簡易檢索 / 詳目顯示

研究生: 林志平
Lin, Chin-ping
論文名稱: 以電芬頓技術處理無電電鍍鎳廢液之研究
Treatment of Electroless Nickel Plating Spent Solution by Electro-Fenton Process
指導教授: 黃耀輝
Huang, Yao-Hui
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 125
中文關鍵詞: 無電電鍍鎳電芬頓芬頓
外文關鍵詞: Electro-Fenton, Electroless plating wastewater, Fenton
相關次數: 點閱:82下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以模擬的無電電鍍鎳鎳廢液為出發點,針對其中的螯合劑檸檬酸,還原劑次磷酸及重金屬成分鎳,探討其處理方法。首先嘗試利用芬頓試劑,目的在破壞螯合劑並且氧化次磷酸形成亞磷酸及磷酸,再搭配化學混凝沉澱法以去除溶液中的COD和金屬鎳離子離子離子。其最佳操作條件為pH介於2.0~4.0之間,試劑莫耳比在次磷酸:檸檬酸:Fe(II) =1:1:1.5下,可完全破壞螯合劑,釋出鎳離子,經混凝沉澱後達到99.9%的去除效率,但此時COD的去除率僅80%。原因為次磷酸在氧化後產生亞磷酸及磷酸,會與催化劑(Fe2+或 Fe3+)錯合進而使其失活,錯合後的鐵便無法有效催化雙氧水產生氫氧自由基,故溶液中會殘留大量的COD。
    接著研究Electro-Fenton法氧化雙成分檸檬酸及金屬鎳離子離子離子,因芬頓法氧化方面所產生的污泥量過大,在Electro-Fenton中減少鐵的用量,其莫耳比[Fe2+]:[ Cit.]:[ Ni]:[H2O2] = 1:5:5:54的操作條件下可去除90%的COD。隨後探討pH值、電流密度、陰極構造對其系統之影響,其最佳pH值為2~3;電流密度為CDc = 190 A/m2;將陰極構造由管狀改為網狀時,由於質傳效果增加,其COD突破原先的處理極限由90%提升至95%。
      在模擬無電電鍍鎳混合液高級氧化研究中,探討加入次磷酸後對其雙成份反應之影響。在不同次磷酸濃度加藥下,其處理結果可由Fenton
    法的40% COD去除率提升至90%。由AA分析中可看見,隨著次磷酸氧化成磷酸與鐵錯合後,溶液中鐵的量隨之減少,但殘留之COD皆不變。
    最後用以上獲得之加藥條件來處理無電電鍍鎳實廠廢液時,發現由於廢液中含有過多之磷酸,需將鐵催化劑的量由1100 ppm提高至3300ppm,且由硫酸亞鐵換成為硫酸鐵,其COD去除率可由80%提升至90%以上。

    The primary objective of this dissertation is to study the treatment of chelate (citrate), reductant ( hyposphosphite ) and nickel ion from electroless nickel plating wastewater. The Fenton’s reagent was employed to remove COD of citrate and oxidize hypophosphite to phosphite or phosphate, then removed Nickel by chemical coagulation.
    In trinary system (including hypophosphite, nickel ion and citrate), the hypophosphite could be oxidized entirely by Fenton’s reagent at pH2.0~4.0 and by the following molar ratio of dosage: hypophosphite:citrate:Fe(II) = 1:1:1.5. Only 80% COD major contributed by citrate was removed due to the iron ions are inhibited by phosphite and phosphate. On the other words, the poisoned iron ions could not catalyze H2O2 and remove COD.
    In binary system (citrate and nickel ion), The Electro-Fenton was employed. Because the Fenton reaction would produce much amount of sludge, low concentration of Fe(II) was used in Electro-Fenton. The molar ratio of dosage in this stage: Fe(II):citrate:Ni:H2O2=1:5:5:54 and about 90% COD was removed. Afterwards effect of pH on current density and configuration of cathode was discussed this system. The optimum current density is 190 A/m2 at pH 2 and 3. If we change the configuration of cathode from tube to net and the COD removal was increased from 90% to 95% due to mass transfer resistant was decreased.
    In modeling electroless plating wastewater, the effect of hypophosphite on the binary system was discussed. In different hypophosphite concentration, 95% COD could be removed by electro-Fenton process, but only 20% COD was removed by Fenton process. The concentration of iron ions is decreased with reaction time because the iron ions were precipitated by oxidized phosphate. The residue COD in solution almost keep constant.
    Finally, the conditions of the treatment of modeling wastewater were performed to treat practical electroless plating wastewater. The dosage of iron have to increase from 1100 ppm to 3300 ppm resulted in the large amount of phosphate. If the Fe (III) rather than Fe(II) was employed, the removal of COD would increase from 80% to 90%.

    中文摘要…………………………………………………………………….... I 英文摘要………………………………………………………………….... III 誌謝…..………………………………………………………………..…... V 目錄………………………………………………………………………...VII 表目錄………………………………………………………………………ⅩI 圖目錄………………….………………………………………………...ⅩII 第一章 緒論………………………………………………………………… 1 1-1研究背景及動機……………………………………………………… 1 1-2研究目的與內容……………………………………………………… 4 第二章 文獻回顧…………………………………………………………… 5 2-1磷的簡介……………………………………………………………… 5 2-1-1磷的氫氧化物對環境的影響……………………………………. 6 2-1-2磷處理文獻回顧…………………………………………………. 8 2-2 檸檬酸的簡介………………………………………………………. 10 2-2-1 檸檬酸的應用及其對環境之影響…………………………….. 11 2-2-2檸檬酸處理文獻回顧……………………………………........... 14 2-3高級氧化技術處理比較文獻回顧………………………………….. 16 2-4化學混凝法之原理………………………………………………….. 21 2-5高級氧化技術原理………………………………………………….. 24 2-5-1 Fenton Reaction………………………………………………… 24 2-5-2 Electro-Fenton Reaction………………………………………... 26 第三章 實驗設備、材料與方法…………………………………….......... 30 3-1實驗架構…………………………………………………………….. 31 3-2實驗藥品……………………………………………………….......... 32 3-3實驗設備…………………………………………………………….. 33 3-4實驗裝置…………………………………………………………….. 34 3-5實驗步驟…………………………………………………………….. 35 3-5-1 Fenton氧化法…………………………………………………... 35 3-5-2 Electro-Fenton氧化法………………………………………… 35 3-6 水樣分析方法………………………………………………………. 37 3-6-1 亞鐵濃度測定…………………………………………………. 37 3-6-2 COD分析………………………………………………………. 38 3-6-3 IC分析…………………………………………………………. 39 第四章 實驗結果與討論………………………………………………….. 40 4-1化學混凝法處理次磷酸、亞磷酸、磷酸與檸檬酸……………….. 42 4-1-1 pH變因…………………………………………………………. 42 4-1-2 FeCl2劑量……………………………………………………….46 4-2 應用Fenton程序處理檸檬酸與鎳離子雙成份之研究…………… 49 4-2-1 pH變因…………………………………………………………. 49 4-3 應用Electro-Fenton法處理檸檬酸與鎳離子雙成份溶液………… 52 4-3-1 Electro-Fenton 法-亞鐵加藥量變因.………………………… 52 4-3-2 Electro-Fenton 法- H2O2加藥劑量變因…….………………… 56 4-3-3 Electro-Fenton 法-電流密度變因…….………………………. 60 4-3-4 Electro-Fenton 法- H2O2加藥速率變因…..…………………… 63 4-3-5 Electro-Fenton 法- pH變因……………..…………………… 67 4-3-6 Electro-Fenton 法-陰離子變因………………..……………… 70 4-3-7 Electro-Fenton 法-陰極結構變因……………………………… 73 4-4 檸檬酸與鎳離子雙成份溶液各高級氧化技術比較………………..76 4-5 Electro-Fenton法處理檸檬酸、鎳離子與次磷酸三成份溶液…….. 78 4-6三成份各高級氧化技術比較…………….…………………………. 85 4-7處理無電電鍍鎳廢液………………………….……….…………… 87 4-7-1 Electro-Fenton 法-亞鐵加藥量變因……….……………………...87 4-7-2 各高級氧化技術處理無電電鍍鎳廢液之比較…………………..90 4-7-3 陰極上碎片與污泥之檢測(EDS & XRD)…………………….92 第五章 結論與建議………………………………………………………... 97 5-1 結論………………………………………………………………..... 97 5-1-1檸檬酸、鎳離子及次磷酸雙成分Fenton氧化法…………….. 97 5-1-2 檸檬酸與鎳離子雙成分Fenton氧化法……………………..... 97 5-1-3 檸檬酸與鎳離子雙成份高級氧化比較……………………….. 97 5-1-4模擬廢水與無電電鍍鎳廢液高級氧化比較…………………... 98 5-2 建議………………………………………………………………….. 99 參考文獻…………………………………………………………………... 100 自述…..…………………………………………….………………….109

    Adams G. E., Boag J. W., Michael B.D., Reactions of the hydroxyl radical. Part 2. Determination of absolute rate constants, Trans. Faraday Soc., 61, 1417-1424, 1965.
    Ahmed A., Abd EI-Raady, Tsuyoshi N., Phuong K., Catalytic Ozonation of Citric Acid by Metallic Ions in Aqueous Solution, Ozone, Science and Engineering, 27, 495-498, 2005.
    Bali U., Catalkaya E. C., Sengul F., Photochemical Degradation and Mineralization of Phenol: A Comparative Study, Journal of Environmental Science and Health Part A -Toxic/Hazardous Substances & Environmental Engineering, 38, 2259, 2003.
    Balmer M. E., Sulzberger B., Atrazine Degradation in Irradiated Iron/Oxalate Systems: Effects of pH and Oxalate, Environmental Science and Technology, 33, 2418, 1999.
    Barb, W. G., Baxendale, J. H., George, P., Hargrave, K. R., Reactions of ferrous and ferric ions with hydrogen peroxide. II. The. ferric ion reaction., Trans. Faraday Soc., 47, 462-500, 1951.
    Bauer R., Waldner G., Fallmann H., Hager S., Klare M., Krutzler T. Malato S., Maletzky P., The Photo-Fenton reaction and the TiO2/UV process for waste water treatment-novel developments, Catalysis Today, 53, 131, 1999.
    Benkelberg H. J., Warneck P., Photodecomposition of iron(III) hydroxo and sulfato complexes in aqueous solution: Wavelength dependence of ‧OH and SO4- quantum yields, Journal of Physical Chemistry, 99, 5214, 1995
    Bielski B. H. J., Cabelli D. E., Arudi R. L., Ross A. B., Reactivity of HO/O radicals in aqueous solution, Journal of physical and chemical reference data, 14, 1041, 1985.
    Birame B., Enric B., Dieng M. M., Electrochemical degradation of the herbicide 4-chloro-2mehtylphenoxacetic acid in aqueous medium by peroxi-coagulation and photoperoxi-coagulation, Journal of electroanalytical chemical, 540, 25-34, 2003.
    Buxton G. V., Greenstock C. L., Helman W. P., Ross A. B., Critical review of rate constants for reaction of hydrated electrons, hydrogen atoms and hydroxyl radicals (‧OH/O-‧) in aqueous solution, J. Phy. Chem. Ref. Data17, 513-886,1988.
    Chen, C. C.;Lai, C. K.;Liang, M. T.;Hsu, C. Y., The study of citric acid decomposition in a supercritical water oxidation system, Proceedings of the Air and Waste Management Association’s Annual Meeting and Exhibition, 198, Proceedings of the A and WMA’s 97th Annual Conference and Exhibition;Sustainable Development:Gearing up for the Challenge, 5823-5830, 2004.
    Chou S. S., Huang Y. H., Lee S. H., Huang G. H., Huang C., Treatment of high strength hexamine containing wastewater by electro-Fenton method, Wat. Res, 1.33, 3, 751-759,1999.
    Elisabetta P., Luca D. P., Carlo M., Oxidation of phosphorus compounds by Fenton’s reagent, Annali di Chemica by Societá Chimica, 2003.
    Enric B., Birame B., Angel B. M.., Calpe J. C., Garrido J. A., Electrochemical degradation of chlorophenoxy and chlorobenzoic herbicides in acidic aqueous medium by the peroxi-coagulation method, Chemosphere, 51, 227-235, 2003.
    Enric B., Eva M., Roser S., Laura S., José P., Xavier D., Juan C., Aniline mineralization by AOP’s:anodic oxidation, photocatalysis, electro-Fenton and photoelectron-Fenton processes, Applied Catalysis B, Environmental, 16, 31-42.1998
    Enric B., Birame B., Ignasi S., José A. G., Rosa M. R., Conchita A., Pere-Lluís C., Christos C., Electrochemical destruction of chlorophenoxy herbicides by anodic oxidation and electro-Fenton using a boron-doped diamond electrode, Electrochimica Acta, 49, 4487-4496, 2004.
    Francko, D. A., Heath, R. T., UV-Sensitive Complex Phosphorus: Association with Dissolved Humic Material and Iron in a Bog Lake, Limnol. Oceanogr., 27, 564, 1982.
    Getoff, N., Schwoerer, F., Markovic, V. M., Sehested, K., Nielsen, S. O., J. Phys. Chem., 75, 749-755, 1971.
    Fytianos K., Voudrias E., Raikos N., Modelling of phosphorus removal from aqueous and wastewater sample using ferric iron, 101, 123-130, 1998.
    Gilberg L., Nilsson D., Akesson M., The influence of pH when precipitating orthophosphate with aluminium and iron salts, Proceedings of the 7th Gothenburg Symposium, 95-106, 1996.
    Gnann M., Gregor C. H., Schelle S., Chemical oxidative process for purifying highly contained wastewater, WO patent 93/08129, Peroxid- Chemie GmbH. DE, 1993.
    Huang Y. H., Chen C. C., Huang G. H., Chou S. S., Comparison of a novel electro-Fenton method with Fenton’s reagent in treating a highly contaminated wasterwater, Water Science and Technology, V43, 2, 17-24, 2001.
    Hui Z., Daobin Z., Jiayong Z., Removal of COD from landfill leachate by electro-Fenton method, Journal of Hazardous Materials, B135, 106-111, 2006.
    Italo M., Paola P., Photocatalytic oxidation of organic acids in aqueous media by a supported catalyst, Chemical Engineering Science, 54, 3107-3111, 1999.
    Ignasi S., Enric Brillas, Electrochemical Degradation of Paracetamol from Water by Catalytic Action of Fe2+, Cu2+, and UVA Light on Electrogenerated Hydrogen Peroxide, Journal of The Electrochemical Society, 153, D1-D9,2006
    Ignasi S., Enric Brillas, Degradation of clofibric acid in acidic aqueous medium by electro-Fenton and photoelectron-Fenton, Chemosphere 66, 1660-1669,2007
    Jayson G. G., Parsons B. J., Swallow A. J.,Some simple, highly reactive, inorganic chlorine derivatives in aqueous solution .Their formation using pulses of radiation and their role in the mechanism of the Fricke dosimeter, Jour. Chem. Soc., 169, 1597-607, 1973.
    Jeong J. S, Yoon J. Y., Dual roles of CO2-˙ for degrading synthetic organic chemicals in the photo/ferrioxalate system, Water Research, 38, 3531, 2004
    Jian J. Q., Maung H. Q., Maung N. W., Fook S. W., Effect of feed pH on an integrated membrane process for the reclamation of a combined rinse water from electroless nickel plating, Journal of Membrane Science, 217, 261-268, 2003.
    Jin A., Lu M. C., Parichat C., Kinetics of aniline degradation by Fenton and electro-Fenton processes, Water Research, 40, 1841-1847, 2006.
    Kavitha V., Palanivelu K., Degradation of 2-Chlorophenol by Fenton and Photo-Fenton Processes-A comparative Study, Journal of Environmental Science and Health Part A-Toxic/Hazardous Substances & Environmental Engineering, 38, 1215, 2003.
    Kavitha V., Palanivelu K., The role of ferrous ion in Fenton and photo-Fenton processes for the degradation of phenol, Chemosphere, 55, 1235, 2004
    Lee Y. H., Yoon J. Y., Jeong J. S., Lee C. H., Kim S. Y., Influence of various reaction parameters on 2,4-D removal in photo/ferrioxalate/H2O2 process, Chemosphere, 51, 901, 2003.
    Luedecke C., Hermanowicz S. W., Jenkins D., Precipitattion of ferric phosphate in activated sludge: a chemical model and its verification, Water Sci. and Technol., 21, 325-337, 1989.
    Lu M. J., Chen J. N., Chang C. P., Effect of inorganic ions on the oxidation of Dichlorvos insecticide with Fenton’s reagent, Chemosphere, 35, 2285-2293, 1997.
    McDowell M. M., Ivey M. M., Lee M. E., Salmassi F. T. M., Khachikian C. S., and Foster K. L., Detection of hypophosphite, phosphate, and orthophosphate in natural geothermal water by ion chromatography, Jour. of chromatography A, 1039, 105-111, 2004.
    Liou M. J., Lu M. J., Chen J. N., Oxidation of TNT by photo-Fenton process, Chemosphere, 57, 1107-1114, 2004.
    Matzapetakis M., Raptopoulou C. P., Tsohos A., Papaefthymiou V., Moon N., Salifoglou A., Synthesis, Spectroscopic and Structural Characterization of the First Mononuclear, Water Soluble Iron-Citrate Complex, (NH4)5Fe(C6H4O7)2‧2H2O, J. Am. Chem. Soc., 120, 13266-13267, 1998.
    Nagaosa Y., Aoyama E., Catalytic oxidation of phosphate and hypophosphite to phosphate on Pd/activated carbon powder, Carbon , 39, 2077-2088, 2001.
    N.N. Y., Gaurav B., Fenton and Electro-Fenton Methodes for Oxidation of H-Acid and Reactive Black 5,Journal of environmental engineering, ASCE, March, 2006.
    O. KRIK, Encyclopedia of chemical technology, 6, 150-178, 1979.
    Pierri E., Dalas E., The precipitation of ferric phosphate on porous polymer, Colloids and surfaces A, 139, 335-340, 1998.
    Pignatello J. J., Dark and photoassisted Fe3+-catalysed degradation of chlorophenoxy herbicides by hydrogen peroxide, Environmental Science and Technology, 26, 944, 1992.
    Qiquan W., Ann T. Lemley, Kinetic Model and Optimization of 2,4-D Degradation by Anodic Fenton Treatment, Environ. Sci. Technol, 35, 4509-4514, 2001.
    Recht H. L., Ghassemi M., Kleber E.V., Precipitation of phosphates from water and wastewater using lanthanum salts, Proc. Adv. Water Pollut. Res. 5th Intl. Conf., 1, 1-17, 1970.
    Ruppert G., Bauer R., The photo-Fenton Reaction-an effective photochemical wastewater treatment process, Journal of Photochemistry and Photobiology.A: Chemistry, 73, 75, 1993.
    Schumann U. Grundler P. Electrochemical degradation of organic substances at PbO2 anodes monitoring by continous CO2 measurements, Wat. Res., 32., 9., 2835-2842, 1998.
    Schwarz H. A., Dodson R. W., Reduction potentials of CO2-‧and the alcohol radicals, J. Phys. Chem., 93, 409-414, 1989.
    Sedlak D. L., Hoigne J., The role of copper and oxalate in the redox cycling of iron in atmospheric waters, Atmospheric Environment, 27, 2173, 1993.
    Sehested K., Bjergbakke E., Rasmussen O., Fricke H., Reactions of H2O3 in the Pulse-Irradiated Fe(II)-O2 System, Journal of chemical physics, 51, 3159, 1969.
    Seida Y., Nakano Y., Removal of phosphate in dissolution-coagulation process of layered double hydroxide, 34, 7, 906-911, 2001.
    SHUNITZ T., MASAYUKI K., YOSUKE N., MOTOKI T., HIDEKI K. and MASAMI F., DEGRADATION OF BISPHENOL A BY PHOTO-FENTON PROCESSES, Toxicol. And Environ. Chem.,
    85, 4-6, 95-102, 2003.
    Sibel I., Halil I., Degradation of 4-chloro-2-methylphenol in aqueous solution by electro-Fenton and photoelectro-Fenton processes Applied Catalysis B: Environmental 63, 243-248, 2006.
    Stumm. W., Morgen. J. J., Aquatic Chemistry. Chemical Equilibria and
    Rates in Natural Waters. 3ed ed., John Wiley & Sons, New York., 1996.
    Pumpel T., Treatment of rinsing water from electroless nickel plating with a biologically active moving-bed sand filter, Hydrometallurgy, 59, 383-393, 2001.
    Ventura A., Jacquet G., Bermond A., Camel V., Electrochemical generation of Fenton’s reagent application to atrazine degradation, Water research, 36, 517-522, 2002.
    Wang Q., Lemley A. T., Oxidation of diazinon by anodic Fenton treatment, Water research, 36, 3237-3244, 2002.
    Weiss, J., Humphrey, C. W., Nature, 163.2, 691, 1949.
    Werner S., CHEMISTRY of the SOLID-WATER INTERFACE, P.20, 1992.
    Wilson D. R., Page I. C., Cocci A. A. and Landine R. C., Case History-Two Stage, Low-Rate Anaerobic Treatment Facility For South American Alcochemical/Citric Acid Wastewater, Wat. Sci. Tech, 38, 45-52,1998.
    Yoon J. Y., Lee Y. H., Kim S. Y., Investigation of the reaction pathway of OH radicals produces by Fenton oxidation in the conditions of wastewater treatment, Water Science and Technology, 44, 15, 2001.
    Zuo Y., Holgne J., Formation of Hydrogen Peroxide and Depletion of Oxalic Acid on Atmospheric Water by Photolysis of Iron(III)-Oxalato Complexes, Environmental Science and Technology, 26, 1014, 1992.
    Zuo Y., Kinetics of photochemical/chemical cycling of iron coupled with organic substances in cloud and fog droplets, Geochimica et Cosmochimica Acta, 59, 3123, 1995.
    陳宇揚,Fenton程序改善染整廢水有機物特性之研究,碩士論文,淡江大學水資源及環境工程學研究所,2002。
    薛展立,黃耀輝,黃國豪,張博荀,一種新的電解還原-Fenton法對草酸之氧化研究,第27屆廢水研討會論文極,2002。
    洪啟昌,次磷酸溶液處理方法之研究-化學混凝法、吸附法及氧化法,碩士論文,國立成功大學化學工程學研究所,2005。
    林立偉,利用高級氧化法技術進行無電電鍍鎳廢液中檸檬酸與次磷酸之去除研究,碩士論文,國立成功大學化學工程學研究所,2006。
    張敬東,高順明,SBR法處理檸檬酸廢水的試驗研究,環境污染治理技術於設備,第3卷第7期。
    盧明俊,何冠賢,王淑宜,徐哲敏,利用電-芬頓程序處理含有機酸廢水,嘉南學報第三十期,75-84,2004。
    李敏華,水質化學,復漢出版社,台南市,1992。

    下載圖示 校內:2010-07-14公開
    校外:2010-07-14公開
    QR CODE