthe amount of timeand therelativesituations of the alumina slurryintermediate.
In this paper,experimentswere mainly to dispersethe chemicalpolishing solutionwithout changing thenature ofthe slurry byusingonlyphysical agitation, shaking collisionorshearmode, so that the alumina slurryintermediatealuminum pasteparticles could beuniformlydistributed within thevial.
RESULTS AND DISCUSSION
Prior to the processingexperimental analysis, thealumina slurryintermediate was storedassamples with differentretention times. Then bysonicationdensityanalysis, the effect of different retentiontimesand varying settlingdegreesofthe alumina slurryintermediatecould be removed to ensure that noprecipitationofaluminum pasteexisted in the samples to ensure experimental reliability and reduce measurement error by repetition.
The experimental resultsshowed that the sonicationtime should beat least 5minutes, 30-secondintervalper minuteusing aswingshake(150times/mins).Continuousshakingfor 5minutes (shakingspeed,150times/min), and thencarrying outthe samplingstrawmachinefor measurements after sampling at themiddlelocation aboutthe center point).
Using the new pre-treatment method,the values of G150203000-4 and G150304000-1 were out of control 5%(about9%and6%). On the other hand, otherlotswere within raw datacontrolrange(5%), andnew controlrangelimit(channel 2_0.29 ~ 0.43μm_6.00E06 ~ 1.40E07).
[1]林明智,化學機械研磨的微觀機制探討,國立中央大學化學工程
研究所碩士論文,2000
[2]楊富涵,氧化鋁添加軟鋁石之混合漿料懸浮與流變行為及其應用研究,南台科技大學化學工程研究所碩士論文,2005
[3]鍾武雄、郭宗憲、范振信、劉世國,二氧化矽CMP製程之研磨漿混合方式對其特性之影響,工業技術研究院電子與光電研究所,中國機械工程學會第二十四屆全國學術研討會論文集, 2007
[4]任俊,沈健,卢寿慈,颗粒分散科学与技术,北京:化学工业出版社,2005.
[5]李良超,楊軍,徐斌,輕密度颗粒在攪拌槽内懸浮特性的數值模擬,農業工程學報,2013
[6]湛含輝,湛雪輝,李小東,混凝(沉降)反應中”流體剪切力與物理化學”的相互效應研究,礦冶工程,2005
[7] Matthew L. Fisher, Miroslav Colic, Masa P. Rao,* and Fred F. Lange , Effect of Silica Nanoparticle Size on the Stability of Alumina/Silica Suspensions , Materials Department,
University of California, Santa Barbara,,2000
[8]賴耿陽,超音波工學理論與實務,復漢出版社,1999。
[9]卓清松,鄧敦平,洪忠仁,林琦翔,以顆粒轉動模式修正馬克斯威爾導熱度計算方程式,國立台北科技大學冷凍空調研究所,Sep.2004.
[10]Lewi J.A,"Colloidal Processing of Ceramics"J.Am.Ceram..Soc ,2000
[11]李春輝,王补宣,彭曉峰 奈米顆粒懸浮液穩定性分析,清華大學熱能系工程熱物理所,北京 100084
[12]胡隱樵,陳晋北,左洪超紊流强度定理和紊流發展的宏觀機制中國科學院寒區旱區環境與工程研究所,
[13 ]游文淮以離散元素法模擬膠粒粒間作用與布朗運動之研究,國立臺灣大學土木工程學研究所,2003.
[14 ]李劍峰以離散元素研究膠體粒子的異質聚結、堆疊與自我組裝,國立臺灣大學土木工程學研究所,2006.
[15]羅仕瀚各種膠體系統在電解質溶液中之擴散泳現象,國立臺灣大學化學工程學研究所,2009.
[16]紀柏宏 利用動態光散射原理研發光纖式奈米顆粒量測系統,國立台北科技大學,機電整合研究所,2005.
[17]王宏元奈米粒子之布朗運動模擬,國立台北交通大學,機械工
程研究所,2009.
[18]Weerapun Duangthongsuk、 Somchai WongwisesAn experimental study on the heat transfer performance and pressure dropof TiO2-water nanofluids flowing under a turbulent flow regime,King Mongkut’s University of Technology Thonburi, Bangmod, Bangkok 10140, Thailand
[19]Geoffrey C. Ansell and Eric DickinsonBrownian-dynamics Simulation of the Formation of ColloidalAggregate and Sediment Structure,Procter Department of Food Science, University of Leeds, Leeds LS2 9JT.
[20] 賴逢祥奈米流體紊流熱傳增強的數值研究,成功大學機械工程學系學位論文,2007年
[21]李顯叢未添加鹽類的稀薄膠體溶液中的沉降平衡,中央大學化學工程與材料工程學系學位論文,2008年
[22]Ren´e vanRoijDefying gravity with entropy and electrostatics:
sedimentation of charged colloids,Institute for Theoretical Physics, Utrecht University, Leuvenlaan 4,3584 CE Utrecht, The Netherlands
[23]F. Cardinaux A H. Bissig A. Stradner L.F. Rojas-Ochoa A V. Trappe C. Urban A P. Schurtenberger,New trends in optical microrheology of complex fluids and gels,2004。
[24]G. K. BATCHELORThe effect of Brownian motion on the bulk stress in asuspension of spherical particlesDepartment of Applied Mathematics and TheoreticalPhysics, University of Cambridge,1977
[25]Suvankar Ganguly , Sudipta Sikdar, Somnath BasuExperimental investigation of the effective electrical conductivity of aluminum
oxide nanofluids,Research & Development Division, Tata Steel Ltd., Jamshedpur 831007, India。
[26]李尚實 不同粒徑大小的石墨包裹奈米鎳晶粒在NP-9 膠體系統
中之分散研究,國立台灣大學地質科學研究所,2006。